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The recent experimental realization of spin-orbit (SO) coupling for spin-1 ultracold atoms opens
a new avenue for exploring SO-coupling-related physics in large-spin systems, which is generally
unattainable in electronic materials. In this paper, we study the effects of interactions between
atoms on the ground states and collective excitations of SO-coupled spin-1 Bose-Einstein condensates
(BECs) in the presence of a spin-tensor potential. We find that ferromagnetic interaction between
atoms can induce a stripe phase exhibiting in-phase or out-of-phase modulating patterns between
spin-tensor and zero-spin-component density waves. We characterize the phase transitions between
different phases using the spin-tensor density as well as the collective dipole motion of the BEC.
We show that there exists a new type of double maxon-roton structure in the Bogoliubov-excitation
spectrum, attributing to the three band minima of the SO-coupled spin-1 BEC.

PACS numbers: 37.10.Vz, 03.75.Mn, 67.85.-d

I. INTRODUCTION

Ultracold atoms have become a versatile platform for
exploring quantum matter in the presence of a variety
of gauge fields [1–3]. One important breakthrough in
this direction is the recent experimental synthesis of cou-
pling between a particle’s spin and linear momentum,
or spin-orbit (SO) coupling, for pseudo-spin-half ultra-
cold atoms [4–12] via the light–atom interaction [13, 14].
Such synthetic SO coupling emulates the Rashba and
Dresselhaus SO coupling for electrons in solids that
plays a crucial role for many condensed-matter phenom-
ena [15, 16]. Because of the coupled spin and momen-
tum, many interesting and exotic SO-coupling-related
phenomena have been theoretically proposed and exper-
imentally observed [17–30].

While electrons have spin-half, pseudo-spin of atoms,
defined by their hyperfine states, could have higher spins.
For instance, spin-1 Bose-Einstein condensates (BECs)
have been widely studied in ultracold atomic gases [31–
34]. In this context, the recent experimental realization
of SO coupling for spin-1 BECs through Raman coupling
among three hyperfine states [35] (see Fig. 1) or with the
use of a gradient magnetic field [36] provides a completely
new avenue for exploring SO-coupling-related physics in
high-spin systems. In the experiment of Ref. [35], the SO
coupling is generated together with tunable transverse-
Zeeman and spin-tensor potentials. While the transverse-
Zeeman potential plays the same role as in the spin-half
system [13, 14]—to topologically change the band struc-
ture by opening a gap, the spin-tensor potential has fun-
damentally different rotation properties and acts only in
spin-1 (or higher-spin) space. Therefore, the system en-
ables to explore spin-tensor-related physics in the SO-
coupled superfluid. The interplay between SO coupling
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FIG. 1. (Color online) Left: The scheme to generate SO cou-
pling in a spin-1 BEC with three Raman lasers. Right: Ra-
man transitions between three hyperfine states with detuning
Ω2, which controls the spin-tensor potential.

and both potentials leads to a rich single-particle band
structure [37], which characterizes quantum phases with
itinerant magnetism and different types of phase transi-
tions that have been experimentally observed [35]. How-
ever, interaction effects on both ground state phase di-
agrams and collective excitations in such spin-1 system
have been largely unexplored.

In this paper, we study the effects of density-density
and spin-spin interactions, two natural elements in spinor
BECs [31], on the ground-state phase diagrams and ele-
mentary excitations. Our results are based on the vari-
ational wavefunction approach and numerical simulation
of Gross-Pitaevskii equation (GPE), which agree with
each other. The main results are:

(1) The ground-state phase diagrams are obtained
for different parameters. Particularly, there exists an
interaction-induced stripe phase exhibiting in-phase or
out-of-phase modulations between spin-tensor and zero-
spin-component density waves. The size of the stripe-
phase region is proportional to the ferromagnetic inter-
action. The stripe phase is the coherent superposition of
components from three band minima, and possesses both
crystalline and superfluid properties, resembling the su-
persolid phases [38].

(2) The phase transitions (transition order and change
of properties) are characterized using the spin-tensor den-
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sity, the time-of-flight momentum distribution, and the
period of collective dipole motions of the system.

(3) We reveal rich roton phenomena in the Bogoliubov-
excitation spectrum, including symmetric/asymmetric
double-roton structures and the roton gap closing at
the stripe-phase boundary. Such double-roton structures
have not been found in widely studied superfluids such
as liquid 4He [39, 40], BECs with long range interactions
[41, 42], and SO-coupled spin-half BECs [43–45], which
possess single-roton excitations.

II. MODEL AND HAMILTONIAN

As illustrated in Fig. 1, we consider the experimen-
tal scheme of Ref. [35], which employs three Raman
lasers with wave vector kR to generate SO coupling in
a spin-1 BEC. The pair of counter-propagating beams
ω− and ω+

+ (ω+
−) induces a two-photon Raman transition

between two atomic hyperfine states |0〉 and |+〉 (|−〉)
and imparts 2kR recoil momentum to the atoms. Fol-
lowing similar discussion and modeling for the system at
the single-particle level in Refs. [35, 37, 46], we consider
the non-interacting Hamiltonian in pseudo-spin-1 basis

Ψ =
(
ψ+ ψ0 ψ−

)T
as

H̃0 = − h̄
2∇2

2m
+ Ω̃1(x) · F + Ω̃2F

2
z , (1)

where an effective magnetic field Ω̃1(x) =

Ω̃1[cos(2kRx)x̂ − sin(2kRx)ŷ], associated with the
beam intensity, couples to the hyperfine states repre-
sented by spin-1 Pauli matrices F =

(
Fx, Fy, Fz

)
,

Ω̃2 is an effective detuning for |±〉 (hence taking a
spin-tensor form F 2

z ), and m is the atomic mass. Since

Ω̃1(x) has effects only in the spatial x direction, one can
assume that the ground-state wavefunction in the y and
z directions remains the case without it. After unitary
transformation ψ± → ψ±e

±2ikRx and integration over
y and z degrees of freedom, we obtain a Hamiltonian
in momentum and energy units h̄kR and h̄2k2

R/2m,
respectively, as

H0 = −∂2
x − 4i∂x ⊗ Fz + (Ω2 + 4)F 2

z + Ω1Fx, (2)

where Ω1,2 are dimensionless variables controlling the
transverse-Zeeman and spin-tensor potentials, respec-
tively. The term −i∂x ⊗ Fz = px ⊗ Fz represents the
spin–linear-momentum coupling.

The ground state properties of H0 can be characterized
by considering the minima in the lowest energy band,

Ek = k2 − 3
√
A′k/54−Ak

3
√

2/(27 A′k) + 2A0/3, (3)

where A0 = Ω2 + 4, Ak = 48k2 + A2
0 + 3Ω2

1, and A′k =

A0A
′′
k+
√
−4A3

k +A2
0A
′′
k

2 with A′′k = −288k2+2A2
0+9Ω2

1.

The structure of Ek can exhibit (A) one local minimum

at k = 0 [right inset in Fig. 2 (a)], (B) two at k = ±k0 6= 0
(bottom inset), or (C) three at k = 0,±k0 (top two in-
sets) as Ω1,2 vary. The ground state always stays at k = 0
in the region Ω2 > 0 and can undergo a phase transition
between 0 and ±k0 in Ω2 ≤ 0. Along the phase boundary
in the Ω1-Ω2 plane, there is a triple point (Ω∗1,Ω

∗
2) that

separates two types of transitions: a first-order transi-
tion in Ω1 < Ω∗1 upon which structure (C) remains and
k suddenly jumps (top two insets) and a second-order
transition upon which the structure evolves between (A)
and (B) and k continuously changes (bottom two insets).
The boundaries of first-order and second-order transi-
tions meet the conditions E0 = E±k0 and ∂2

kE0 = 0,
respectively, which represent a monotonically decreasing
curve in the Ω1-Ω2 plane. The triple point takes place at
the merging of the three local minima ±k0 → 0 of struc-
ture (C), which gives (Ω∗1,Ω

∗
2) = (4.805,−1.666) and a

flat low-energy behavior Ek ∼ 0.0165k6 [47].

III. VARIATIONAL CALCULATION

For a realistic BEC, the energy density of the system
can be expressed as

ε =
1

V

∫
dxΨ†

[
H0 +

c0
2

Ψ†Ψ +
c2
2

(
Ψ†FΨ

)
· F
]

Ψ, (4)

where V is the system volume and c0,2 describe density-
density and spin-spin interaction strengths. The wave
function is normalized as V −1

∫
dxΨ†Ψ = 1 such that

c0,2 are proportional to the particle density N/V . Note
that c0,2 could also be tuned through Feshbach reso-
nances [48]. To obtain the ground state, we adopt a
variational ansatz,

Ψ = |C0|χ0 +
∑

s=±
|Cs|χseis(kx+αs), (5)

where the spin components are of the form χ−(θ, φ) =(
cos θ cosφ − sin θ cos θ sinφ

)T
, χ0 = χ−(π2 − θ

′, π4 ),
and χ+ = χ−(θ, π2 − φ). The normalization condition

gives
∑
s=0,± |Cs|

2
= 1. Inserting Eq. (5) into Eq. (4),

we obtain ε as a functional of seven variational parame-
ters k, |C±|, θ, θ′, φ, and α = α− − α+ (see Appendix
A), which are generally different from their single-particle
values [37, 49]. The ground state is computed through
the minimization of ε. We also calculate the ground state
by solving the GPE using imaginary time evolution and
find good agreement between both methods.

In terms of the variational variables, we obtain the spin
polarization 〈Fz〉 = (|C+|2 − |C−|2)cos2θ cos 2φ and spin

tensor
〈
F 2
z

〉
= (|C+|2 + |C−|2) cos2 θ+ |C0|2sin2θ′, which

are directly related to the spin-resolved density profiles
V −1

∫
dx(ρ+ ∓ ρ−) with ρs = |ψs|2, respectively, and can

hence be measured in the time-of-flight experiment. The
minimization of energy with respect to k, i.e., ∂ε/∂k =
0, leads to the ground-state spin polarization associated
with momentum 〈Fz〉 = −k2 (|C+|2 − |C−|2), which is a
result of SO coupling.



3

IV. INTERACTING PHASE DIAGRAM

The variational ansatz characterizes three quantum
phases: (I) the uniform phase with a constant wave-
function at k = 0, and hence 〈Fz〉 = 0; (II) the plane-
wave phase with k 6= 0, one of |C±| equal to 1, and
hence 〈Fz〉 6= 0; (III) the stripe phase with k 6= 0 and
at least two of |C0,±| are not 0. The plane-wave phase
has two degenerate states with opposite momentum and
hence opposite spin polarization. Below we present only
the positively polarized plane-wave state for convenience.
The stripe phase exhibits spatial density modulation
ρ(x) =

∑
s=0,± ρs with periods determined by the su-

perposition of the uniform and plane-wave states. The
transition between phases is first-order (second-order) if
∂ε
∂Ω2

= 〈F 2
z 〉 ( ∂

2ε
∂Ω2

2
=

∂〈F 2
z 〉

∂Ω2
) [50] displays discontinuity

as Ω2 varies across the phase boundary. Another polar-
ization 〈Fx〉 = ∂ε

∂Ω1
can also indicate the type of phase

transitions but is less experimentally accessible. Note
that the behavior of 〈Fz〉 is not directly related to the
energy derivatives in the Ω1-Ω2 plane. In fact it can not
tell the transition involving the stripe phase as we will
show later.

Figure 2(a) shows the ground-state phase diagram in
the Ω1-Ω2 plane at (c0, c2) = (5,−0.1). Outside the small
framed region, we find that such small spin-spin inter-
action c2 has little effects on the phase diagram. The
quantum phases and phase transitions can still be well
described by the single-particle energy band (see insets),
except the system always stays in one of the minima given
the degeneracy due to the density-density interaction c0,
in contrast to the non-interacting ground state which
can be arbitrary superposition of degenerate minima. As
a result, the boundaries of first-order (solid curve) and
second-order (dashed) transitions between the uniform
(I) and plane-wave (II) phases as well as the place of
triple point (star sign) show indiscernible difference from
the non-interacting case. When c2 becomes stronger to
−2, it enlarges region II but does not qualitatively change
the I–II boundary.

Figure 2(b) zooms in the framed region in (a). We
see the appearance a stripe phase III sandwiched by I
and II. The III–II and III–I transition boundaries are
first-order (solid curve) and second-order (dashed), re-
spectively, and meet at a triritical point (0.6, 0.005) (di-
amond sign). The stripe phase represents co-occupancy
of the three states of the form |C0| > |C+| = |C−| > 0
(see insets), so its direct evidence would be a symmetric
three-peak structure at 0 and ±k in the time-of-flight ex-
periment. Such a superposition leads to spatially modu-
lated ρ and spin-tensor density ρ++ρ− with period 2π/k,
while the spin polarization ρ+ − ρ− = 0 remains uni-
form. The stripe phase shows two patterns: ρ+ +ρ− and
ρ0 have (IIIa) in-phase modulations (coincident maxima
and minima) or (IIIb) out-of-phase modulations. The
IIIb pattern results from a stronger interband mixing
due to the interaction. The amplitude of ρ0 smoothly

FIG. 2. (Color online) (a) Ground-state phase diagram in
the Ω1-Ω2 plane for (c0, c2) = (5,−0.1). (b) Zoom-in of
the framed region in (a). Regions I, II, and IIIa/IIIb, rep-
resent uniform, plane-wave, and stripe phases, respectively.
The solid, dashed, and dot-dashed curves show first-order-
transition, second-order-transition, and crossover boundaries,
respectively. The star (diamond) sign denotes the triple (tri-
critical) point. The insets show schematic single-particle
band structures and the BEC’s occupation in the momen-
tum space. (c) Phase diagram in the |c2|-Ω2 plane for c0 = 5
and Ω1 = 0.1. (d) Phase diagram in the Ω1-Ω2 plane for
(c0, c2) = (0.5,−0.01).

suppresses to zero on the IIIa–IIIb crossover boundary
(dot-dashed curve) and changes sign across the bound-
ary.

We turn to study the effect of interaction strength on
the phase boundaries. Figure 2(c) shows the phase di-
agram in the |c2|-Ω2 plane (c2 < 0 remains ferromag-
netic) for c0 = 5 and Ω1 = 0.1. We see that the stripe-
phase region linearly increases with |c2|. For weaker in-
teraction (c0, c2) = (0.5,−0.01), we find that IIIb disap-
pears and the II–III boundary monotonically decreases
from Ω2 = 0 as in the single-particle case [see Fig. 2(d)],
but the linear increase of the stripe region with |c2| re-
mains. Since |c2| is proportional to the average particle
density, we expect the stripe phase to be more attain-
able in a dense system. A 87Rb system with density
1015/cm3, s-wave scattering length 100.48a0 (a0 is the
Bohr radius), and Raman-laser wavelength 800 nm cor-
responds to c0 = 2.2 and c2 = −0.01, which predict the
stripe phase within Ω̃1 < 0.23ER = 814.2h × Hz and
Ω̃2 < 0.02ER = 70.8h×Hz. For 133Cs, the difference be-
tween intraspin and interspin interactions is easily tun-
able due to a broad Feshbach resonance of the intraspin
scattering [48], so |c2| can be enhanced without increas-
ing the density.

To show the system behavior upon the phase transi-
tions, we plot several observables in Fig. 3(a), including
〈F 2
z 〉 (solid curve), 〈Fz〉 (dashed), and combined occu-

pancy P = |C2
+C

2
−| × 10 (dot-dashed) vs Ω2 along path
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FIG. 3. (Color online) (a) 〈F 2
z 〉 (solid curve), 〈Fz〉 (dashed),

and P = 10|C2
+C

2
−| (dot-dashed) vs Ω2 along path Ω1 = 0.2 in

Fig. 2(b). The inset shows
∂〈F2

z 〉
∂Ω2

. (b) [(c)] Dipole oscillation

periods T along path Ω1 = 2 (Ω2 = −3) across a first-order
(second-order) transition. Filled circles (solid curves) are ob-
tained from the GPE (effective-mass method). (d) T across
the stripe phase along path Ω1 = 1.3 (with thick-dashed fit-
ting curves). Phases are labeled in the corresponding regions
separated by dashed lines.

Ω1 = 0.2 in Fig. 2(b). The discontinuity in 〈F 2
z 〉 [

∂〈F 2
z 〉

∂Ω2

(see inset)] indicates the II–III (III–I) transition to be
first (second) order. The 〈Fz〉 curve can also indicate
the II–III transition but not III–I. The stripe phase has
〈Fz〉 = 0, the same as the uniform phase, but exhibits
nonzero co-occupancy P > 0. This underlines the insuf-
ficiency to characterize the interacting systems with only
spin polarization.

V. DIPOLE OSCILLATION

We study dipole collective modes of a trapped BEC
as another experimental probe [5] for the phase tran-
sitions. We consider an experimental setup of 5 × 104

87Rb atoms with the aforementioned scattering length
and Raman-laser wavelength and anisotropic trapping
frequencies ωx = ωy = 0.23ωz = 33 Hz, producing an ef-
fective two-dimensional system in our simulation (where
we integrate out only the z degrees of freedom). After
an initial displacement of 1.26 µm in the x direction, we
compute the BEC’s periodic motion by numerically solv-
ing the time-dependent GPE and record the oscillation
period T . In our simulation, we do not see effects of
the y degrees of freedom on T . We first study the transi-
tion between phases I and II. Figure 3(b) [(c)] shows that
T exhibits a discontinuity (diverges) upon the first-order
(second-order) transition along path Ω1 = 2 (Ω2 = −3) in
the Ω1-Ω2 plane. Such behaviors well match the effective-
mass approximation [51] (see solid curves), in which the
dipole motion is considered as a semi-classical simple har-
monic oscillator subject to the energy dispersion Ek of
Eq. (3). The displacement x(t) and momentum k(t) obey

the equation of motion ∂tk = −ω2
xx and ∂tx = ∂Ek/∂k,

resulting in the period T ∝ √meff with effective mass
meff = (∂2Ek/∂k

2)−1 defined by the band curvature.
Therefore, the divergence of T upon the second-order
transition comes from the band flatness ∂2Ek/∂k

2 = 0.
Expanding the curvature around a second-order tran-
sition point (Ωc1,Ω

c
2), we obtain the critical behavior

T ∝ |Ω1(2) − Ωc1(2)|
−1/2 at fixed Ω2(1), with the critical

exponent consistent with the spin-half case [52]. For the
stripe phase, we find that its dipole oscillation period is
lower than those of the other phases. To reveal the salient
feature of such a trend, we study a strongly interacting
system with (c0, c2) = (10,−2) in a one-dimensional trap
along path Ω1 = 1.3. Figure 3(d) shows the results from
the GPE calculations (the effective-mass approximation
no longer fits here). We see a clear drop in the period
of the stripe phase compared with the non-stripe phases,
with the discontinuities matching the boundaries (dashed
lines).

VI. DOUBLE ROTONS

The triple-well band structure of the spin-1 BEC leads
to exotic quasiparticle excitations that do not exist in

FIG. 4. (Color online) (a),(b) The lowest (solid curve) and
second-lowest (dashed curve) roton gaps vs Ω2 along paths
Ω1 = 2 in Fig. 2(a) and 0.2 in 2(b), respectively. Regions of
different roton structures (see text) are labeled and separated
by dashed lines. The corresponding ground-state phases are
labeled above the panels. Curves in the insets show schematic
Bogoliubov-excitation spectra (x and y axes represent mo-
mentum and energy, respectively) in the corresponding re-
gions. The roton modes are circled. There are no roton exci-
tations in the shaded region of the stripe phase [53].
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previous spin-half or long-range-interacting systems. We
calculate the Bogoliubov excitations for phases I and II
by solving the Bogoliubov equation, derived by lineariz-
ing the GPE with plane-wave-type particle and hole per-
turbations (see Appendix B). We first see that the exci-
tation spectrum is always gapless and linear in the small-
momentum region, presenting typical phonon modes in
BECs. In a larger-momentum region, we find a rich struc-
ture of rotons, i.e., quasi-stable modes with zero group
velocity. In Fig. 4(a), we plot the energy gaps of the
lowest and second-lowest (if present) rotons along path
Ω1 = 2 in Fig. 2(a). There are two types of roton struc-
tures in phase II: (i) single roton and (iia) asymmetric
double rotons. In phase I, there are symmetric and de-
generate double rotons (iis) (see insets for schematic spec-
tra with marked rotons). Therefore, the sudden change
in the roton structure can be a signature for the II–I tran-
sition. Figure 4(b) shows the results along path Ω1 = 0.2.
We see that when the system approaches to III from II,
the two roton gaps first cross each other. Then the one
at lower momentum keeps decreasing to zero at the II–III
boundary, while the other remains finite. If approaching
from I, the degenerate gaps both drop to zero at the I–III
boundary. Such gap closing is a signature of the transi-
tion to the stripe phase, resembling to the transition to
the supersolid phase that possesses both crystalline and
superfluid orders. The trend of the reducing roton gap
close to the stripe phase was experimentally observed pre-
viously for the spin-half system [43, 44]. The Bogoliubov
excitations in the stripe phase itself are more complicated
and there are no rotons [53] (shaded region). Note that
such double rotons have not been found in the previously
studied superfluids [39–45].

VII. SUMMARY

In summary, we have characterized the ground state
phase diagrams and collective excitations in interact-
ing SO-coupled spin-1 BECs with spin-tensor potentials.
Our results provide timely predictions for ongoing exper-
iments exploring SO-coupling-related physics in higher-
spin systems. One interesting extension would be the in-
vestigation of spin-1 BECs with recently proposed spin–
orbital-angular-momentum coupling [54–56], in which
the strongly interacting effects might significantly enlarge
the stripe-phase region.
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Appendix A: Variational energy functional

In this section we show details of the variational energy
functional density ε discussed in Sec. III. We first rewrite
the variational wavefunction in Eq. (5) as ψ+

ψ0

ψ−

 = |C+|

 cos θ cosφ
− sin θ

cos θ sinφ

 e−i(kx+α+) +

|C0|

 sin θ′/
√

2
− cos θ′

sin θ′/
√

2

+ |C−|

 cos θ sinφ
− sin θ

cos θ cosφ

 ei(kx+α−).

(A1)

We then evaluate each term of the single-particle energy
density using Eq. (A1) as〈
−∂2

x

〉
=

1

V

∫
dx
∑
j

ψ∗j (−∂2
x)ψj = k2

(
|C+|2 + |C−|2

)
,

(A2)

〈−4i∂xFz〉 =
1

V

∫
dx(−4i)(ψ∗+∂xψ+ − ψ∗−∂xψ−)

= −4kcos2θ cos 2φ
(
|C+|2 + |C−|2

)
, (A3)

〈
F 2
z

〉
=

1

V

∫
dx
(
|ψ+|2 + |ψ−|2

)
=
(
|C+|2 + |C−|2

)
cos2θ + |C0|2sin2θ′, (A4)

〈Fx〉 =
1

V

∫
dx

1√
2

(
ψ†+ψ0 + ψ†0ψ− + h.c.

)
= −

(
|C+|2 + |C−|2

)
sin 2θ sin

(
φ+

π

4

)
− |C0|2 sin 2θ′,

(A5)

and obtain

ε0 =
〈
−∂2

x − 4i∂xFz
〉

+ (Ω2 + 4)
〈
F 2
z

〉
+ Ω1 〈Fx〉 .

(A6)

For the interaction energy, we have

εc0 =
c0
2

1

V

∫
dx
(
|ψ+|2 + |ψ0|2 + |ψ−|2

)2

=
c0
2

{
1 + 2|C0|2

[
cos θ sin θ′ sin

(
φ+

π

4

)
+ sin θ cos θ′

]2 (
|C+|2 + 2 |C+| |C−| cosα+ |C−|2

)
+
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2|C+|2|C−|2
(
cos2θ sin 2φ+ sin2θ

)2}
, (A7)

and

εc2 =
c2
2

1

V

∫
dx

∑
s=x,y,z

 ∑
ij=+,0,−

ψ∗i Fs,ijψj

2

=
c2
2

1

V

∫
dx

[
2
∣∣ψ∗+ψ0 + ψ∗0ψ−

∣∣2 +
(
|ψ+|2 − |ψ−|2

)2
]
, (A8)

with

1

V

∫
dx
∣∣ψ∗+ψ0 + ψ∗0ψ−

∣∣2 =
1

2

[(
|C+|2 + |C−|2

)
sin 2θ sin

(
φ+

π

4

)
+ |C0|2 sin 2θ′

]2
+ |C+|2|C−|2sin22θ +

|C0|2
(
|C+|2 + |C−|2 + 2 |C+| |C−| cosα

)[
cos2θcos2θ′ +

1

2
sin 2θ sin 2θ′ sin

(
φ+

π

4

)
+ sin2θsin2θ′

]
, (A9)

and

1

V

∫
dx
(
|ψ+|2 − |ψ−|2

)2

=
(
|C+|2 − |C−|2

)2

cos4θcos22φ+

2|C0|2cos2θsin2θ′cos2
(
φ+

π

4

)(
|C+|2 − 2 |C+| |C−| cosα+ |C−|2

)
. (A10)

Combining Eqs. (A6)–(A10), we obtain the energy func-
tional density ε = ε0 + εc0 + εc2 .

Appendix B: Bogoliubov excitations

In this section we derive the equation for the Bogoli-
ubov excitations discussed in Sec. VI. The dynamics of a
BEC in the plane-wave or uniform phase is governed by
the time-dependent Gross-Pitaevskii equation

i∂tΨ(x, t) = (H0 +Hint)Ψ(x, t), (B1)

where H0 is the single-particle Hamiltonian in Eq. (2),
Ψ(x, t) = (ψ+, ψ0, ψ−)T , and the interaction part Hint =
c0Ψ†Ψ + c2

(
Ψ†FΨ

)
· F. To calculate the Bogoliubov

spectrum of the plane wave superfluids, we suppose

Ψ(x, t) = eikx−iµt(χ(0) + uqe
iqx−ωt + v∗qe

−iqx+iωt),

(B2)

where eikxχ(0) = eikx(χ
(0)
+ , χ

(0)
0 , χ

(0)
− )T is the ground

state of the system and uq and vq are the wave func-
tions with three components. Plugging Eq. (B2) into
Eq. (B1) yields (only keeping linear terms with respect
to uq and vq)

h̄ω

(
uq
vq

)
= σzM

(
uq
vq

)
, (B3)

where σz is the z-component 2× 2 Pauli matrix, and

M =

(
H0(p̂→ (k + q)) +H1 H2

H∗2 H∗0 (p̂→ (k − q)) +H∗1

)
,

(B4)

with

H1 =

 c0(ρ
(0)
0 + |χ(0)

+ |2) + c2(ρ
(0)
z + |χ(0)

+ |2 + |χ(0)
0 |2) c0χ

(0)∗
0 χ

(0)
+ + c2(χ

(0)
+ χ

(0)∗
0 + 2χ

(0)
0 χ

(0)∗
− )

c0χ
(0)∗
+ χ

(0)
0 + c2(χ

(0)∗
+ χ

(0)
0 + 2χ

(0)∗
0 χ

(0)
− ) c0(ρ

(0)
0 + |χ(0)

0 |2) + c2(|χ(0)
+ |2 + |χ(0)

− |2)

(c0 − c2)χ
(0)∗
+ χ

(0)
− c0χ

(0)∗
0 χ

(0)
− + c2(2χ

(0)∗
+ χ

(0)
0 + χ

(0)∗
0 χ

(0)
− )

(c0 − c2)χ
(0)
+ χ

(0)∗
−

c0χ
(0)∗
− χ

(0)
0 + c2(2χ

(0)
+ χ

(0)∗
0 + χ

(0)
0 χ

(0)∗
− )

c0(ρ
(0)
0 + |χ(0)

− |2) + c2(|χ(0)
− |2 + |χ(0)

0 |2 − ρ
(0)
z )

 , (B5)

H2 =

 (c0 + c2)χ
(0)2
+ (c0 + c2)χ

(0)
0 χ

(0)
+ (c0 − c2)χ

(0)
+ χ

(0)
− + c2χ

(0)2
0

(c0 + c2)χ
(0)
+ χ

(0)
0 c0χ

(0)2
0 + 2c2χ

(0)
+ χ

(0)
− (c0 + c2)χ

(0)
− χ

(0)
0

(c0 − c2)χ
(0)
+ χ

(0)
− + c2χ

(0)2
0 (c0 + c2)χ

(0)
0 χ

(0)
− (c0 + c2)χ

(0)2
−

 . (B6)

The Bogoliubov excitation spectrum ω with respect to
q is numerically obtained by diagonalizing σzM (note

that only the physical branches of the excitations are
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considered).
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