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Large spin systems can exhibit unconventional types of magnetic ordering different from the fer-
romagnetic or Néel-like antiferromagnetic order commonly found in spin 1/2 systems. Spin-nematic
phases, for instance, do not break time-reversal invariance and their magnetic order parameter is
characterized by a second rank tensor with the symmetry of an ellipsoid. Here we show direct ex-
perimental evidence for spin-nematic ordering in a spin-1 Bose-Einstein condensate of sodium atoms
with antiferromagnetic interactions. In a mean field description this order is enforced by locking
the relative phase between spin components. We reveal this mechanism by studying the spin noise
after a spin rotation, which is shown to contain information hidden when looking only at averages.
The method should be applicable to high spin systems in order to reveal complex magnetic phases.

PACS numbers: 67.85.Fg,67.10.Fj

I. INTRODUCTION

Magnetic order in spin 1/2 systems is commonly asso-
ciated with either a ferromagnetic phase or a Néel antifer-
romagnet, depending on the sign of the exchange interac-
tions. The situation is richer for spins greater than 1/2,
and other types of magnetic order can arise at low tem-
peratures. Spin 1 systems, for instance, can support spin
nematic phases with vanishing average spin 〈ŝ〉 [1]. The
magnetic order is then characterized by a non-zero spin
quadrupole tensor, Qij ≡ 1

2 〈ŝiŝj + ŝj ŝi〉 which deviates
from isotropy even without applied field, i.e. it describes
an object with the symmetries of an ellipsoid. In the sim-
plest case, with axial symmetry, the spin quadrupole ten-
sor has the same mathematical form as the orientational
order parameter of nematic liquid crystals [2]. There is a
preferred axis in space (the director) without a preferred
direction along that axis.

Spin nematic phases have been identified in lattice spin
1 models (see, e.g, [3–10]) or in spin 1 Bose-Einstein
condensates (BECs) [11] with antiferromagnetic spin-
exchange interactions [12–21]. In solid state systems,
most magnetic probes couple only to the magnetization
and are therefore unsuitable to reveal spin nematic or-
der. In spin 1 condensates, equilibrium properties have
been characterized by measuring the populations of each
Zeeman state. This is not always sufficient to establish
the nature of the magnetic order. For instance, in the
so-called broken axisymmetry phase [22], where all three
Zeeman sublevels are populated, ferromagnetic or spin
nematic behavior cannot be distinguished from the aver-
age populations alone.

In this article, we propose a method to reveal spin-
nematic ordering (or possibly other types of unconven-
tional magnetic order), and apply it experimentally to
spin 1 atomic condensates. We show that the spin noise
following a spin rotation contains information about the
initial state, which can be retrieved with a suitable sta-
tistical analysis. In spinor condensates, magnetic order
follows from the emergence of a well-defined phase rela-

a b

c d e

100µm

FIG. 1: (Color online): (a): Sketch of the experimental setup.
7500 Bose-condensed 23Na atoms are confined in a crossed
optical dipole trap with a homogeneous static magnetic field
along z. A resonant oscillating magnetic field along y drives a
spin rotation of the initial equilibrium state. (b): Absorption
image of the atomic cloud after Stern-Gerlach expansion in a
magnetic field gradient. (c)-(e): Classical picture explain-
ing the principle of our measurement. (c): The average spin
〈ŝ〉 of the condensate created in a single realization can be
decomposed into a longitudinal component mz = 〈ŝz〉 and a
transverse component 〈ŝ⊥〉 = 〈ŝx〉ex+〈ŝy〉ey, the direction of
which is given by the angle α. (d): From realization to real-
ization, the angle α varies randomly while mz and |〈ŝ⊥〉| stay
constant. The mean spin vector 〈ŝ〉 thus samples a horizontal
circle of radius |〈ŝ⊥〉|. (e): A spin rotation of the initial state
rotates this circle by an angle Ωt along the y axis. The fluc-
tuations ∆s′z after rotation are proportional to the squared
radius of the circle through a simple geometrical relation.

tion between the components of the spin wavefunction
in the equilibrium state. This phase-locking mechanism
is not caused by any external field, but emerges from
the interactions between the atomic spins. We show ev-
idence for such a mechanism in a condensate of spin 1
23Na atoms.

The article is organized as follows. In Section II we
recall results on the geometry of spin 1 wavefunctions,
which are used to give a quantitative definition of spin
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nematic order. We connect it to the standard treatment
of spinor condensates at T = 0, and discuss the effect
of finite temperatures. In Section III, we describe the
method used to extract informations about the magnetic
order from a measurement of spin noise after a known
spin rotation. In Section IV, we describe our experimen-
tal apparatus and methods. Section V describes a first
analysis of our experimental results, where the fluctua-
tions of magnetization after spin rotation are monitored.
In Section VI, another, more refined analysis is presented,
where a maximum-likelihood estimation of the equilib-
rium single particle density matrix is presented. Both
methods reveal the underlying spin nematic character of
the equilibrium state. Section VII summarizes our find-
ings.

II. THEORETICAL DESCRIPTION OF
ANTIFERROMAGNETIC SPINOR

CONDENSATES

The purposes of this Section are first, to give a precise
definition of spin nematic phases in terms of spin observ-
ables, and second, to connect this definition to experi-
ments with spin 1 Bose-Einstein condensates at T = 0
and at finite temperatures. We will assume here that
the spin 1 bosons are confined in a state-independent
trap, tight enough to prevent the formation of spin do-
mains in the equilibrium state (single-mode approxima-
tion) [23]. The condensate wavefunction is then given by
the product of a spatial mode function φ(r), common to
all Zeeman states, with a spin 1 wavefunction |ζ〉, which
describes the internal degrees of freedom. An important
feature of ultracold spinor gases is that the reduced (lon-
gitudinal) magnetization, mz = n+1 − n−1, is conserved
by binary collisions driving the system to its equilibrium
state [11, 20]. Experimentally, we prepare a spin mixture
well before the BEC forms in our evaporation sequence,
allowing us to adjust the longitudinal magnetization mz

between 0 and 1 (see Section IV).

A. Geometric description of spin 1 wavefunctions

We first give a more precise definition of spin nematic
order, and connect this definition with spin observables.
To that end, it is convenient to express a spin 1 state in
terms of its components in the so-called Cartesian basis
{|x〉, |y〉, |z〉} [46] formed by the eigenstates of Ŝa with
eigenvalue 0, where a = x, y, z. In this Section, we re-
strict ourselves to the case of pure states for simplicity.

A spin 1 state can be written in the Cartesian basis as
[9, 16, 24, 25]

|Ψ〉 = (u+ iv) · |r〉, (1)

where the vectors u, v are real and obey u2+v2 = 1. The
vectors u and v are not uniquely defined. Performing a
gauge transformation Ψ → Ψ′ = eiγΨ transforms u and

v as u′ = cos(γ)u− sin(γ)v and v′ = cos(γ)v+ sin(γ)u.
As a result, we can choose γ such that u · v = 0 and
‖u‖ ≥ ‖v‖.

The state of a spin 1 particle can be uniquely described
by the average spin vector, 〈ŝ〉 = 2u×v, and by the spin

quadrupole tensor Qij ≡ 1
2 〈ŝiŝj + ŝj ŝi〉 (TrQ = 2). In

the cartesian basis, we have

Qij = δij − (uiuj + vivj), (2)

or in a more geometrical form,

Q =
1−A

2
u⊗ u+

1 +A
2

v ⊗ v +w ⊗w. (3)

The orthogonal units vectors u = u/ ‖u‖, v = v/ ‖v‖,
w = 〈ŝ〉/ ‖〈ŝ〉‖ define the eigenaxis ofQ, with eigenvalues
(1 − A)/2,(1 + A)/2 and 1. The alignment parameter

A ≥ 0, defined as A = 2 ‖u‖2 − 1, characterizes the
anisotropy of spin fluctuations in the plane perpendicular
to the mean spin vector.

There are two simple limiting cases. The first one is the
case of an aligned state (also called spin nematic or polar
state in the context of spinor condensates [11]), where
the spin wavefunction, |Ψ〉 = u · |r〉, is the eigenstate of
ŝ · u with eigenvalue zero. In such a state, the average
spin vanishes, ‖〈ŝ〉‖ = 0, and the spin quadrupole tensor

is Q = 1−u⊗u with eigenvalues 0, 1, 1. In the literature,

it is common to call u the director field. The tensor Q,
or equivalently the director u, plays the role of the order
parameter for spin nematic states.

The second limiting case is the one of an oriented
or fully magnetized state, for which the average spin
is maximal, ‖〈ŝ〉‖ = 1. This is achieved when ‖u‖ =

‖v‖ = 1/
√

2, and also corresponds to a non-zero spin

quadrupole tensor Q = 1
2 (1−w ⊗w) with eigenvalues

1/2, 1/2, 1.

For a generic, partially magnetized state, one can
quantify the proximity to one or the other limiting cases
by the quantity A, which characterizes the amount of
alignment present in a given state. For purely aligned
states A = 1 while for purely oriented states A = 0. For
a generic state, the alignment A and spin length ‖〈ŝ〉‖
are related by

〈ŝ〉2 +A2 = 1. (4)

This shows that measuring the length of the mean spin
vector 〈ŝ〉2 is fully equivalent to measuring the alignment
A.

B. Ground state of spinor condensates

In the single mode approximation where atoms in dif-
ferent spin states share the same spatial mode [23], we
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FIG. 2: (Color online) Equilibrium population n∗0 (solid line),
transverse spin length ‖〈ŝ⊥〉‖ (dotted line) and alignment A
(dashed line) of an antiferromagnetic spin 1 condensate versus
longitudinal magnetization mz, for a fixed value of q/US = 0.2
(solid lines). The critical magnetization separing the broken
axisymmetry from the antiferromagnetic phase is mz,c = 0.6,
marked by the vertical dashed line.

parametrize the spin state of the condensate as

|ζ〉 =


√

1−n0+mz
2 ei(Θ+α)/2

√
n0√

1−n0−mz
2 ei(Θ−α)/2

 , (5)

where Θ and α are relative phases [47]. The quantum
state |ζ〉 corresponds to a mean spin vector 〈ŝ〉 = mzez+
〈ŝ⊥〉 (quantities in small letters are normalized by the
total atom number N). The mean transverse spin 〈ŝ⊥〉 =
〈ŝx〉ex+〈ŝy〉ey points in a direction determined by α and
its length is determined by Θ,

〈ŝ⊥〉2 = 2n0

(
1− n0 +

√
(1− n0)2 −m2

z cos Θ
)
. (6)

Eq. (4) shows that the relative phase Θ also determines
the alignment of the state |ζ〉.

For a given magnetization mz set by the preparation
sequence, the equilibrium state |ζ〉 minimizes the spin
mean field energy EMF, the sum of the spin-exchange
interaction energy and of the quadratic Zeeman energy
(QZE) energy in an applied magnetic field B [11],

EMF

N
=
Us
2
〈ŝ⊥〉2 − qn0, (7)

up to terms that depend only on mz. For the experiments
reported in this article, the interaction strength is Us/h ≈
38 Hz (see Section IV D) and q/h ≈ 4 Hz to 34 Hz.

Antiferromagnetic interactions (Us > 0, the case of
sodium atoms) favor minimizing the transverse spin
length. According to Eq. (6), this is achieved by lock-
ing the relative phase Θ to π independently of the value
taken by n0,mz, α (ferromagnetic interactions would lock
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FIG. 3: (Color online) The phase diagram in the mz − q
plane, where the three sets of experiments we have performed
are located, denoted as a,b,c (a: mz = 0.33, q/h = 6.00 Hz;
b: mz = 0.73, q/h = 33.7 Hz; c: mz = 0.71, q/h = 3.84
Hz;). In the gray area above the phase transition line both n0

and |〈ŝ⊥〉| are nonzero, whereas both vanish below the phase
transition in the zero temperature case.

Θ to 0 instead). This is equivalent to maximizing the
alignment A introduced above.

For a partially magnetized system with given mag-
netization mz, the competition between the two terms
in Eq. (7) drives a phase transition at a critical qc =

Us(1 −
√

1−m2
z) [12, 17, 18, 20, 26]. At zero tempera-

ture, the equilibrium population n∗0 is zero below qc (“an-
tiferromagnetic phase”) and assumes a finite value above
(“broken axisymmetry phase”) [12, 22, 26], as illustrated
in Fig. 3. Fig. 2 shows the equilibrium population n∗0, to-
gether with the length ‖〈ŝ⊥〉‖ of the transverse spin and
the alignment A. Although the mean transverse spin is
not zero above qc [see Eq. (6)], its value remains small
because Θ stays locked to π. As a result, the alignment

A = n0 +
√

(1− n0)2 −m2
z, (8)

which would reach 1 in the absence of other constraints
(thus realizing pure spin nematic states), stays very close
to the maximum value given the conservation of mz,
Amax =

√
1−m2

z. This justifies using the transverse
spin length to determine the amount of alignment present
in the state |ζ〉, even when 〈ŝ〉 6= 0.

C. Finite temperatures

At finite temperatures, the T = 0 description of a
spinor condensate should be modified in two ways. First,
the spin state of the condensate is subject to thermal
fluctuations, and second, the population of the conden-
sate is thermally depleted. In this Section, we examine
these two effects in order.

We first discuss the thermal fluctuations of the spin
state of the condensate, which is described by a finite
temperature spin ensemble as studied in details in [27].
Close to the phase transition at qc, the population n∗0 > 0
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FIG. 4: (Color online) (a) Partial condensed fractions f
(mF )
c

for each Zeeman component mF = +1 (dashed red), mF = 0
(dash doted green) and mF = −1 (dotted blue line) and total

condensed fraction (black solid). Here f
(mF )
c = N

(mF )
c /N is

normalized to the total number of atoms. (b) Transverse spin
length 〈ŝ⊥〉2 versus temperature. The calculation was done
for a spherical trap of frequency ω̄/(2π) = 405 Hz, N = 7500
atoms, mz = 0.33 and q/h = 6 Hz. In physical units, kBT =
8~ω̄ corresponds to T ≈ 150 nK.

which minimizes the free energy is small. The spin state
of the condensate is then well described by a statistical
mixture of |N : ζ〉 states, with an approximately Gaus-
sian distribution of n0,mz,Θ [27].

We now discuss the thermal depletion of the conden-
sate population. The single-mode approximation only
describes the lowest energy “spatial mode” into which the
atoms condense. Higher energy modes can be thermally
populated, leading to a condensed fraction fc = Nc/N
lower than one. Here N and Nc denote respectively
the total number of atoms and of condensed atoms, irre-
spective of their internal state. To describe the thermal
component of the non-condensed cloud, we have adapted
the Hartree-Fock (HF) description proposed in [28] in
the uniform case to our experimental situation (see Ap-
pendix B for details).

The results of this calculation are shown in Fig. 4 for
parameters relevant to our experimental situation, where
we plot the partial condensed fractions for each Zeeman

component f
(mF )
c , defined as the ratio of condensed atom

number in state mF to the total atom number. The
condensed fraction in mF = 0 decreases first. Above
kBT ≥ 7.8~ω, the mF = 0 component is purely normal
and the condensate is formed bymF = ±1 only. As found
in [28], the contribution of the thermal component to the
average spin vector is oriented opposite to the average

spin of the condensate. The total transverse spin is thus
naturally reduced with increasing temperature [48]. In
the regime we have investigated, the temperatures fulfill
kBT � q, Us. As a result, the non-condensate spin vector
is always much smaller in magnitude than its condensed
counterpart, and we find that the main effect that reduces
the length of the transverse spin vector is the reduction
of the condensed fraction. The results of Section II B can
be directly used, provided one replaces the total atom
number N by the condensed atom number Nc < N and
the reduced populations nmF by their condensed coun-
terparts. For a total condensed fraction fc = 0.8, 〈ŝ⊥〉2
is reduced to about 57% of its zero temperature value.

III. SPIN NOISE REVEALS SPIN-NEMATIC
ORDER

In contrast to the phase Θ, which is locked to π in
equilibrium by the spin-exchange interactions, the phase
α is expected to take random values from one realization
to the next. When dealing with many realizations of
the same experiment, the initial many-body state is thus
characterized by a statistical mixture

ρ̂ =

∫ 4π

0

dα

4π
|ζN 〉〈ζN | (9)

rather than a pure state |ζN 〉 with N bosons in the spin
state |ζ〉. Only three parameters (e.g., n0,mz, 〈ŝ⊥〉2)
are needed to characterize the ensemble, down from four
to specify completely each member |ζ〉. In spite of the
randomness of the spin orientation, these three param-
eters can still be measured using spin rotation provided
one goes beyond single-particle observables and measures
spin noise (recent experiments used similar techniques to
reveal squeezing [29–32]).

Figure 1c-e illustrates the method geometrically in
terms of the mean spin vector 〈ŝ〉. The mean spin vec-
tor for a general spin 1 pure state |ζ〉 lies on or inside a
sphere of radius one, with the phase α describing the az-
imuthal angle of the transverse component of the mean
spin vector (panel c). The ensemble of possible initial
states with a uniform distribution for α lie on a circle of
radius |〈ŝ⊥〉| around the z axis (panel d). In order to
measure this radius, we rotate the state by a known an-
gle Ωt around the y axis and measure the magnetization
m′z after rotation (panel e). As seen from the figure, the
initial fluctuations of the transverse orientation map to
fluctuations of m′z, which are readily measured.

For a more quantitative description, we use the stan-
dard angular momentum algebra to obtain the rotated
operator

Ŝ′z = R̂†y(Ωt)ŜzR̂y(Ωt) = cos(Ωt)Ŝz − sin(Ωt)Ŝx. (10)

Here and in the following, primed variables denote quan-
tities evaluated after the spin rotation is complete. We
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now introduce a key assumption: the initial density ma-
trix is invariant under rotation around the z axis. This
is satisfied in particular by the density matrix in Eq. (9),
with a random phase α uniformly distributed in [0, 4π].
The value of an observable measured after averaging over
many realizations of the experiment is

〈Ô〉α =
1

4π

∫ 4π

0

dα 〈R†ÔR〉, (11)

where R = e−iΩtŜye−i
α
2 Ŝz . The 〈 · 〉α symbol stands for

a double average : the first one, denoted by 〈 · 〉, is the
usual average over the quantum state before rotation for
each realization, and the second one is done over random
values of α arising from one experimental realization to
the next. Defining an average in this way allows us to
obtain formula expressing measurement results without
specifying the initial state.

Using this result, we find the average magnetization
after the pulse,

〈m′z〉α =
1

N
〈Ŝ′z〉α = cos(Ωt)mz, (12)

which is independent of 〈s⊥〉. However, the variance of
the same quantity is given by

∆m′2z = cos2(Ωt)∆m2
z +

1

2N2
sin2(Ωt)〈Ŝ2

x + Ŝ2
y〉, (13)

where

Ŝ2
x + Ŝ2

y =N + N̂0 + 2N̂0

(
N̂+1 + N̂−1

)
+
(
â†+1â

†
+1â

2
0 + h.c.

)
. (14)

In other words, relying only on the randomness of α we
find that the variance of the magnetization ∆m′2z after
the pulse measures the initial transverse spin fluctua-
tions. This result holds for a short enough pulse, such
that one can neglect any other terms than the oscillating
field in the Hamiltonian during the evolution time.

It is convenient to rewrite the variance as

∆m′2z =
1

2
sin2(Ωt)〈ŝ⊥〉2

+ cos2(Ωt)∆m2
z +

1

2
sin2(Ωt)∆s2

⊥, (15)

with 〈ŝ⊥〉2 the squared length of the mean transverse

spin, and with ∆s2
⊥ = 〈Ŝ2

x + Ŝ2
y〉/N2 − 〈ŝ⊥〉2 its vari-

ance. For a spinor condensate with 〈ŝ⊥〉 6= 0, the term
on the first line dominates over the smaller noise terms,
and ∆m′2z ≈ 1

2 sin2(Ωt)〈ŝ⊥〉2. We thus expect that the

variance ∆m′2z oscillates with the rotation angle Ωt and
reaches its maximum for Ωt = π/2 where the slope of m′z
versus Ωt is maximum. In our experiment, the last two
noise terms in Eq. (15) are typically dominated by the
preparation noise on mz (which also introduces noise on
n0 in the equilibrium state, and thus on 〈ŝ⊥〉).

IV. EXPERIMENTAL TECHNIQUES

A. Condensate preparation

We prepare spinor condensates in a well-controlled ho-
mogeneous static magnetic field B oriented along the z
axis [see Fig. 1a]. We start from a precooled thermal
cloud of 23Na atoms in a crossed optical dipole trap [33].
The atomic cloud is partially magnetized, with a mag-
netization mz ≈ 0.5 on average resulting from previous
cooling steps. We adjust the magnetization by either
demagnetizing the atoms further with near-resonant RF-
magnetic field sweeps, or by magnetizing it by evapora-
tion in a magnetic field gradient (“spin distillation”) [20].
We are able to produce final magnetizations ranging from
mz = 0 to mz = 1, with a typical error of 2− 3 %.

After preparing a spin mixture well above the critical
temperature for Bose-Einstein condensation, the depth
of the optical trap is lowered in a few seconds to perform
evaporative cooling. A hold time of 3 s is added after
the end of the ramp to ensure that the cloud reaches
equilibrium [20]. At the end of the evaporation ramp,
the atoms are confined in the crossings of the two beams
of the dipole trap, where the trapping potential is well-
approximated by a harmonic trap with average trap fre-
quency ω/2π ∼ 405 Hz (the trap frequencies are in the
ratio 1 : 0.85 : 0.5).

Experiments reported in this article are performed
with “almost pure” Bose-Einstein condensates (BECs)
containing typically 7500 atoms at a trap depth VT /kB ≈
400 nK. By “almost pure”, we mean that no discernible
thermal component can be observed in absorption im-
ages. The measured condensed fraction fc = Nc/N is
usually obtained by fitting a bimodal profile to absorp-
tion images [34]. In our experiment, the contribution of
the thermal component becomes difficult to detect for
condensed fractions larger than fc ≈ 0.8, and the bi-
modal fitting procedure unreliable. This sets a lower
bound fc ≥ 0.8 on the condensed fraction for the ex-
periments presented in this article.

We probe the sample using absorption imaging after
free expansion in a magnetic field gradient, as shown in
Fig. 1b, and measure the normalized populations nmF of
each Zeeman component mF = 0,±1 [11]. The three
Zeeman components are imaged after releasing the cloud
from the trap in the presence of a magnetic force sepa-
rating the Zeeman components. Specifically, we apply a
quadrupole field Bq = b′(2xex−yey−zez) together with
a uniform “separation” field Bxex, with b′ ≈ 7 G/cm
and Bx ≈ 3 G. The resulting adiabatic magnetic po-
tential is given by Umag = gFmFµB |Bxex + Bq| ≈
gFmFµB |Bx| + gFmFµBb

′x + · · · , with gF = −1/2 the
Landé factor and with µB the Bohr magneton. The
quadrupole and separation field are ramped up in a few
milliseconds, while the bias field Bez applied during the
experiment is simultaneously ramped down.
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B. Experimental implementation of Rabi
oscillations

We apply a spin rotation using a radio-frequency (RF)
magnetic field along y oscillating at the Larmor fre-
quency. This RF field induces Rabi oscillations with
Rabi frequency Ω. After a certain evolution time t which
determines the rotation angle Ωt, we measure the final
populations n′mF after spin rotation. The bias field is
small enough to neglect the quadratic Zeeman shift (q <
100 Hz) compared to the Rabi frequency (Ω/2π ∼ 5 kHz).
At the end of the pulse, the separation field Bxex is in-
creased first, folllowed by the magnetic gradient used for
SG imaging and by the decrease of the bias field Bzez.
The timing of the sequence is shown in Fig. 6a. Ramping
up the separation field Bx is done with a linear ramp of
T = 3 ms duration, sufficiently slowly to remain adia-
batic with respect to spin flips (ωLT � 1). The optical
trap is switched off 10 ms after the end of the RF pulse
(see Section IV C below).

We have tested this sequence in two special cases,
where all the atoms are initially in the mF = +1 state
and or in the mF = 0 state. We are able to prepare these
two states with little preparation noise, ∆mz . 1%. The
measured oscillations are presented in Fig. 5. The con-
trast is close to 100 %, and we do not observe any sizeable
dephasing of the oscillations after several Rabi periods.
This shows that the assumption of adiabatic following
when ramping up the different magnetic fields is valid.

C. Influence of spin mixing after the spin rotation

The sudden change of the spin state due to the spin
rotation should in principle trigger a spin oscillation
dynamics [17, 35–38] driven by spin-exchange interac-
tions during the 10 ms hold time following the spin ro-
tation. As seen before, the applied magnetic field is
also changed after the spin rotation, from B = Bzez to
B = Bzez + Bxex. The quadratic Zeeman energy q in-
creases during this ramp, according to the curve shown in
Fig. 6b. This increase is fast compared to the time scale
set by spin-exchange interactions, h/Us ∼ 25 ms, and it
reduces spin-mixing dynamics due to exchange collisions
that would otherwise develop during the 10 ms hold time
after the RF pulse.

Nevertheless, a residual dynamics still takes place and
modifies slightly the population n0 measured in SG imag-
ing. Note that the effect of the spin interaction during
the RF pulse is negligible (Us/~Ω ∼ 0.008). We model
the spin-mixing oscillations using the theoretical frame-
work given in [38] (see Appendix A). An example for
Θi = π is shown in Fig. 6b. The main changes in n0

occur early in the ramp. Once q has settled at its final
value qf ∼ h× 2.5 kHz, the dynamics continue as a small
amplitude oscillation of the population n0 around an off-
set value (the so-called quadratic Zeeman regime [37]).
The oscillation amplitude is small (∼ Us/qf ∼ 0.015)

and comparable to our detection noise. Changing the
magnetic field to higher values would further reduce the
amplitude without significantly changing the offset of n0.
Taking the long-time offset as the measured value of n0,
we find that the effect of the ramp amounts to increase
the relative population in n0 from its initial value by up
to 0.05 for an initial angle Θi = π, a small but measurable
change.

We emphasize that the spin-mixing dynamics does not
change the magnetization mz of the system, but only the
individual populations nmF . Therefore, the occurrence
of spin mixing does not influence the analysis of the vari-
ance of mz after spin rotation in Section V. On the other
hand, it does affect the maximum likelihood analysis, as
detailed further in section VI.

D. Determination of Us from spin-mixing
dynamics

We have measured directly the exchange interaction
parameter Us by deliberately inducing spin-mixing dy-
namics and recording the oscillations of the normalized
population n0 after a sudden change (see Fig. 7a). Start-
ing from a condensate with all atoms in the mF = 0 state,
prepared as explained above at a bias field B ≈ 282 mG
[q/h ≈ 22 Hz], we first apply a spin rotation to produce
a mixture with roughly balanced populations in all Zee-
man states. This results in an initial state as given by
Eq. (5), with n0 ≈ 0.38 and mz ≈ 0. Spin-changing col-
lisions produce high-contrast oscillations in the Zeeman
populations, as observed in previous work for mz 6= 0
[17, 18, 36, 37]. The oscillation period has been pre-
dicted analytically in [38], and is a function of n0,mz, q,
which are known, and of Us, which is not. We extract
Us/h ≈ 38 Hz from the measured period Tosc ≈ 16 ms
(see Fig. 7b).

V. SPIN NOISE MEASUREMENT OF
SPIN-NEMATIC ORDER

We now describe our experimental results on the mea-
surement of the transverse spin using spin noise, as de-
scribed in Section III. In total we have taken three dif-
ferent data sets for different initial magnetizations and
magnetic fields which we label a, b, c (see Fig. 3). The
first two cases are above the T = 0 phase transition,
while the third one is below. In each case, we drive Rabi
oscillations with Rabi frequency Ω for an evolution time
t, as described for quasi-pure spin states in Section IV B,
and record the evolution of the relative populations n′mF
after spin rotation.
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FIG. 5: (Color online) Rabi oscillation starting either from a state with all atoms in mF = +1 (a) or mF = 0 (b). The residual
fluctuations are dominated by preparation noise, imperfections in the Rabi rotation parameters and the detection noise, all
with roughly comparable contributions.

A. Magnetization variance above the phase
transition

We first focus on data set a. Fig. 8 shows typical raw
data for the relative magnetization m′z (a) and the rela-
tive population n′0 (b) for different rotation times t. As
a result of the random orientation of the transverse spin
(due to the random nature of α), large shot-to-shot fluc-
tuations of the individual populations are observed. The
mean magnetization behaves as predicted in Eq. (12). We
extract the Rabi frequency Ω from a cosine fit to the
mean population m′z (see Fig. 8a).

Fig. 8c shows the variance of m′z, displaying the ex-
pected oscillations at twice the Larmor frequency. We
compare the experimental results to the prediction of
Eq. (6,15) (blue solid line). The transverse spin length
〈ŝ⊥〉2 is computed with Θ = π, with the measured mz

and with the population n∗0 found by minimizing EMF

[49]. For comparison, we also show the transverse spin
length for the same mz, n

∗
0 but Θ = 0 (red dotted line)

and for random Θ with uniform distribution (green dash-
dotted line), that would correspond to a ferromagnetic
system and to a non-interacting system (no phase lock-
ing), respectively. Our measurements are best described
by Θ = π, as expected for antiferromagnetic systems
in equilibrium. This shows that the system attempts to
minimize its transverse spin, or equivalently maximize its
alignment, thereby revealing spin nematic ordering.

As seen from Fig. 9b,c, data sets b, c show the same
behavior as the case a discussed above, an oscillation of
the variance with fixed amplitude. Data b is qualitatively
comparable to a. Case c, taken below the T = 0 phase
transition, deserves a separate discussion which we defer
to Section V C.

B. Spin thermometry

We attribute the slight difference between the mea-
sured amplitudes of the variance oscillations and the pre-
diction of Eq. (15) for Θ = π in Fig. 8c to a non-zero
temperature. We addressed this point in details for data
set a using the Hartree-Fock treatment of Section II C.
Generally, we have found that increasing the tempera-
ture reduces the transverse spin per atom. Experimen-
tally, the condensed fraction can only be estimated as
fc & 0.8 (see Section IV). We show in Fig. 9a a shaded
area where the lower limit corresponds to fc = 0.8 and
the upper one to fc = 1, indicating that even a small
non-condensed fraction leads to a measurable decrease of
the oscillation amplitude. In fact, the oscillation vari-
ance can be seen as a low-temperature thermometer. A
temperature T ≈ 80 nK (condensed fraction fc ≈ 0.9) is
found to reproduce the observed oscillation level (dashed
line in Fig. 9a).

C. Magnetization variance below the phase
transition

For data set c, one would expect n0 = 0 and 〈ŝ⊥〉2 = 0
according to the T = 0 mean field picture. In contrast,
we find a small initial population n0 ≈ 0.04, and an os-
cillation of the magnetization variance with a small, but
non-zero amplitude. The dotted lines in the figure corre-
spond to the theoretical predictions which take the initial
measured n0 into account (corrected for the small shift
in n0 due to the spin changing collisions discussed in Sec-
tion IV C) and Θ = π.

A first explanation for this behavior could be the pres-
ence of the thermal (uncondensed) component. In a
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FIG. 6: (Color online) (a): Schematic diagram (not to scale)
showing the experimental sequence. “RF” indicates the rf
pulse inducing spin rotations, Bz is the bias field applied be-
fore and during the spin rotation, Bx and “SG” denote re-
spectively the “separation field” and magnetic field gradient
required for SG imaging. (b) The ramp of Bx after the spin
rotation results in a time-dependent Quadratic Zeeman en-
ergy (QZE) q increasing within 3 ms after the end of the rf
pulse (top panel). The evolution after the spin rotation of
the normalized population n0 due to spin-mixing interactions
calculated from Eq. (A1) is shown in the lower panel for an
initial phase Θi = π, and an initial population chosen such
that the final population is n0 ≈ 0.43 (as measured for data
set a), and Us/h = 38 Hz.

spinor BEC [39], spin excitations are phase-locked to
the condensed components, and a finite transverse spin
originating from the uncondensed component could con-
tribute to our signal. However, from the Hartree-Fock
calculations described in Section II C, we found that the
transverse spin of the uncondensed component remains
very small for our typical parameters, and cannot explain
the measured signal.

A second explanation comes from a finite temperature
of the initial spin state of the condensate, which is then
described by a statistical ensemble rather than a pure
state as described in [27] and Section II C. This leads to
a finite population in mF = 0 even below the phase tran-
sition. By numerically integrating the thermal distribu-
tion described by the free energy given in [27] for a typ-
ical temperature T = 80 nK, we find a finite population
n0 = 0.016. This leads to a maximal variance after ro-
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FIG. 7: (Color online) Spin-mixing oscillations (a) and cal-
culated oscillation period (b). A fit to a damped sinusoid
is shown in (a) as solid line, and yields an oscillation period
Tosc ≈ 16 ms indicated by dashed lines in (b).

tation of ∆m′2z = 0.005, comparable to the oscillation
amplitude of the variance in Figure 9c.

VI. MAXIMUM LIKELIHOOD ESTIMATION
OF THE DISTRIBUTION OF Θ

A. Principle of the method

We now turn to a more general statistical analysis
based on maximum likelihood estimation (MLE), which
allows us to estimate the distribution of the angle Θ in a
more quantitative way. It takes all available data into ac-
count, including the population n′0 which was not used in
the previous analysis. Given a set of measurements, the
MLE method finds the most likely distribution among a
set of parameter-dependent model distributions, thereby
providing a statistical estimator for said parameters.

We model the initial state by a density matrix

ρ̂ =

∫
dζ
G(n0,mz)P (Θ)

4π
|ζN 〉〈ζN |, (16)

with an integration measure dζ = dn0dmzdΘdα. We
assume for simplicity that the probability density func-
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FIG. 8: (Color online) (a): Magnetization m′z and (b): relative population n′0 in the mF = 0 state versus duration of the
Rabi pulse (or equivalently, rotation angle). The small blue dots correspond to single-shot measurements, while the larger red
circles correspond to the average (m′z, n

′
0) over all measurements for each pulse duration. The solid line shows a cosine fit to

the average m′z, from which we extract the Rabi frequency Ω. (c): Variance of m′z (blue circles) versus duration of the Rabi
pulse oscillating at twice the Rabi frequency. The blue solid line corresponds to the theoretical prediction at zero temperature
obtained from Eqs. (6,15) and an initial phase Θ = π. The red dashed line (Θ = 0) and green dash-dotted line (random Θ) are
shown for illustrative purposes. The data are from set a, with mz = 0.33 and q/h = 6.0 Hz (B = 147 mG).
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FIG. 9: (Color online) Close-up view of the magnetization
variance for data sets a, b and c. In a and b, the solid blue line
is the zero temperature theory for an initial angle of Θ = π
(antiferromagnetic interactions). In a, the shaded area corre-
sponds to the prediction of our Hartree-Fock model at finite
temperature assuming a condensed fraction of fc ≥ 80%. The
dashed line gives the best agreement corresponding to a tem-
perature T ≈ 80 nK. In c, the data are shown for parameters
below the T = 0 phase transition line. The dotted curve
is the theoretical expectation from Eq. (15) taking the initial
population n0 into account.

tions G(n0,mz) and P (Θ) are Gaussians. We note that
the equilibrium density matrix of a finite-temperature
spin ensemble is well-approximated by Eq. (16) with a
Gaussian weight function [27]. The joint probability
density G(n0,mz) is peaked around the average value
(n∗0,mz) with n∗0 the population minimizing EMF, with a
finite width mostly due to experimental imperfections in
the preparation sequence. The covariance matrix char-
acterizing G(n0,mz) is extracted from the experimen-
tal data. At T = 0, P (Θ) is given by a Dirac delta,
P (Θ) ∝ δ(Θ− π), but acquires a finite width at finite T
(see Section VI D below). The mean value Θ̄ and stan-
dard deviation σΘ of P (Θ) are the unknown parameters
to be estimated. Due to the periodic nature of Θ, our
choice is sensible only when P (Θ) is peaked around the
mean, i.e. σΘ � 2π.

We use a Monte Carlo method to sample the initial
distribution in Eq. (16). For a given Θ and a mea-
surement time ti (rotation angle Ωti), the initial state
(n0,mz, α,Θ) is propagated in time using the rotation
operator. Here we assume that the spin rotation is per-
fectly known, with rotation axis y and a rotation angle
extracted from the fit to 〈m′z〉α as before. Spin-mixing
dynamics just after the spin rotation slightly change
the relative population n′0, and is taken into account
in the propagation. After convolution of the final re-
sults with our known measurement noise, we get a condi-
tional probability density pti(m

′
z, n
′
0|Θ̄, σΘ) for the mea-

sured (n′0,m
′
z). Given a set of independent observations

{m′z,i, n′0,i}, we can construct a (log) likelihood function

logL(Θ̄, σΘ) =
∑
i

log pti(m
′
z,i, n

′
0,i|Θ̄, σΘ). (17)

The distribution that accounts best for the observed re-



10

sults is found by maximizing this function.
Since the estimator strongly depends on the chosen

probabilistic model, it is important for this model to be
close to the physical reality. In the following we motivate
the model used in the MLE before discussing the results.

B. Model for the initial distribution
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FIG. 10: (Color online) Initial distribution G(n0,mz) for data
set a. (a) Measured initial populations are indicated by black
circles. The color shows the two-dimensional histogram of the
simulated 106 initial points used in the Monte Carlo method.
These points are drawn from a two-dimensional Gaussian dis-
tribution estimated from the initial measurements, and sam-
pled on a square grid with a step size 2.5× 10−3. The dashed
lines limit the allowed area (|mz| ≤ 1 − n0). (b): Marginal
histograms of measured initial populations for mz, and (c):
n0. The red line indicates the marginal distributions used for
the Monte Carlo analysis.

The distribution of initial states is probabilistic due to
three different effects. The first effect is intrinsic to our
theoretical model where the initial angle α takes ran-
dom values from one realization to the next. The second
probabilistic effect is due to experimental imperfections,
mainly fluctuations of mz (from the preparation process
and the subsequent evaporation), or fluctuations in the
spin-spin interaction energy Us (due to fluctuations of the
total atom number or of the confinement strength). Such
fluctuations result in correlated fluctuations in n0 due to
the system exploring different minima of the mean field
energy. We stress that the marginal distribution P (Θ)
is a priori not affected by these fluctuations. A third
random element originates from the finite spin tempera-
ture as described in Section II C which allows the system
to explore states situated away from the minimum. The
second and third effect are more pronounced close to the
phase transition [27].

We find empirically that the initial joint distribution

of n0 and mz in Eq. (16) is well described by a two-
dimensional Gaussian G(n0,mz). The mean and covari-
ance matrix characterizing G are calculated from the
measured data without spin rotation. We account for the
spin changing collisions discussed in Section IV C, which
affect the measured “initial distribution”, i.e. the distri-
bution observed without any spin rotation. Specifically,
for each values of Θ, mz and n0, the mean field equations
(A1) are used to find the initial value n0,i that leads to
the measured one, n0(t = 0). The known values of q and
the measured value of Us are used as fixed inputs for this
calculation. The initial distribution G(n0,i,mz) deduced
in this way is shown in Fig. 10. We estimate that exper-
imental imperfections dominate the initial distribution
G(n0,mz).

C. Monte Carlo approach

To compute the evolution of a given initial state un-
der spin rotation, we use a Monte Carlo approach. The
initial density operator is sampled by drawing random
numbers (n0,mz, α) according to our assumed probabil-
ity distributions (see Figure 10) and assuming a certain
value for Θ. This determines an initial mean field state
|ζN 〉. Using the known evolution under spin rotations,
we propagate this state in time for a given ti to arrive
at the final mean outcome populations (n′0,m

′
z) as the

expectation values of the corresponding operators in the
time-evolved mean field state. In our numerical imple-
mentation we use a typical number of ∼ 106 Monte Carlo
samples to reconstruct the final statistical distribution of
the measurement outcomes. Spin mixing collisions as
discussed in Section IV C are also taken into account to
obtain the final simulated distributions. In the Monte-
Carlo simulation, the spin state found after rotation is
used as initial condition to solve the mean field equa-
tions (A1) describing the spin dynamics. We arrive in
this way at a distribution of n′0 corrected for the effect of
spin changing collisions, typically by a few percents.

We evaluate the final populations for each realization
using expectation values. Doing so, we neglect the effect
of quantum fluctuations on the final results, which are on
the order 1/

√
NmF and small for our typical atom num-

bers of particles (NmF ∼ a few thousands) when com-
pared to the noise level of our population measurements.
The measurement noise, caused by a combination of pho-
ton shot noise and small spatial intensity fluctuations of
the laser pulse used for absorption imaging, is typically
∆nmF ≈ 1% for the normalized population in Zeeman
state mF . We include this noise in our model by convolv-
ing the simulated measurement outcome by a Gaussian
distribution. This leads to a conditional probability den-
sity pti(n

′
0,m

′
z|Θ) for the measurement outcome which

depends on the initial phase Θ, which is then multiplied
by the distribution P (Θ) to obtain pti(n

′
0,m

′
z|Θ̄, σΘ).
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FIG. 11: (Color online) Comparison for data set a of the Monte Carlo simulated populations with measured data (black circles)
after Rabi-rotation for different assumed initial angles Θ. The three panels show the color-coded two-dimensional histograms
of the Monte Carlo simulations for Θ = 0 (a), π/2 (b) and π (c). Best agreement, i.e. the maximum likelihood is found for
Θ = π. The example is taken for Ωt ≈ π/2 where the sensitivity is the highest.

D. Results of the MLE

We model the distribution P (Θ) by a truncated Gaus-
sian with a mean value Θ̄ and a standard deviation
σΘ. For the three data sets a, b and c, the log like-
lihood is shown in Fig. 12 versus (Θ̄, σΘ). The maxima,
shown in Fig. 13, are found for (Θ̄, σΘ) = (1.01π, 0.085π),
(0.86π, 0.347π) and (1.05π, 0.210π) for data sets a, b and
c, respectively. These results are in full agreement with
the conclusion drawn from the variance analysis, confirm-
ing the locking to π of the relative phase Θ.

In all instances, the MLE is maximum for a finite width
P (Θ) which is not expected in the standard T = 0 de-
scription. We conclude this Section by discussing possible
explanations. First, it may be caused by an underestima-
tion of the noise sources in the system. As seen before,
the probability distribution pti(n

′
0,m

′
z|Θ) is almost sym-

metric in Θ with respect to 0 and π. The presence of
fluctuations (induced for example by experimental im-
perfections) not included in our model always bias the
estimator away from Θ = π. We thus infer that underes-
timated or unconsidered noise in our probabilistic model
will result in a broadening of the estimated distribution
P (Θ). A second, more fundamental effect comes from the
finite temperature of the initial spin ensemble (see Sec-
tion II C). The marginal distribution of Θ obtained nu-
merically [27] is a bell-shape curve centered at π, reason-
ably approximated by a Gaussian with root-mean-square
(rms) width ≈

√
kBT/NUs. Using T ≈ 80 nK and the

experimental parameters of data set a, we find a width
≈ 0.1 comparable to the results of the MLE.

VII. CONCLUSION

In conclusion, we have shown the existence of spin-
nematic ordering in antiferromagnetic spin 1 BECs, or
equivalently of a phase locking between the Zeeman com-
ponents caused by spin-exchange interactions in the equi-
librium state. Our experimental method combines spin
rotations with a statistical analysis, either based on the
spin moments or on a maximum-likelihood estimation of
the probability density function characterizing the ini-
tial spin state of the condensate. Our method is not
restricted to single-mode condensates or to spin 1 atoms,
and could be used to reveal other types of spin order-
ing. We remark in particular that measuring the spin
variance gives access to a quantity (the squared trans-
verse spin length) which can be used to characterize other
phases than a fully condensed state. The expression of
the transverse spin operator in Eq. (14) shows that mea-
suring the spin variance gives access to the “spin singlet

amplitude”
〈
â†+1â

†
+1â

2
0

〉
[40, 41], which appears in stud-

ies of fluctuating systems beyond mean field (spin liquid
in one dimension [42], or spin-singlet Mott states in op-
tical lattices, for instance [14]).
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FIG. 13: (Color online) Most likely values of Θ̄ found by the
MLE algorithm for data set a, b, c. Error bars indicate the
67% confidence bounds.

Appendix A: Calculation of spin-mixing dynamics

To quantify the impact of spin-mixing oscillations on
the measured n0, we use the theoretical framework given
in [38]. The evolution of an initial state of the form given
in Eq. (5) is described by the two Josephson-like equa-
tions [38] ,

~
dn0

dt
= 2Usn0

√
(1− n0)2 −m2

z sin(Θ), (A1)

~
dΘ

dt
= −2q(t) + 2Us(1− 2n0) (A2)

= +2Us
(1− n0)(1− 2n0)−m2

z√
(1− n0)2 −m2

z

cos(Θ),

with n0(0) = n0,i and Θ(0) = Θi. We solve Eqs. (A1)
numerically with q(t) as shown in Fig. 6b to compute the
evolution of n0.

Appendix B: Hartree-Fock model of a spin 1 gas at
finite-temperatures

The model of [28] treats the non-condensed cloud
as a gas of non-interacting free particles evolving in a
self-consistent mean field potential accounting for spin-
exchange interactions [28]. Importantly, this mean field
potential is not diagonal in the Zeeman basis due to
spin-mixing interactions. The thermal component can
in principle develop non-zero coherences due to interac-
tions with the condensate and therefore a non-zero aver-
age spin. The quantity of interest is the single-particle
density matrix,

ρ(1)
m,n(r) = φ∗m(r)φn(r) + ρ′(1)

m,n(r), (B1)

with φ the condensate wavefunction, with ρ
′(1)
m,n the con-

tribution of the thermal component, and where m,n =
0,±1. The density in each Zeeman component m is de-

termined by the diagonal terms ρ
(1)
m,m and the transverse

spin by the off-diagonal coherences ρ
(1)
0,±1.

With respect to the full HF model laid out in [28], we
make two additional simplifying assumptions. First, we
assume that the single-mode approximation holds for the
condensate wavefunction [50]. This amounts to setting
φm(r) =

√
Nc φ(r)ζm, as done in the main text. The

single mode wavefunction φ determining the condensate
spatial distribution is computed numerically by solving
the GP equation

µφ = − ~2

2MNa
∆φ+ V (r)φ+ gNc|φ|2φ. (B2)

with MNa the mass of Sodium atoms. The spinor part
ζm is found from the single-mode theory using Us =
Ncgs

∫
d(3)r|φ|4. The coupling constants g, gs are pro-

portional to the scattering lengths a ≈ 2.79 nm and
as ≈ 0.1 nm [43] with a proportionality factor 4π~2/MNa.
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Second, we neglect the contribution of the thermal cloud
to the mean-field potential (“semi-ideal” model [44]). Far
from Tc, this is expected to be an accurate approximation
[45]. Finally, we perform the calculations for a spherical
trap. Although the trapping potential used in the exper-
iment is not exactly isotropic, we do not expect that this
affects strongly the results (in the Thomas-Fermi regime,
for instance, only the average trap frequency matters to
compute thermodynamic quantities [45]).

The excitations modes u(ν) and energies Eν are solu-
tions of the eigenproblem

Eνu
(ν) =

(
− ~2

2MNa
∆ ·+V (r) +A(r)

)
u(ν) (B3)

where the matrix A, explicitely given in [28], depends
on the condensate wavefunction φ(r) and on g, gs. Di-
agonalizing this equation, we obtain the single-particle
density matrix ρ′(1) of the thermal component as

ρ′(1)
m,n(r) =

∑
ν

(
u(ν)
m (r)

)∗
u(ν)
n (r)NBE(Eν) (B4)

with NBE(E) = 1/(eE/kBT − 1) the occupation number
for each mode ν.
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