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We derive general conditions for the emergence of singlet Feshbach molecules in the presence
of artificial Zeeman fields for arbritary mixtures of Rashba and Dresselhaus spin-orbit coupling in
two or three dimensions. We focus on the formation of two-particle bound states resulting from
interactions between ultra-cold spin-1/2 fermions, under the assumption that interactions are short-
ranged and occur only in the s-wave channel. In this case, we calculate explicitly binding energies
of Feshbach molecules, bound state energy thresholds and analyze their dependence on spin-orbit
couplings, Zeeman fields, interactions and center of mass momentum, paying particular attention to
the experimentally relevant case of spin-orbit couplings with equal Rashba and Dresselhaus (ERD)
amplitudes.

PACS numbers: 67.85.Lm, 03.75.Ss

I. INTRODUCTION

The effects of spin-orbit interactions are ubiquitous
in nature, from the macroscopic scale of the Earth-
Moon complex in astronomy and astrophysics, to the
microscopic scale of the electron-proton system (Hydro-
gen atom) in atomic physics. The interest in spin-orbit
coupled systems has been revived in condensed mat-
ter physics due the emergence of non-trivial topological
properties of insulators and superconductors subject to
Rashba spin-orbit fields [1, 2], and in atomic physics due
to the creation of artificial spin-orbit coupling in ultra-
cold atoms [3], which made possible the study of special
quantum phase transitions in bosonic systems.

This new tool in the toolbox of atomic physics was ex-
perimentally developed first to study interacting bosonic
atoms where an equal Rashba-Dresselhaus (ERD) arti-
ficial spin-orbit coupling was created [3]. It was sug-
gested that interacting fermions could be studied using
the same technique [3, 4], by using the hyperfine states
of the fermionic isotope of a neutral atom as the spin la-
bels. Estimulated by the dense literature of the effects of
Rashba spin-orbit coupling (SOC) encountered in con-
densed matter physics [1, 2], several theoretical groups
investigated the effects of Rashba SOC for interacting
ultra-cold fermions using mean field theories [5–8] or for
interacting bosons [9, 10]. Unfortunately, the experimen-
tal study of Rashba SOC requires more lasers and further
developments are necessary to overcome several difficul-
ties [11]. Thus, presently, artificial Rashba SOC has not
yet been created in the context of ultra-cold atoms. How-
ever, simultaneous theoretical studies of superfluidity
for the experimentally relevant ERD spin-orbit coupling
were performed for ultra-cold bosons by others [12, 13]
and for ultra-cold fermions by our group [14–16].

One of the benchmarks of experimental studies of
Fermi superfluidity of cold atoms without artificial spin-
orbit coupling was the emergence of molecular bound
states via the use of Feshbach resonances [17], which lead
to the formation of molecules [18] and their posterior

Bose-Einstein condensation in 40K2 [19] and 6Li2 [20].
In most of the published literature of ultra-cold fermions
with spin-orbit coupling, only non-interacting systems
have been investigated [21, 22]. However, recently, the
NIST group [23] has demonstrated experimentally the
formation of Feshbach molecules of ultra-cold fermions
(40K) in the presence of artificial SOC. This observation
was also made independently by another group [24]. Our
theoretical results were posted [25] simultaneously with
the NIST experiment [23], and showed excellent agree-
ment with experimental findings.

The remainder of the paper is organized as follows.
In Sec. II, we construct the Hamiltonian for two spin-
1/2 fermions in the presence of arbritary two-dimensional
spin-orbit coupling fields, where fermions interact only
via local attractive s-wave interactions. We emphasize
the importance of chosing the best basis functions to de-
scribe the Hamiltonian, and discuss first the limiting case
of two non-interacting fermions. In Sec. III, using the
momentum representation, we write the Schroedinger’s
equation in the singlet-triplet basis. In two or three spa-
tial dimensions, we obtain an integral equation for the
energy of two-body bound states as a function of center
of mass (CM) momentum for arbitrary spin-orbit cou-
pling. We discuss in detail the emergence of two-body
bound states (Feshbach molecules) with ERD spin-orbit
coupling in three spatial dimensions, since this case was
investigated in recent experiments [23, 24]. Our analy-
sis two-body bound states includes the cases of zero and
finite CM momentum. We find that when the Zeeman
field is transverse to spin-orbit field, the energy of Fesh-
bach molecules is even with respect to the CM momen-
tum, and possesses a minimum when the CM momentum
is zero. However, when the Zeeman field has a compo-
nent along the spin-orbit field, the energy of Feshbach
molecules does not have well defined parity with respect
to the CM momentum, and for sufficiently large Zeeman
field the minimum allowed bound state energy occurs at
finite CM momentum. Finally, in Sec. V, we review our
main conclusions and make our final comments.
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II. HAMILTONIAN

To address the important issue of the emergence of Fes-
hbach molecules for interacting fermions in the presence
of artificial SOC and Zeeman fields, we start from the
Hamiltonian for two non-interacting fermions

H0 = H1 +H2, (1)

written as the sum of two particle contributions, which
have the generic form (with h̄ = 1)

Hj =
k̂
2

j

2m
−
(
hRj

+ hDj

)
· σj − h · σj , (2)

where j = 1, 2 labels the particle number. The term
containing

hRj
= vR

(
k̂xj

ey − k̂yj
ex

)
(3)

represents the Rashba spin-orbit field operator in mo-
mentum space, while the term containing

hDj
= vD

(
k̂xj

ey + k̂yj
ex

)
(4)

represents the Dresselhaus spin-orbit field operator. The
term containing h = hxex + hyey + hzez represents the
Zeeman field with components hx = 0, hy = −δ/2 (de-
scribing the detuning δ) and hz = −ΩR/2 (describing
the Raman intensity ΩR). All these fields are written in

energy units. In addition, k̂j = −i∇j is the momentum
operator σj = σxj

ex + σyj
ey + σzjez is the vector Pauli

matrix of the jth particle.
The interaction Hamiltonian considered is

HI(r1, r2) = −gδ(r1 − r2)δs1+s2,0 (5)

and describes zero-ranged attractive s-wave interactions
between fermions with opposite spins s1 = −s2, or more
explicitly using Dirac’s bracket (matrix) notation

HI(r1, r2) = −gδ(r1 − r2)|0, 0〉〈0, 0|, (6)

where we used the notation |0, 0〉 = 1√
2
(| ↑1↓2〉 − | ↓1↑2〉)

to indicate the singlet state |S = 0,ms = 0〉 for the two
particles labeled by 1 and 2. We use the convention that
the first entry for the spin state on the right hand side
of the last relation represents particle 1 and the second
entry represents particle 2. In the case of three spatial
dimensions, the bare coupling constant g is renormalized
through the use of the Lippman-Schwinger relation

L3

g
= − m

4πas
+
∑

k

1

2ǫk
, (7)

where L3 is the volume, as = abg [1 + ∆B/(B − B0)] is
the s-wave scattering length expressed in terms of the
background scattering length abg, the real magnetic field

B, the width ∆B of the Feshbach resonance, and the
field B0, where the resonance is located. While in the
two-dimensional case, the bare coupling constant g is
eliminated in favor of the bare binding energy Ebs via

L2

g
=

∑

k

1

2ǫk − Ebs
, (8)

where L2 is the area of the system.
Having described the two-particle Hamiltonian opera-

tor in terms of kinetic, spin-orbit, Zeeman and interac-
tion energies, we discuss next the choice of an appropriate
basis to investigate the formation of Feshbach molecules,
when spin-orbit coupling is present.

A. Choice of Basis

The Hamiltonian described in Eq. (1) can be repre-
sented as 4× 4 matrix in the two-particle spin basis

|Ψ〉 = [| ↑1↑2〉, | ↑1↓2〉, | ↓1↑2〉, | ↓1↓2〉] (9)

However, this basis is not the best to work with since
the interaction term only contains a singlet s-wave com-
ponent. Therefore, we rotate |Ψ〉 into the singlet-triplet
basis

|Φ〉 = [|1,+1〉, |1, 0〉, |1,−1〉, |0, 0〉] , (10)

where the first index represents the total spin S of the
two-particles and the second index indicates the total
spin-projection ms. Therefore, each entry in |Φ〉 has the
form |S,ms〉. The connection between the two basis is
given by the relations |1,+1〉 = | ↑1↑2〉, corresponding to
the S = 1, ms = +1 state; |1, 0〉 = 1√

2
(| ↑1↓2〉+ | ↓1↑2〉)

corresponding to the S = 1, ms = 0 state; |1,−1〉 =
| ↓1↓2〉, corresponding to the S = 1, ms = −1 state;
and |0, 0〉 = 1√

2
(| ↑1↓2〉 − | ↓1↑2〉) corresponding to the

S = 0, ms = 0 state.
Next, we transform our non-interacting Hamiltonian

H0 into relative momentum k = (k1 − k2)/2, and center
of mass (CM) momentum K = k1 + k2 coordinates and
perform the rotation to the singlet-triplet basis leading
to the non-interacting Hamiltonian matrix

H0 =




ǫ1,2 − 2hz −h
(s)∗
1,2 0 −h

(d)∗
1,2

−h
(s)
1,2 ǫ1,2 −h

(s)∗
1,2 0

0 −h
(s)
1,2 ǫ1,2 + 2hz −h

(d)
2,1

−h
(d)
1,2 0 −h

(d)∗
2,1 ǫ1,2


 , (11)

where ǫ1,2 ≡ ǫ1,2(k,K) = ǫk1
+ ǫk2

is the sum of the
kinetic energy of the two particles,

h
(s)
1,2 = h

(s)
1,2(k,K) =

1√
2
[(hx1

+ hx2
) + i(hy1

+ hy2
)]

(12)
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is the scaled sum of the tranverse fields felt by both par-
ticles,

h
(d)
1,2 = h

(d)
1,2(k,K) =

1√
2
[(hx2

− hx1
) + i(hy2

− hy1
)]

(13)
and its index-exchanged counterpart

h
(d)
2,1 = h

(d)
2,1(k,K) =

1√
2
[(hx1

− hx2
) + i(hy1

− hy2
)]

(14)
are scaled differences of the transverse fields felt by both

particles. Notice that h
(d)
1,2 = −h

(d)
2,1, and that hηj

repre-

sents the transverse field for jth particle with η = x, y, z.
More explicitly, we can write the sum of the kinetic

energy of the two particles as

ǫ1,2(k,K) = k2/m+K2/(4m), (15)

the matrix element from total spin projection ms = 0 →
ms = 1 or ms = −1 → ms = 0 in the triplet sector as

h
(s)
1,2 = [βKy + i(2hy + γKx)] /

√
2, (16)

the matrix element that couples the singlet (S = 0) and
triplet (S = 1) sectors with changes in total spin projec-
tion from ms = 0 → ms = 1

h
(d)
1,2 = −

√
2βky − i

√
2γkx, (17)

and the one with changes from ms = 0 → ms = −1 as

h
(d)
2,1 =

√
2βky + i

√
2γkx. (18)

The variables γ and β are defined in terms of the Rashba
(vR) and Dresselhaus (vD) coefficients defined in Eqs. (3)
and (4) as γ = vD + vR and β = vD − vR.
Notice that the Hamiltonian matrix H0 is not Galilean

invariant, and that h
(s)
1,2 depends only on the CM momen-

tum K, while h
(d)
1,2 and h

(d)
2,1 depend only on the relative

momentum k, however the CM and relative coordinates
remain coupled. Furthermore, in the experimentally rel-
evant ERD case the parameters the momentum depen-

dence of the fields h
(s)
1,2, h

(d)
1,2 and h

(d)
2,1 simplifies dramat-

ically since vD = vR = v/2 leads to β = 0 and γ = v.
In the ERD case, these fields depend on relative or CM
momenta only along the x-direction.
Now that we have discussed our choice of basis and

the matrix elements that are present in our Hamiltonian,
we discuss next the eigenvalues of two particles in the
presence of Zeeman and spin-orbit fields but in the limit
of no interactions. This analysis provides the reference
energies below which bound states emerge.

B. Non-interacting limit

The Hamiltonian matrix H0 can be diagonalized an-
alytically, and possesses eigenenergies Eαβ(k,K), which

can be written in terms of the two-particle kinetic en-
ergy ǫ1,2(k,K) and the effective fields h(s)(k,K) =

|h(k1)| + |h(k2)|, and h(d)(k,K) = |h(k1)| − |h(k2)|,
where |h(ki)| =

√
h2
x(ki) + h2

y(ki) + h2
z(ki) is the mag-

nitude of the total field (spin-orbit and Zeeman) felt by
the jth particle. The momenta are k1 = k + K/2 and
k2 = −k+K/2. The eigenenergies for two free fermions
are

E⇑⇑(k,K) = ǫ1,2(k,K) − h(s)(k,K) (19)

for the lowest energy state,

E⇑⇓(k,K) = ǫ1,2(k,K)− h(d)(k,K) (20)

and its corresponding particle-labeling (1 ↔ 2) image

E⇓⇑(k,K) = ǫ1,2(k,K) + h(d)(k,K) (21)

for the intermediate energies states and

E⇓⇓(k,K) = ǫ1,2(k,K) + h(s)(k,K) (22)

for the highest energy state.
From now, we use the recoil energy ER = k2R/(2m) as

unit of energy and the recoil momentum kR = 2π/λ as
unit of momentum, where λ is the wavelength of the laser
light used in the Raman beams [3].
In Fig. 1, we show the plots of the generalized

two-particle helicity bands E⇑⇑(k,K) (black solid),
E⇑⇓(k,K) (red dot-dashed), E⇓⇑(k,K) (green dashed),
and E⇓⇓(k,K) (blue dotted) along the direction of rel-
ative momentum k = (kx, 0, 0), for ERD spin-orbit cou-
pling v = kR/m, various values of detuning hy and Ra-
man intensity hz, and specific values of the center of mass
momentum K = (Kx, 0, 0).
In Fig. 1a) the parameters used are hy = 0, hz =

0.5ER, and Kx = 0, which lead to the double well struc-
ture in E⇑⇑(k,K) (black solid) due to the ERD spin-
orbit orbit momentum shift and Zeeman splitting caused
by hz. The intermediate energies E⇑⇓(k,K) (red dot-
dashed), E⇓⇑(k,K) (green dashed) are degenerate when
hy = 0 with a minimum at (0, 0, 0). While the high-
est energy E⇓⇓(k,K) (blue dotted) is pushed up by the
presence of a finite Zeeman field hz.
In Fig. 1b) the parameters used are hy = 0.5ER,

hz = 1.0ER, and Kx = 0, which still lead to a dou-
ble well structure in E⇑⇑(k,K) (black solid) due to the
ERD spin-orbit orbit momentum shift and Zeeman split-
ting caused by hz and hy. The intermediate energies
E⇑⇓(k,K) (red dot-dashed), E⇓⇑(k,K) (green dashed)
are no longer degenerate since hy 6= 0 and the minima
of the one of the bands shift to finite (kx, 0, 0), while for
the other it remains at (0, 0, 0). Notice that the highest
energy E⇓⇓(k,K) (blue dotted) is pushed further up by
the presence of finite Zeeman fields hz and hy.
In Fig. 1c) the parameters used are hy = 1.25ER,

hz = 0.5ER, and Kx = 0, which no longer lead to
a double well structure in E⇑⇑(k,K) (black solid), be-
cause the Zeeman splitting caused by hz and hy is too
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large. The minimum value is now located at (0, 0, 0).
The intermediate energies E⇑⇓(k,K) (red dot-dashed),
E⇓⇑(k,K) (green dashed) continue to be non-degenerate
since hy 6= 0 and the minima of one of the bands shift
further away from (0, 0, 0), while for the other band the
minimum remains at (0, 0, 0). Notice that the highest
energy E⇓⇓(k,K) (blue dotted) is pushed further up by
the additional increase in hy.
In Fig. 1d) the parameters used are hy = 0.5ER, hz =

0.5ER, and Kx = 1.25kR, which also do not lead to a
double well structure in E⇑⇑(k,K) (black solid), because
the splitting caused Kx is too large. Recall that for the

field h
(s)
1,2 defined in Eq. (16) the effect of finite and pos-

itive Kx is similar to that of an increased hy, since they

enter in h
(s)
1,2 as the combination 2hy + γKx. The mini-

mum value is again located at (0, 0, 0). The intermediate
energies E⇑⇓(k,K) (red dot-dashed), E⇓⇑(k,K) (green
dashed) continue to be non-degenerate since hy 6= 0 and
the minima of one of the bands continue to be at finite
(kx, 0, 0), while for the other band the minimum remains
at (0, 0, 0). Notice that the highest energy E⇓⇓(k,K)
(blue dotted) is pushed further up (out of range) by the
combined largeness of 2hy+γKx. Recall that in the ERD
case γ = v = kR/m, thus when Kx = 1.25kR, the prod-
uct vKx = 1.25k2R/m = 2.5ER, when written in terms of
the recoil energy ER.
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FIG. 1: (color online) Plots of the generalized two-particle
helicity bands E⇑⇑(k,K) (black solid), E⇑⇓(k,K) (red dot-
dashed), E⇓⇑(k,K) (green dashed), and E⇓⇓(k,K) (blue dot-
ted) along the direction of relative momentum k = (kx, 0, 0),
for ERD spin-orbit coupling v = kR/m, various values of de-
tuning hy and Raman intensity hz, and specific values of the
center of mass momentum K = (Kx, 0, 0). The parameters
used are a) hy = 0, hz = 0.5ER, and Kx = 0; b) hy = 0.5ER,
hz = 1.0ER, and Kx = 0; c) hy = 1.25ER, hz = 0.5ER, and
Kx = 0; and d) hy = 0.5ER, hz = 0.5ER, and Kx = 1.25kR.
Notice the change in location of the minimum of E⇑⇑ from
finite kx in a) and b) to kx = 0 in c) and d).

These unbound two-particle energies are important be-
cause they serve as reference energies when two-particle

bound states (Feshbach molecules) emerge when interac-
tions are turned on. The formation of Feshbach molecules
is energetically favorable when their energy is lower than
the minimum of the lowest two-particle energy band
E⇑⇑(k,K). With that in mind, we reintroduce the at-
tractive contact interaction defined in Eq. (6, and discuss
next the emergence of Feshbach molecules.

III. EMERGENCE OF FESHBACH
MOLECULES (BOUND STATES)

To write the Schroedinger’s equation for two inter-
acting fermions in momentum space, we perform first
a Fourier transformation to the interaction Hamilto-
nian HI(r1, r2) defined in Eq. (6), and add the Fourier-
transformed matrix HI(k,K) to the non-interacting
Hamiltonian matrix H0(k,K) defined in Eq. (11). This
procedure leads to the Schroedinger’s equation

(H0 +HI)Λk,K = EIΛk,K, (23)

where the four-dimensional spinor

Λk,K = [Λ1,1(k,K),Λ1,0(k,K),Λ1,−1(k,K),Λ0,0(k,K)]
t

includes components both in the triplet and singlet sec-
tors. In the triplet sector, Λ1,1(k,K) corresponds to the
component labeled by (S = 1,ms = 1); Λ1,0(k,K) corre-
sponds to the component labeled by (S = 1,ms = 0);
Λ1,−1(k,K) corresponds to the component labeled by
(S = 1,ms = −1). While in the singlet sector, Λ0,0(k,K)
corresponds to the component labeled by (S = 0,ms =
0).
The action of the interaction Hamiltonian on the four-

dimensional spinor leads to the vector

HIΛk,K = [0, 0, 0,−gΣkΛ0,0(k,K)]t , (24)

where
∑

k
represents a summation over the relative mo-

menta k. The eigenvalues of Eq. (23) can be found in
any dimension by rearranging the Hamiltonian as

[EI−H0]Λk,K = HIΛk,K (25)

and inverting the matrix [EI−H0] to obtain the relation

Λk,K =
Adj[EI−H0]

Det[EI−H0]
HIΛk,K, (26)

where Adj[M] is the adjucate matrix and Det[M] is the
determinant of M. Here, we used the standard result for
the inverse matrix M

−1 = Adj[M]/Det[M]. Integration
over the relative momentum k on both sides of Eq. (26)
leads to the integral equation

Ld

g
= −

∑

k

(E − ǫ1,2)(E − ǫ1,2 + |ht|)(E − ǫ1,2 − |ht|)
(E − E1)(E − E2)(E − E3)(E − E4)

,

(27)
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which is the central result of this paper. From this eigen-
value equation, we can extract the bound state energy
EB(K) of Feshbach molecules as a function of its center
of mass momentum K, for varying spin-orbit coupling,
Zeeman fields and interaction parameters. Throughout
the remainder of this paper, we will be referring back to
Eq. (27).

Here, the function |ht| =
√
4h2

z + |h12s(k,K)|2 is the
amplitude of the total field ht = h1+h2, d is the dimen-
sion of the system, and Ei(k,K) are the eigenvalues of
H0, corresponding to the two-particle generalized helic-
ity bands Eαβ(k,K). We identify the right-hand-side of
Eq. (27) with the function

Gs(E,K) =
∑

k,α,β

|Uαβ,s(k,K)|2
E − Eαβ(k,K)

, (28)

which corresponds to the spectral representation of the
two-body Green’s function for non-interacting fermions
in the singlet channel of the original spin states (↑, ↓).
Here, |Uαβ,s(k,K)|2 represents the spectral weight in the
singlet channel (s) associated with the spinor eigenvector
Uαβ(k,K) of H0 with eigenvalue Eαβ(k,K). No other
channel, but the singlet channel contributes to Gs(k,K),
as the interactions between fermions are non-zero only
between the original ↑ and ↓ spins.
By ordering the eigenvalues E1 ≥ E2 ≥ E3 ≥ E4, a

simple inspection of Eq. (27) shows that a necessary con-
dition for the formation of singlet Feshbach molecules oc-
curs when E(K) ≤ mink{E4(k,K)}, provided that there
is spectral weight in the singlet interaction channel for the
lowest energy of two free fermions. From Eq. (27), we ob-
tained Feshbach molecule energies E = EB(K) for an ar-
bitrary mixture of Rashba and Dresselhaus terms at any
value of K in 2D and 3D. We also calculated the effective
mass tensor and the corresponding Bose-Einstein conden-
sation temperature [25]. However, we show here results
only for the ERD case in 3D, because of its experimental
relevance for ultra-cold fermions [3]. We parametrize the
ERD coupling parameter in terms of the recoil momen-
tum kR as v = [1− cos(θ)] kR/(2m) for Raman beams
that cross at an arbitrary angle θ. Current experiments
correspond to θ = π and v = kR/m.
We discuss next, the simplest example of formation

of Feshbach molecules corresponding to ERD spin-orbit
coupling, and bound states with zero center of mass mo-
mentum.

A. Zero Center of Mass Momentum

To gain insight in the ERD case, first we find the en-
ergy E(K) of Feshbach molecules from the integral de-
fined in Eq. (27), for zero CM momentum K = 0 and
zero detuning hy = 0, but finite hz in three spatial
dimensions. In this case, the eigenvalues of the non-
interacting Hamiltonian matrix H0 take the simple form
E⇓⇓(k,0) = k2/m + 2|heff(k)| for the highest energy,

E⇑⇓(k,0) = E⇓⇑(k,0) = k2/m, for the intermediate en-
ergies, and E⇑⇑(k,0) = k2/m − 2|heff(k)| for the low-
est energy, where the magnitude of the effective field is
|heff(k)| =

√
(vkx)2 + h2

z. The condition for the emer-
gence of zero CM momentum Feshbach molecules is then
E(K = 0) ≤ mink{E⇑⇑(k,0)}.

FIG. 2: (color online) Plots of bound state energy EB/ER

versus 1/(kRas) with K = 0, hz = 0, hy = 0 are shown
in a) for v = 0 (blue dotted), v = 0.5kR/m (green dashed),
v = 0.75kR/m (red dotdashed), and v = kR/m (black solid).
Plots of EBin/ER versus 1/(kRas) with K = 0, v = kR/m,
hy = 0 are shown in b) for hz = 0 (blue dotted), hz = ER

(green dashed), hz = 2ER (red dotdashed), hz = 3ER (black
solid). Plots of EB,th/ER and 1/(kRas,th) versus hz/ER with
K = 0, hy = 0 are shown respectively in c) and d) for v =
0.25kR/m (blue dotted), v = 0.5kR/m (green dashed), v =
0.75kR/m (red dotdashed) and v = kR/m (black solid).

In Fig. 2a, we show the bound-state energy E = EB of
Feshbach molecules (in units of ER) versus the scattering
parameter 1/(kRas) at zero CM momentum (K = 0),
zero detuning (hy = 0) and in the limit of hz → 0. In this
case, the energy of Feshbach molecules can be obtained
analytically as EB(v) = −1/(ma2s) −mv2, which means
that the existence of spin-orbit coupling lowers the energy
of the bound state from the standard value EB(0) =
−1/(ma2s) by the amount mv2. The scaled bound state
energy is

EB

ER
= −2

[(
1

kRas

)2

+

(
mv

kR

)2
]

(29)

and the plots shown in Fig. 2a reflect this relation.
However, notice that the threshold scattering length for
the emergence of bound states remains at as → ∞ or
1/(kRas) = 0.
The binding energy at K = 0, defined as EBin =

EB − minkE⇑⇑(k,K = 0) is a better indicator of the
effects of spin-orbit coupling since the minimum energy
of two free fermions also changes with v. An example of
EBin is shown in Fig. 2b, where we plot EBin/ER versus
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1/(kRas) for fixed v = kR/m and increasing Zeeman field
hz. As hz increases, the threshold interaction parameter
for the formation of Feshbach molecules is shifted from
positive infinity to finite and positive scattering lengths,
indicating that stronger attraction between fermions is
necessary to overcome the depairing effects of hz.
In Fig. 2c, we show the threshold bound-state energy

EB,th for K = 0 and hy = 0 as a function of hz and
varying v, obtained from the threshold condition E(K) ≤
mink{E⇑⇑(k,K)}. For K = 0, the mink{E⇑⇑(k,K = 0)}
occurs at non-zero kx, when |hz| < mv2, and at kx = 0
when |hz | ≥ mv2. Therefore, for |hz| < mv2, the bound
state energy EB satisfies the condition EB ≤ EB,th =
−mv2 − h2

z/(mv2). In this case, it has the dimensionless

form ẼB,th = −2p̃2−h̃2
z/(2p̃

2), where ẼB,th = EB,th/ER,

h̃z = hz/ER, and p̃ = p/kR with p = mv. However, for
|hz| > mv2 the bound state energy EB satisfies the con-
dition EB ≤ EB,th = −2hz, and acquires the dimension-

less form ẼB,th = −2h̃z. This change in behavior of the
minimum of E⇑⇑(k,0) is illustrated in Fig. 2c.
In Fig. 2d, we show the threshold scattering length

as,th as a function of hz, which behaves differently as hz

reaches the critical value hz,c = mv2. This condition is

expressed in dimensionless units as h̃z,c = 2p̃2. It is at
this critical value that E⇑⇑(k,0) changes from a double

minimum when |h̃z| < h̃z,c to a single minimum when

|h̃z| ≥ h̃z,c. For fixed SOC v, the threshold as,th pro-
gressively grows with increasing hz first quadratically for
|hz| < hz,c and then linearly for |hz| ≥ hz,c, as stronger
attractive s-wave (singlet) interactions are necessary to
overcome the de-pairing effect of hz that tends to align
the original spins.
We have just discussed the formation of Feshbach

molecules at zero center of mass momentum K = 0

for zero detuning (hy = 0), but non-zero Raman in-
tensity (hz 6= 0). Next, we discuss the solutions of
Eq. (27) in three dimensions, for the emergence of Fes-
hbach molecules at K = 0, but with both hy 6= 0 and
hz 6= 0. The main results are shown in Fig. 3.
In Fig. 3a, we show plots of the energy of Feshbach

molecules EB/ER versus interaction parameter 1/(kRas)
for hy = 0.25ER, hz = 0.5ER and changing ERD spin-
orbit coupling v. Notice two trends as a function of v.
The first trend is that binding energies are shifted down-
wards with increasing v. The second trend is that the
threshold interaction parameter decreases with increas-
ing v showing that larger SOC facilitates the formation
of molecules when Zeeman fields are present.
In Fig. 3b, we show the binding energy EBin/ER ver-

sus 1/(kRas) for fixed parameters v = kR/m, hz = ER,
and K = 0, but changing hy. The main information
that this figure contains is that the scattering parameter
threshold increases with hy as a stronger attractive in-
teraction is necessary to form singlet Feshbach molecules
in the original spin basis (↑, ↓).
In Fig. 3c, we show the bound state energy thresh-

old EB,th/ER versus hy/ER for fixed parameters K = 0,
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FIG. 3: (color online) a) Plots of EB/ER versus 1/(kRas) with
K = 0, hy = 0.25ER, and hz = 0.5ER for v = 0.05kR/m (blue
dotted), v = 0.25kR/m (green dashed), v = 0.75kR/m (red
dotdashed), v = kR/m (black solid). b) Plots of EBin/ER

versus 1/(kRas) with K = 0, hz = ER, and v = kR/m for
hy = 0 (blue dotted), hy = ER (green dashed), hy = 2ER

(red dotdashed), hy = 3ER (black solid). Plots of EB,th/ER

and 1/(kRas,th) versus hy/ER with K = 0, and v = kR/m
are shown respectively in c) and d) for hz = 0 (black solid);
hz = ER (red dotdashed); hz = 2ER (green dashed); hz =
3ER (blue dotted).

v = kR/m and varying Zeeman field strengths of hz =
0, ER, 2ER, 3ER. Notice two important trends. First, for
fixed hy, the larger hz then the lower EB,th/ER, indi-
cating that it becomes more difficult to form Feshbach
molecules with increasing hz. Second, for fixed and non-
zero hz, the larger hy then the lower EB,th/ER, indicat-
ing again that it becomes more difficult to form Feshbach
molecules. However, for hz = 0 there is a range of hy

fields, where EB,th/ER remains constant due to a com-
pensatory effect of the spin-orbit field, before it decreases
with increasing hy. It is also important to point out that,
at zero center of mass momentum (K = 0), the bound
state threshold energy is symmetric for hy → −hy, as
well as for hz → −hz.
In Fig. 3d, we show the scattering parameter thresh-

old 1/(kRas,th) versus hy/ER for fixed parameters K =
0, v = kR/m and varying Zeeman field strengths of
hz = 0, ER, 2ER, 3ER. There are here also two important
trends. The first one is that, for fixed hy, the threshold
1/(kRas,th) increases with increasing hz. This is a reflec-
tion of the requirement of larger attractive s-wave sin-
glet interactions to compensate for the increase in Zee-
man energy that makes the formation of bound states
in the singlet channel more difficult. The second one is
that, for fixed and non-zero hz, the larger hy the larger
1/(kRas,th), indicating again that it becomes more dif-
ficult to form Feshbach molecules, because of the asso-
ciated Zeeman energy cost. However, for hz = 0 there
is a range of hy fields, where 1/(kRas,th) remains con-
stant due to a compensatory effect of the spin-orbit field,
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before it increases with increasing hy. It is also impor-
tant to point out that, at zero center of mass momentum
K = 0, the scattering parameter threshold is symmetric
for hy → −hy, as well as, for hz → −hz.
Having discussed the emergence of Feshbach molecules

at zero center of mass momentum (K = 0), we present
next the case of Feshbach molecules that are formed with
non-zero center of mass momentum (K 6= 0).

B. Finite Center of Mass Momentum

To find the energy of Feshbach molecules as a function
of center of mass momentum K, we solve again Eq. (27),
which represents the general eigenvalue equation for an
arbitrary mixture of Rashba and Dresselhaus terms, with
K 6= 0. However, we continue to focus on the equal
Rashba-Dresselhaus (ERD) regime in three dimensions,
given its relevance to current experiments. In this case,
the bound state energy EB(K) has only a non-trivial
dependence on the component Kx of the center of mass
momentum K.
In Figs. 4a-d, we show the energy dispersions EB(K)

of Feshbach molecules and the threshold energy EB,th =
mink{E⇑⇑(k,K)} along CM momentum K = (Kx, 0, 0),
with ERD spin-orbit coupling v = kR/m and Raman
intensity hz = 0.5ER. The threshold energy EB,th

is represented by black solid curves, while the bound
state energy EB(K) is represented by blue dotted, green
dashed and red dotdashed curves for scattering parame-
ters 1/(kRas) = 0.75, 1.25, and 1.75, respectively.
In Fig. 4a, we show the zero detuning result corre-

sponding to hy = 0, while in Fig. 4b, Fig. 4c and
Fig. 4d, we show non-zero detuning cases corresponding
to hy = 0.5ER, 1.5ER, and 2.5ER, respectively.
The first thing to notice in Figs. 4a-d is that the bind-

ing energy EBin(K) = EB(K) − EB,th(K) of Feshbach
molecules becomes more negative with increasing interac-
tion parameter, as expected. For instance, look at Fig. 4a
or Fig. 4b and follow the trend as one goes from the blue
dotted to the green dashed to the red dotdashed lines. It
is also important to observe that in Fig. 4a the disper-
sions are even in Kx since hy = 0, but in Figs. 4b-d parity
is lost since hy 6= 0. This occurs because the bound state

energy EB(K) is a function of |h(s)
1,2|2, where the matrix

element h
(s)
1,2 is defined in Eq. (16). For the ERD case,

h
(s)
1,2 = i(2hy+vKx)/

√
2, and the loss of parity in EB(K)

happens along the Kx direction only.
Furthermore, notice that Feshbach molecules are sta-

ble only within the range of CM momenta shown by the
blue dotted, green dashed and red dotdashed curves in
Figs. 4a-d. Outside this region of stability, Feshbach
molecules decay into the two-particle continuum due to
Landau damping. In addition, when hy is positive and
increasing, the region of stable Feshbach molecules shifts
towards negative CM momenta, such beyond a critical
value hy,c no Feshbach molecules with zero CM momen-

tum are stable for fixed scattering parameter 1/(kFas).
This unusual effect is a direct consequence of the absence
of Galilean invariance and the loss of parity introduced

by the matrix element h
(s)
1,2 that couples the center of

mass momentum of two fermions and their spins. For
instance, to see this trend compare the blue dotted lines
corresponding to 1/(kFas) = 0.75, where hy is increasing
from Fig. 4a to Fig. 4d.

Whenever there is a minimum or a maximum of EB(K)
as a function of center of mass momentum K, it is pos-
sible to perform an expansion around this minimum or
maximum and define an effective mass for the Feshbach
molecule. For instance, in the case of zero detuning
(hy = 0), such expansion is always possible and leads
to the binding energy

EB(K) = EB(0) +
K2

x

2Mx
+

K2
y

2My
+

K2
z

2Mz
, (30)

where Mx, My, and Mz are the effective masses of Fes-
hbach molecules along the x, y and z directions, respec-
tively.

We discuss briefly the effective masses in two simple
limits of the more general mixture of Rashba and Dres-
selhaus spin-orbit terms: the ERD and the Rashba-only
cases. Recalling that m is the mass of the fermions, in
the ERD limit, the masses My = Mz = 2m are unrenor-
malized by the spin-orbit coupling. However, in general
Mx 6= 2m is renormalized due to the one-dimensional
nature of the ERD spin-orbit field. The effective mass
Mx tends to 2m in the limit of 1/(kFas) tending to in-
finity. On the other hand, in the Rashba-only regime,
the mass Mz = 2m is unrenormalized, while the masses
Mx = My 6= 2m are renormalized due to the two-
dimensional nature of the Rashba spin-orbit field. The ef-
fective massesMx,My tend to 2m in the limit of 1/(kFas)
tending to infinity.

Having discussed the emergence of Feshbach molecules
with finite center of mass momentum, and having anal-
ysed briefly the anisotropic nature of the effective masses
of such molecules when spin-orbit and Zeeman fields are
present, next we make some comments regarding Bose-
Einstein condensation of Feshbach molecules when their
binding energy can be described by Eq. (30).

IV. BOSE-EINSTEIN CONDENSATION OF
FESHBACH MOLECULES

In our investigation, Feshbach molecules emerge as
two-body bound states of two fermions, therefore if we
consider a gas of dilute and non-interacting molecular
bound states with energy dispersion given by Eq. (30),
the density of these molecules is

nbs =
1

L3

∑

K

b(K), (31)
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FIG. 4: (color online) Plots of bound state threshold ener-
gies (solid black) and of energies of Feshbach molecules (blue
dotted with 1/(kRas) = 0.75; green dashed with 1/(kRas) =
1.25; red dotdashed with 1/(kRas) = 1.75) versus center of
mass momentum K = (Kx,Ky = 0, Kz = 0) for v = kR/m
and hz = 0.5ER, with a) hy = 0; b) hy = 0.5ER; c)
hy = 1.5ER; and c) hy = 2.5ER. Notice the absence of
inversion symmetry (parity) when hy 6= 0.

where L3 is the volume, and the function

b(K) =
1

e[EB(K)−µbs] − 1
(32)

is the Bose distribution. When the chemical poten-
tial µbs approaches the binding energy EB(0), then the
bound states exhibit the phenomenon of Bose-Einstein
condensation. The present situation differs slightly from
the standard case with dispersion EB(K) = EB(0) +
K

2/(2M), because the masses are anisotropic.
In the isotropic case, when there are no artificial

spin-orbit and Zeeman fields, the condensation occurs

when nbs = CT
3/2
BECM

3/2 where the constant C =

ζ(3/2)/(2π)3/2 with ζ(3/2) = 2.6124 being the Riemann
zeta function evaluated at 3/2. This constant has nu-
merical value C = 0.16587, and our analysis leads to the
standard BEC temperature

T iso
BEC =

1

C2/3

n
2/3
bs

M
(33)

for the case of isotropic bound state dispersion. How-
ever, since each bound state is formed by two fermions,
the density of bound states is half of the fermion den-
sity, that is, nbs = nF /2, and the mass of the bound
state is twice that of the fermion, that is, M = 2m.
These two statements put together lead to the relation

n
2/3
bs /M = 2−2/3n

2/3
F /(2m), which ultimately produces

the condensation temperature

T iso
BEC =

1

(2C)2/3
n
2/3
F

2m
= 0.218EF (34)

where EF = k2F /(2m) is the Fermi energy of a non-
interacting gas of fermions with two internal spin states,
and the density of fermions is nF = k3F /(3π

2). This
standard result [26] showing that TBEC is proportional
to the Fermi energy EF is not surprising since each of
the molecular bound states are formed of two fermions.
In the anisotropic case, when artificial spin-orbit and

Zeemans fields are present, the only modification in the
intermediate expression for the Bose-Einstein condensa-
tion temperature shown above is to change the mass M
of the bound-state into the geometrical mean Mgm =

(MxMyMz)
1/3, leading to the result

TBEC =
1

C2/3

n
2/3
bs

Mgm
. (35)

If we define the condensation temperatures of the
anisotropic and isotropic cases to be T ani

BEC and T iso
BEC ,

respectively, then their ratio is simply given by

T ani
BEC

T iso
BEC

=
M

Mgm
. (36)

This result shows that if the mass Mgm is smaller than
M then T ani

BEC is larger than T iso
BEC and vice-versa. In the

limit that the interaction parameter is much larger than
the apropriately scaled artificial spin-orbit coupling and
Zeeman fields, the effective masses become isotropic, and
the standard results are recovered, as expected.
In terms of the Fermi energy EF , the condensation

temperature for the anisotropic case becomes

T ani
BEC

EF
= 0.218

2m

Mgm
, (37)

which again shows that an enhancement in the conden-
sation temperature of Feshbach molecules in the pres-
ence of spin-orbit coupling is possible provided that the
effective mass Mgm is smaller than twice the fermion
mass. In the equal-Rashba-Dresselhaus case, the geo-
metrical mean mass is Mgm = (2m)2/3(Mx)

1/3, since
My = Mz = 2m and Eq. (37) reduces to the rela-

tion T ani
BEC/EF = 0.218 [(2m)/Mx]

1/3
. However, in the

Rashba case, the geometrical mean mass is Mgm =

(2m)1/3(MR)
2/3, since Mx = My = MR, and Mz = 2m,

leading to T ani
BEC/EF = 0.218 [(2m)/MR]

2/3
.

Having briefly discussed Bose-Einstein condensation of
Feshbach molecules when spin-orbit and Zeeman fields
are present, we are ready to present next our conclusions.

V. CONCLUSIONS

We have investigated the emergence of Feshbach
molecules in the presence of spin-orbit coupling and Zee-
man fields for any mixture of Rashba and Dresselhaus
terms in two and three dimensions, but we focused on the
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experimentally relevant case of equal Rashba and Dres-
selhaus (ERD) spin-orbit coupling for three-dimensional
systems.
For zero detuning (hy = 0) and fixed ERD spin-

orbit coupling, we have found that the threshold scatter-
ing parameter [1/(kFas,th)], required to form Feshbach
molecules with zero center-of-mass (CM) momentum, is
shifted to larger positive values when the Raman cou-
pling (hz) is increased. Furthermore, for fixed scattering
parameter [1/(kFas)], these molecules are stable only for
a symmetric range of CM momenta, outside which they
decay into the two-particle continuum.
However, for finite detuning (hy 6= 0) and fixed Raman

intensity, ERD spin-orbit coupling and scattering param-
eter, Feshbach molecules are stable only in an asymmetric
range of CM momenta. Furthermore, if the detuning is
sufficiently large then Feshbach molecules with zero CM
momentum are not possible. These effects are a manifes-

tation of the absence of Galilean invariance and the loss
of parity.

Lastly, we have briefly discussed that spin-orbit cou-
pling and Zeeman fields affect the Bose-Einstein conden-
sation temperature of Feshbach molecules through the
emergence of anisotropic effective masses, that is, the
spin-orbit and Zeeman fields renormalize the masses of
two-fermion bound states along the principal axes of their
center of mass motion.
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