
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Control of threshold enhancements in harmonic generation
by atoms in a two-color laser field with orthogonal

polarizations
M. V. Frolov, N. L. Manakov, T. S. Sarantseva, A. A. Silaev, N. V. Vvedenskii, and Anthony F.

Starace
Phys. Rev. A 93, 023430 — Published 26 February 2016

DOI: 10.1103/PhysRevA.93.023430

http://dx.doi.org/10.1103/PhysRevA.93.023430


Control of threshold enhancements in harmonic generation by atoms

in a two-color laser field with orthogonal polarizations

M. V. Frolov,1, 2 N. L. Manakov,1 T. S. Sarantseva,2 A. A. Silaev,2 N. V. Vvedenskii,2 and Anthony F. Starace3

1Department of Physics, Voronezh State University, Voronezh 394006, Russia
2Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia

3Department of Physics and Astronomy, The University of Nebraska, Lincoln NE 68588-0299, USA

Threshold phenomena (or channel-closing effects) are analyzed in high-order harmonic generation
(HHG) by atoms in a two-color laser field with orthogonal linearly polarized components of a fun-
damental field and its second harmonic. We show that the threshold behavior of HHG rates for the
case of a weak second harmonic component is sensitive to the parity of a closing multiphoton ion-
ization channel and the spatial symmetry of the initial bound state of the target atom, while for the
case of comparable intensities of both components, suppression of threshold phenomena is observed
as the relative phase between the components of a two-color field varies. A quantum orbit analysis
as well as phenomenological considerations in terms of the Baz’ theory of threshold phenomena [Zh.
Eksp. Teor. Fiz. 33, 923 (1957)] are presented in order to describe and explain the major features
of threshold phenomena in HHG by a two-color field.
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I. INTRODUCTION

High-order harmonic generation (HHG) is unique
among strong laser field processes in having an extremely
wide range of applications, including production of co-
herent XUV radiation [1, 2] and attosecond pulses [3, 4],
monitoring of ultrafast phenomena on an attosecond time
scale [5, 6], and as a probe of atomic and molecular struc-
tures [7–9]. The HHG process is usually treated as a
three-step process [10, 11], since the HHG amplitude in
the limit of low laser frequencies can be presented as a
product of three factors associated with (i) tunnel ion-
ization of a target atom or molecule, (ii) propagation of
the ionized electron in the laser field, and (iii) its subse-
quent photorecombination on the ion of the parent atom
with emission of a harmonic photon [12, 13]. In this
scenario, the recombination amplitude depends signifi-
cantly on the electronic structure of the target atom or
molecule, while the first two steps are governed mostly
by the laser field. Obviously, variations of the temporal
or spatial shape of a laser pulse crucially affects the first
two steps of the three-step scenario. For example, chang-
ing the carrier envelope phase (CEP) of a linearly polar-
ized short laser pulse drastically modifies the structure
of the high energy part of the HHG spectrum [14, 15],
since the ionization and propagation steps are modified
by variation of the CEP (cf. [16]). Using an elliptically
polarized field in HHG experiments instead of a linearly
polarized one makes possible the generation of elliptically
polarized harmonics [13, 17–19] and provides access to
atomic characteristics (which are not available in HHG
experiments with linearly polarized light) through mea-
surement of the elliptical dichroism [20, 21]. However,
the disadvantage of an elliptically polarized field is that
the HHG yield drops drastically with increasing elliptic-
ity [13, 17–19]. (For small ellipticity, this suppression can
be approximated by a Gaussian function [22, 23].)

A more promising HHG scheme for generation of in-
tense XUV and attosecond pulses was suggested a decade
ago [24–27] that involves a two-color pump field whose
components are linearly polarized in orthogonal direc-
tions. If both components have comparable intensities,
the yield of high-order harmonics can be enhanced and
more intense attosecond pulses can be produced (as com-
pared to a single frequency laser field) by adjusting the
relative phase of the two components. As emphasized in
Refs. [24–26], variation of the relative phase of the two
components can affect the number of contributing classi-
cal electron trajectories in the quasiclassical description
of the propagation step of the HHG process. The ability
to select trajectories was demonstrated experimentally in
Refs. [28, 29]; see also the theoretical description of tra-
jectory selection in Ref. [30] and the trajectory analysis in
Ref. [31]. The two-color scheme with a fundamental and
its weak second harmonic was proposed in Refs. [7, 32–
34] as a tool for probing atomic and molecular struc-
ture. The key idea is that a weak second harmonic com-
ponent of a two-color field (steered by variation of the
relative phase) can control the photoelectron recollision
angle at the recombination stage. In this way, “angle-
resolved” information about atomic or molecular orbits
can be obtained from HHG spectra. In Ref. [35] it was
demonstrated that by using this two-color scheme with
a fundamental frequency in the mid-infrared region one
can enhance HHG by tuning the relative phase of the
two components. A more spectacular application of the
two-color scheme with orthogonal linearly polarized com-
ponents was used to determine ionization and recombi-
nation times from an analysis of HHG spectra [5, 36, 37].
The two-color scheme was also proposed as a tool for
HHG-based spectroscopy with the ability to retrieve both
the angle-integrated photoionization cross section and
the asymmetry parameter [38], which determines the an-
gular distribution of photoelectrons [39].

Most theoretical analyses of HHG in a two-color field
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are based on a classical model, which assumes that dur-
ing the propagation step the ionized electron moves in a
laser field along closed classical (real) trajectories start-
ing (after tunnel ionization) with zero velocity [10]. Such
trajectories exist for a linearly polarized field [23], while
for a two-dimensional field (including a two-color field)
there are no trajectories that satisfy such conditions. In
this case, the interpretation of the numerical results is
based on the real classical trajectories that “miss” the
atomic ion (cf. [28–30, 40, 41]), i.e., the efficiency of rec-
ollision is estimated as the number of trajectories that
return within an artificial sphere of radius r0 about the
ion. With increasing intensity of the second harmonic,
the number of returning trajectories decreases, leading to
the conclusion that the recombination step is suppressed.
However, this interpretation has two drawbacks: (i) the
number of returning trajectories depends crucially on the
artificial parameter r0; and (ii) the quantum recombina-
tion amplitude (which describes the efficiency of recom-
bination) depends only on the atomic structure and is
fairly independent of the parameter r0. A more accurate
analysis, based on quantum orbits [12, 42], shows that
the suppression of the HHG yield can be associated with
suppression of the ionization step (cf. Ref. [23] for the
case of an elliptically polarized field).

Besides the classical or quasiclassical features in HHG
spectra, which can be quantitatively described in terms
of classical trajectories, other features, such as thresh-
old phenomena, have a purely quantum origin [43] and
can lead to considerable resonance-like enhancements in
HHG spectra. In order to describe these phenomena (or
“channel closing” effects) quasiclassically, a huge number
of complex quantum trajectories must be taken into ac-
count [44–46]. This fact shows the inapplicability of the
standard quasiclassical approach, which is designed to
treat only a few electron trajectories, and a priori man-
ifests the quantum origin of channel closing effects. For
the case of a monochromatic laser field, threshold phe-
nomena in HHG have been extensively studied as a quan-
tum effect in Refs. [43, 47, 48] and in terms of quantum
orbits in Refs. [45, 46]. Note that even for a short laser
pulse these threshold phenomena occur in HHG spectra
and depend crucially on the shape of the atomic poten-
tial [49–51]. However, for a two-color field with orthogo-
nal linearly polarized components, threshold phenomena
in HHG (and the possibility of their control by means of
the relative phase of the two field components) have not
yet been analyzed.

In this paper, we discuss threshold phenomena in HHG
for a two-color field and their modifications with varia-
tion of the field parameters. This article is organized as
follows: In Sec. II we discuss briefly some general def-
initions and models that we use in our analysis. Our
numerical results are presented and discussed in Sec. III.
To analyze our results, we use a classical closed trajectory
treatment as well as more general quantum phenomeno-
logical considerations. In Sec. IV we summarize our re-
sults. Model analytic results for the HHG amplitude in

a two-color field are presented in Appendix A. Atomic
units are used throughout this article unless otherwise
stated.

II. DEFINITIONS AND MODELS

We analyze threshold phenomena in a two-color field,
whose electric field vector F(t) is parameterized as

F(t) = F [eω cos(ωt) + βe2ω cos(2ωt+ φ)] , (1)

where F is the amplitude of the fundamental component
with frequency ω, β describes the relative contribution
of its second harmonic, φ is the relative phase between
the two components, and their polarization vectors are
denoted by eω and e2ω. Both components are linearly
polarized in orthogonal directions, so that the vectors eω
and e2ω are real and (eω · e2ω) = 0. For simplicity, we
consider the vectors eω and e2ω as directed along the X-
and Y - axes, i.e., eω = x̂, e2ω = ŷ.
To describe the dynamics of an atomic system in a

strong laser field, we employ two different atomic models.
The first is based on the time-dependent effective range
theory (TDER), which is appropriate for describing the
nonperturbative strong-field dynamics of a weakly bound
electron (e.g., as in a negative ion); it neglects long-range
Coulomb effects [52, 53]. The second model is based on
the numerical solution of the time-dependent Schrödinger
equation (TDSE), which helps in studying the threshold
dynamics for a system with a Coulomb-type potential.
We use these two models in order to show some gen-
eral features of strong-field dynamics at the closing of a
multiphoton detachment or ionization channel. In what
follows, we briefly describe both the TDER model and
the numerical algorithms for solving the TDSE.

A. Time-dependent effective range theory

The TDER model has been discussed in detail in
Ref. [53] and its application to the description of the HHG
process for both monochromatic and two-color fields has
been presented in Refs. [38, 54, 55]. Thus we discuss here
the general ideas of the TDER model and its application
to the HHG process only briefly.
The TDER theory is based on the quasistationary

quasienergy state (QQES) approach [56–59] and effec-
tive range theory [60]. The QQES approach is used for
the quantum description of the laser-atom interaction,
assuming the laser field is approximated by a periodic
(in time) electric field. In the framework of the QQES
approach the quantum state (QQES state) of an atomic
electron in a periodic laser field is characterized by a
complex quasienergy, whose real part gives the position
of the atomic level (including the non-linear Stark-effect),
while the imaginary part describes the total laser-induced
width of the atomic level in the laser field [56–59]. The
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corresponding QQES wave function satisfies the complex
boundary condition appropriate for an outgoing spheri-
cal wave at large distances, which ensures the complexity
of the quasienergy. An advantage of the QQES approach
is that it reduces the solution of the Cauchy problem for
the TDSE to an eigenvalue problem, so that the complex
quasienergy and QQES wave function can be found as
the eigenvalue and its corresponding eigenfunction.
The dynamical part of the TDER model is based on

effective range theory, i.e., the dynamical interaction of
an active electron with an atomic core (which is mod-
eled by a short-range potential) is described in terms of
a single [52, 53] or a few [61] scattering phases, which
correspond to continuum channels with small orbital an-
gular momenta l (l = 0, 1, 2). The TDER model assumes
that there are two significantly different spatial regions:
in the first region (at small distances), the atomic poten-
tial is important and the interaction of the active elec-
tron with the atomic core is described in terms of scat-
tering phases [60], while at large distances (the second
region) the atomic potential is negligible and all the dy-
namics is governed by the strong laser field. The wave
functions from these two regions are matched by an ap-
propriate boundary condition [53, 61], which is formu-
lated at small distances. This matching reduces the four-
dimensional eigenvalue problem to a one-dimensional
integro-differential equation for the complex quasienergy
and QQES wave function at small distances [53].
As shown in Ref. [62], the complex quasienergy can

be used to calculate the HHG amplitude. Indeed, ac-
cording to Ref. [62], the HHG amplitude for a harmonic
with frequency Ω = Nω can be found as the derivative of
the complex quasienergy in a two-color laser field com-
prised of a strong laser field and a weak (probe) har-
monic field of frequency Ω. The advantage of the TDER
model is that most of the calculations can be done analyt-
ically and the final results for the HHG amplitude can be
presented in terms of one-dimensional integrals involving
Bessel functions (see Appendix A). These integrals can
be easily calculated numerically using the procedure sug-
gested in Refs. [63, 64]. This procedure transforms a one-
dimensional integral to a form which is more convenient
for numerical evaluation and theoretical analysis:

∫ ∞

0

f(τ)√
τ
e−iατdτ =

1√
4πi

∫ ∞

−∞

F (k)dk√
α+ k

, (2)

F (k) =

∫ ∞

−∞

f(τ)eikτ dτ.

Indeed, the Fourier-transform, F (k), of an analytic func-
tion f(τ) is a smooth function without branch points.
Thus Eq. (2) shows explicitly that the result of integra-
tion over τ is a function having branch points in α. Since
the function f(τ) is composed of trigonometric functions
(see Appendix A), these branch points are located at
the thresholds of multiphoton ionization channels, i.e.,
at α = Nω. Thus the TDER model is suitable for ana-
lyzing threshold phenomena for a short-range potential.

B. Numerical solution of the TDSE

To analyze threshold phenomena in a system with a
Coulombic potential, we solve numerically the TDSE:

i
∂ψ

∂t
= −∇2

2
ψ + U(r)ψ + r · F(t)f(t)ψ, (3)

where the function f(t) describes the trapezoidal enve-
lope of the laser pulse and U(r) is the atomic potential.
We use for f(t) a trapezoidal envelope having a two-cycle
ramp for turn on and off and a six-cycle flat top:

f(t) =



















t/(2T ), 0 < t ≤ 2T

1, 2T < t ≤ 8T

1− (t− 8T )/(2T ), 8T < t ≤ 10T

0, t ≤ 0, t > 10T

where T = 2π/ω. In order to avoid the Coulomb singu-
larity at the origin, we employ an atomic potential having
a smooth Coulomb potential (cf. Ref. [65]),

U(r) = −αsech2(r/a)− tanh(r/a)/r, (4)

with a = 0.3 and α = 2.17. The values of a and α ensure
that the energy of the ground state coincides with the
H atom ground state energy. The TDSE was solved by
a split-step method with fast Fourier-transform of the
axes x, y, z [66]. The temporal and spatial steps were
chosen to ensure convergence of the numerical results:
∆t = 0.025, ∆x = ∆y = ∆z = 0.3. The number of
grid nodes along each coordinate were Nx = 512, Ny =
Nz = 256, and to suppress nonphysical reflections at the
boundaries, absorption layers of width 15 a.u. were used.
The HHG yield, Y (Ω), was calculated in terms of the
Fourier transform of the dipole acceleration amplitude:

Y (Ω) =
|a(Ω)|2
2πc3

, a(Ω) =

∫ ∞

−∞

eiΩta(t)dt, (5)

where

a(t) = E− 〈ψ|∇U(r)|ψ〉. (6)

III. NUMERICAL RESULTS AND DISCUSSION

A. Numerical results

In Figure 1 we present the dependence of the HHG
rates [see Eqs. (A9) and (A12)] on the channel-closing
number, R [51]:

R = (|E0|+ up) /ω, up = F 2/(4ω2)
(

1 + β2/4
)

, (7)

where E0 is the energy of the initial bound state. The
channel-closing number increases with decreasing laser
frequency ω and increasing laser intensity. Integer values
of R, R = k, indicate the positions of k-photon ionization
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thresholds. In our calculations we vary only the inten-
sity of the fundamental component and all other laser
parameters, i.e., ω, β, and φ, are held fixed.
For the case of a weak second harmonic component,

we present in Figs. 1(a), (b) respectively the TDER re-
sults for odd and even HHG rates for an s-state, while in
Figs. 1(c),(d) we present the corresponding TDER HHG
rates for a p-state. These numerical results are obtained
using the analytic formulas for the TDER HHG ampli-
tudes presented in Appendix A. For the s-state, the rates
of even and odd harmonics behave similarly: at the clos-
ing of an odd multiphoton ionization channel, the HHG
rates show a smooth behavior, while at the thresholds of
an even multiphoton ionization channel the HHG rates
show “cusp” or “step”-like behavior. However, for the
p-state, the “cusp” or “step”-like behavior is observed
at the thresholds of odd multiphoton ionization channels
for odd harmonics and at the thresholds of even multi-
photon ionization channels for even harmonics. These re-
sults show that for a weak second harmonic the threshold
behaviors of HHG rates depend crucially on the orbital
angular momentum of the electron in the initial state.
In order to show the collective behavior of HHG rates

for a group of harmonics at the closing of a multipho-
ton ionization channel, in Figs. 2 and 3 we present the
dependence of the integrated HHG yield on the channel-
closing number for different values of φ and β. For the
TDER results, the integrated HHG yield is defined as a
sum over harmonic order n [48]:

P∆E = ~ω

nf
∑

n=ni

nRn, (8)

where Rn is the HHG rate for the nth harmonic [see
Eqs. (A9) and (A12)] and ni and nf are respectively the
lower and upper harmonics involved. Since the HHG
spectra are continuous in TDSE calculations for a short
pulse, we define in this case the integrated yield as an
integral over harmonic energy [49–51, 67]:

P∆E =
1

T

∫ Ef

Ei

Y (Ω)dΩ, (9)

where Y (Ω) is the HHG yield [see Eq. (5)], T is the du-
ration of the laser pulse, and Ei and Ef are respectively
the lower and upper energy limits of the harmonics in-
volved. In our TDSE calculations the lower and upper
limits for the harmonic energy are ni~ω ≈ Ei = 20 eV
and nf~ω ≈ Ef = 50 eV, respectively.
We present in Fig. 2 the TDER results for a bound

s-state with |E0| = 15.76 eV and in Fig. 3 the TDSE
results for the H atom ground state. For a weak second
harmonic [see Figs. 2(a) and 3(a)], the threshold phe-
nomena are almost independent of the relative phase φ.
For a short-range potential, sharp cusps are shown at
the closing of even multiphoton ionization channels and
more smooth behaviors occur at the thresholds of odd
channels (cf. Ref. [48]). However, for the Coulombic po-
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FIG. 1: (Color online) The dependence of TDER model HHG
rates on the channel-closing numberR [see Eq. (7)] for varying
intensity, I = cF 2/(8π), and fixed wavelength, λ = 800 nm,
of the fundamental field, β = 0.2, and relative phase φ = 0.
The intensity I is changed in the range 1.3×1014 6 I 6 2.2×
1014 W/cm2. For easier comparison, each curve is multiplied

by a factor 10−(N−5), where N is the harmonic number. N is
odd for (a) and (c) and even for (b) and (d). Panels (a) and
(b): results for a bound s-state; panels (c) and (d): results
for a bound p-state. The binding energy is |E0| = 15.76 eV,
as for the argon atom.
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FIG. 2: (Color online) Integrated TDER model HHG yields
P∆E (8) for an initial s-state (|E0| = 15.76 eV) and a har-
monic energy range ∆E = (20− 50) eV for the laser field (1)
as a function of the channel-closing number R (7). The fun-
damental field component has a wavelength λ = 800 nm and
an intensity I that varies over the range 1.3 × 1014 6 I 6

2.2 × 1014 W/cm2. Solid (red) lines: φ = 0; dotted (blue)
lines: φ = π/2. Panel (a): β = 0.2; panel (b): β = 0.8.

tential, the threshold peaks for both odd and even ion-
ization thresholds are similar and are shifted by about
half the photon energy, ~ω/2, similarly to the shifts in
Refs. [49–51] for a monochromatic field. With increasing
intensity of the second harmonic [see Figs. 2(b) and 3(b)],
the threshold behavior of P∆E becomes sensitive to the
relative phase φ. Indeed, for φ = 0, the dependence of
P∆E on R looks similar to that for the case of a weak
second harmonic. However, threshold singularities in the
R-dependence of P∆E completely disappear for φ = π/2.
In order to describe the aforementioned threshold fea-
tures of HHG spectra in a two-color field, we present in
Sec. III B a trajectory analysis and in Sec. III C a phe-
nomenological quantum mechanical analysis.

B. Trajectory analysis

The commonly accepted method for analysis of HHG
spectra in the low frequency limit is based on the eval-
uation of the temporal integrals in the HHG amplitude
by the method of steepest descent [12]. Within this ap-
proach, the HHG amplitude can be presented as a sum
of partial amplitudes associated with a closed quantum
trajectory (or “quantum orbit”) that starts at the time
ti and ends at the time tf . These quantum trajectories
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FIG. 3: (Color online) TDSE results for the integrated HHG
yield P∆E (9) for the H atom ground state for the same laser
parameters as in Fig. 2.

satisfy Newton’s equation and in general the times ti and
tf are complex. The system of equations for the times ti
and tf is found from the adiabaticity condition for elec-
tron transitions between initial and final states at those
two times [12], i.e. at the “moment” of transition, the en-
ergies of the initial and final states should be equal [60]:

E(ti,k) = E0, (10a)

E(tf ,k) = E, E = Ω + E0, (10b)

where

E(t;k) =
1

2
(k+A(t)/c)2 , (11)

k ≡ k(ti, tf ) = − 1

c(tf − ti)

∫ tf

ti

A(τ)dτ, (12)

and A(t) is the vector potential of the electric field F(t)
in Eq. (1). Equation (10a) corresponds to the transi-
tion from an initial state with (negative) energy E0 to
the laser-dressed continuum state with energy E(ti, tf )
at time ti, while Eq. (10b) corresponds to the transition
from the laser-dressed continuum state to the initial state
with emission of a harmonic photon with energy Ω. The
form of k in Eq. (12) ensures that the contributing orbits
are closed trajectories [12].
In the classical model of HHG, the energy E0 in

Eq. (10a) is replaced by zero, indicating that the active
electron is liberated from the atom to the continuum with
zero initial kinetic energy. For the case of linear polar-
ization, the system of equations (10) has real solutions
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for E0 → 0, while for a two-color field with perpendicular
linearly polarized components there are no real solutions,
even in the classical limit. The times given by the classi-
cal model play a crucial role in the analysis of the HHG
amplitude, since only those quantum trajectories whose
times are close to the classical ones contribute signifi-
cantly to the HHG amplitude because the corresponding
classical actions for these quantum paths have the small-
est imaginary parts [60, 68]. Thus we shall analyze the
solutions of the system (10) for a two-color field (1) pay-
ing special attention to their closeness to the classical
solutions for a linearly polarized field.

1. The case of a weak second harmonic component

For the case of a weak second harmonic in the field (1),
we represent the system of equations (10) in the explicit
form:

sin τi +
cos τf − cos τi

τf − τi
= ±iΓ, (13a)

sin τf +
cos τf − cos τi

τf − τi
= ∓

(√
ǫ− Λ

)

, (13b)

where

Γ ≡ Γ(τi, τf ) =
√

γ2 + ǫy(τi), (14)

Λ ≡ Λ(τi, τf ) =
ǫy(τf )

√

ǫ− ǫy(τf ) +
√
ǫ
, (15)

ǫy(τ) =
[

Ay(ω
−1τ)/c+ ky

]2
/(2up) (16)

=
β2

4

[

sin(2τ + φ) +
cos(2τf + φ)− cos(2τi + φ)

2(τf − τi)

]2

,

γ = ω
√

2|E0|/F , τi = ωti, τf = ωtf , and ǫ = E/(2up).
Since γ ≪ 1 and β ≪ 1 (ǫy ∝ β2 ≪ 1), both Γ and Λ
are less than unity and can be treated as perturbations
in the system of equations (13). Note that for ǫ > ǫy(τf )
(above-threshold harmonics) Λ is real, for 0 < ǫ < ǫy(τf )
(near-threshold harmonics) it is complex, and for ǫ < 0
(below-threshold harmonics) Λ has only an imaginary
part. In our analysis we consider only above-threshold
harmonics, since the near- and below-threshold harmon-
ics require a separate treatment.
To zero order in β, the times τi and τf are approxi-

mated by the real classical times τ
(cl)
i and τ

(cl)
f for a lin-

early polarized field, which can be found from the system
of equations:

sin τ
(cl)
i +

cos(τ
(cl)
f )− cos(τ

(cl)
i )

τ
(cl)
f − τ

(cl)
i

= 0, (17a)

sin τ
(cl)
f +

cos(τ
(cl)
f )− cos(τ

(cl)
i )

τ
(cl)
f − τ

(cl)
i

=
√
ǫ. (17b)

The correction to the classical times can be found by

presenting τi and τf in the form τi = τ
(cl)
i + ∆i, τf =

τ
(cl)
f + ∆f and expanding the left-hand side of the sys-

tem of equations (13) in power series in ∆i and ∆f . In
the first order of perturbation theory, ∆i and ∆f can be
found in the form:

∆i =

√
ǫΛ(τ

(cl)
i , τ

(cl)
f )

| cos(τ (cl)i )|(√ǫ−∆τ (cl)| cos τ (cl)f |)

+i
Γ(τ

(cl)
i , τ

(cl)
f )

| cos(τ (cl)i )|
, (18a)

∆f =
Λ(τ

(cl)
i , τ

(cl)
f )

√
ǫ/∆τ (cl) − | cos τ (cl)f |

. (18b)

Equations (18) show that the non-zero second harmonic
component leads to real shifts of the times τi and τf from

the classical ionization and recombination times τ
(cl)
i and

τ
(cl)
f , while for β = 0 these shifts vanish. The second
harmonic component of a two-color field also increases
the imaginary part of the ionization time and makes it
φ-dependent, thereby introducing a φ-dependence in the
ionization step of the three-step HHG scenario:

Im

∫ tf

ti

{

1

2

[

1

c
A(t) + k

]2

− E0

}

dt

≈ −
4upΓ

3(τ
(cl)
i , τ

(cl)
f )

3ω| cos(τ (cl)i )|
. (19)

Since β ≪ 1 and on each half-period of the fundamental
field ionization occurs at the maximum of the laser field,
while recombination takes place at a zero of the field, we

can approximate τ
(cl)
i ≈ πm and τ

(cl)
f ≈ τ

(cl)
i + π/2 + πk

with integer m and k. Within this approximation, the

result (16) for ǫy(τ
(cl)
i ) can be estimated as follows:

ǫy(τ
(cl)
i ) ≈ β2

4
sin2 φ. (20)

Therefore, the ionization step is more suppressed for
φ = π/2 than for φ = 0 and thus the HHG yield is
larger for φ = 0 than for φ = π/2. Our analysis above
shows that adding a weak second harmonic component
slightly perturbs the ionization and recombination times
for quantum trajectories compared to the case of a lin-
early polarized single-component field. These times are
still close to the classical times for linear polarization.
Therefore, in the two-color field with a weak second har-
monic component, the phenomena originating from the
interference of many quantum orbits (such as threshold
phenomena [45, 46]) should be observed as for the case
of a single-component linearly polarized laser field.

2. The case of comparable intensities of the two components

Since the contribution of the term ǫy(τ) in the sys-
tem of equations (13) cannot be considered perturba-
tively in the case of comparable intensities of the two
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components of a two-color field, for analysis of the sys-
tem of equations (10) for this case we apply a different
method. First, we consider the classical limit of the sys-
tem of equations (10). According to the classical model,

the energy of the electron at the time t = t
(cl)
i equals

zero, so that both x− and y−components of the electron

momentum reduce to zero at the time t = t
(cl)
i , i.e.,

Aj(t
(cl)
i )/c+ k

(cl)
j = 0, j = x, y, (21)

k(cl) = k(ti = t
(cl)
i , tf = t

(cl)
f ).

The system of equations (21) can be re-written explicitly
in the form:

sin τ
(cl)
i +

cos(τ
(cl)
f )− cos(τ

(cl)
i )

τ
(cl)
f − τ

(cl)
i

= 0, (22a)

sin(2τ
(cl)
i + φ)

+
cos(2τ

(cl)
f + φ)− cos(2τ

(cl)
i + φ)

2(τ
(cl)
f − τ

(cl)
i )

= 0. (22b)

The coupled system of equations (22) cannot be solved
for real times. Nevertheless, we shall analyze separately
the solution of each equation in the system (22) in terms

of real-valued functions τ
(cl)
i = τ

(cl)
i (τ

(cl)
f ).

For large ∆τ (cl) = τ
(cl)
f − τ

(cl)
i , the solutions of

Eqs. (22a) and (22b) can be given as a series in [∆τ (cl)]−1:

τ
(cl)
i ≈ a0 +

a1(τ
(cl)
f )

∆τ (cl)
+
a2(τ

(cl)
f )

[∆τ (cl)]2
+ · · · . (23)

Substituting Eq. (23) into the system of equations (22)
with subsequent expansions of the left-hand sides in series
in [∆τ (cl)]−1, we obtain sequentially from Eqs. (22a) and
(22b) the solutions to first-order in [∆τ (cl)]−1:

τ
(cl)
i ≈ −πn1 − (−1)n1

cos τ
(cl)
f − (−1)n1

τ
(cl)
f + πn1

, (24a)

τ
(cl)
i ≈ −πn2

2
− φ

2

−(−1)n2

cos(2τ
(cl)
f + φ)− (−1)n2

2(2τ
(cl)
f + πn2)

, (24b)

where n1 and n2 are positive integers. The asymptotic
solutions (24a) and (24b) show explicitly that both solu-
tions merge for large n1 and n2 if n2 = 2n1 and φ = 0
[see Fig. 4(a)], while for φ = π/2 and large n1 and n2

they never cross [see Fig. 4(b)]. It should be noted that
for φ = 0 the system of equations (22) has “trivial” so-

lutions [31]: τ
(cl)
f = 0, π, 2π, τ

(cl)
i = τ

(cl)
f − 2πn, where

n is a positive integer. For odd n1 and n2 = 2n1, the
solution (24a) coincides exactly with the solution (24b)

at φ = 0 and τ
(cl)
f = π, and, for even n1 and n2 = 2n1,

at φ = 0, τ
(cl)
f = 0, and τ

(cl)
f = 2π [see Fig. 4(a)].

For a small difference τ
(cl)
f − τ

(cl)
i (or small ∆τ (cl)),

solutions of (22) can be given as series in ∆τ (cl). Indeed,

substituting in (22a) the times τ
(cl)
i and τ

(cl)
f in the form:

τ
(cl)
i = τ

(cl)
f −∆τ (cl), τ

(cl)
f =

∑

j

bj[∆τ
(cl)]j (25)

and then expanding (22a) in a series in ∆τ (cl) and equat-
ing coefficients of the term [∆τ (cl)]j , we obtain a coupled
system of equations for the coefficients bj . The values of
the first few bj are given by:

b1 =
1

3
, b3 = − 1

810
, b5 = − 1

68040
, b7 = − 1

6123600
,

b0 =
π

2
+ πn, b2k ≡ 0, n = 0, 1, k = 1, 2, · · · (26)

The series in Eq. (25) is rapidly convergent: e.g., for
∆τ (cl) = π, the term b7[∆τ

(cl)]7 ≈ 5 × 10−4 and thus
the expansion (25) can be used even for ∆τ (cl) ∼ π. The
solution of Eq. (22b) can be obtained from the expan-

sion (25), substituting there τ
(cl)
f → (2τ

(cl)
f + φ) and

∆τ (cl) → 2∆τ (cl). By taking into account three terms
in the expansion of τ (cl), we obtain from Eq. (22a):

τ
(cl)
f ≈ π

2
+ πk +

∆τ (cl)

3
− [∆τ (cl)]3

810
, (27)

while from Eq. (22b) we have

τ
(cl)
f ≈ π

4
+
πn

2
− φ

2
+

∆τ (cl)

3
− 2[∆τ (cl)]3

405
, (28)

where k = 1, 2 and n = 1, 2, 3, 4. For φ = π/2 and even
n these solutions merge as ∆τ (cl) → 0. Owing to the
smallness of bj , the difference of the results (27) and (28)

for φ = π/2 is observable only at ∆τ (cl) ∼ π (see Fig. 4).
Since the solutions of Eq. (10b) for positive energy E

(i.e., for harmonics in the plateau region) can be found
for real times for any phase φ and any intensity of the
laser field components (see Fig. 4), they cross the solu-
tions of the system of equations (22), whose asymptotic
behavior is discussed above. The crossing points of the
solutions of Eq. (10b) with the solutions of Eqs. (22a)
and (22b) are closest when the solutions of Eqs. (22a)
and (22b) are close to each other. According to our anal-
ysis above for φ = 0, at such close crossing points we use
the crossing point with the solutions of Eq. (22a) [see
Fig. 4(a)], while for φ = π/2 close crossing points oc-
cur only for small ∆τ (cl) [see Fig. 4(b)]. The dominant
contributions to the HHG amplitude saddle points from
Eq. (10) are near the close crossing points. The contribu-
tions of these saddle points are much stronger than are
those of others since such trajectories are much closer to
the classical ones. Indeed, in Fig. 4 we present the exact
solutions of the system of equations (10) (real parts of
tf and ti are presented) and their relative contributions
to the HHG amplitude, which are marked by the density
of shading (with the saddle points that contribute most
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FIG. 4: (Color online) Solutions of Eqs. (10) and (22) for two
relative phases of the two-color laser field components: (a)
φ = 0; (b) φ = π/2. Dotted (red) lines: solutions of Eq. (22a);
Solid (black) lines: solutions of Eq. (22b); Dot-dashed (or-
ange) lines: solutions of Eq. (10b) for β = 0; Dashed (blue)
lines: solutions of Eq. (10b) for β 6= 0; Solid circles: exact
solutions of the system (10), with the real parts of the times
ti and tf used for plotting and with the intensity of the circle
shading indicating the relative contribution (on a logarith-
mic scale) of the corresponding saddle points to the partial
HHG amplitudes, with black indicating the strongest contri-
bution and light grey the least. Solid (red) squares: exact
solutions of the system of equations (10) for β = 0, with the
real parts of the times ti and tf used for plotting. Calculations
have been carried out for I = cF 2/(8π) = 2 × 1014W/cm2,
β = 0.8 [except for the dot-dashed (orange) lines and the
solid (red) squares], λ = 800 nm, |E0| = 13.65 eV, and
E = 1.7up ≈ 20.32 eV.

shown in black, while those contributing less are in light
gray). The position of the saddle points is guided by the
close crossing points and, as we see from Fig. 4, for φ = 0
the number of contributing points is quite large. They
occur near the saddle points for the monochromatic field
case and thus the corresponding trajectory-interference
effects should be well pronounced, as for the case of a lin-
early polarized monochromatic field. Since for φ = π/2
there is only a single contributing saddle point on each
half-period of the laser field, the interference effects in
HHG spectra originating from the interference between
the partial HHG amplitudes are suppressed. Accord-
ing to the quasiclassical picture of threshold phenom-
ena [45, 46], these phenomena originate from in-phase
or out of phase interference of a large number of quan-

tum trajectories. As shown by the above analysis, for
the case of a two-color field, the number of contributing
trajectories can be controlled by changing the phase φ
from 0 to π/2, which gradually reduces the number of
interfering trajectories with increasing φ and thus grad-
ually reduces the manifestation of threshold phenomena.
This consideration explains the suppression of threshold
phenomena in Figs. 2 and 3 for comparable intensities of
the fundamental and second harmonic components of the
two-color field for a relative phase φ = π/2. We empha-
size that this explanation of the significant dependence
of threshold phenomena on the relative phase of the two-
color field is valid for both short-range and Coulomb-
like potentials, despite the fact that the shapes of the
threshold phenomena for these two potentials for φ = 0
[cf. Figs. 2(b) and 3(b)] differ significantly.

C. Quantum analysis of threshold phenomena in

the two-color field

The quantum orbit approach allows one to analyze
how the number of electron trajectories contributing to
the HHG amplitude depends on the intensities and rel-
ative phase of a two-color laser field. However, this ap-
proach is inappropriate for analyzing HHG rates near the
thresholds of multiphoton ionization channels since near
these thresholds a very large number of partial HHG am-
plitudes (associated with corresponding quantum orbits)
contribute [45, 46]. The constructive or destructive inter-
ference of partial amplitudes is governed by the phases of
these amplitudes, which are difficult to calculate analyt-
ically for a strong monochromatic laser field [45]. Such
calculations become even more complicated for the case
of a two-color field. In particular, this drawback of a
quantum trajectory analysis does not allow one to de-
scribe either the non-analytical (singular) behavior of
HHG rates near the thresholds of multiphoton ionization
channels or the dependence of HHG rates on the parity
of the multiphoton ionization channels and on the orbital
angular momentum of the initial state (see Fig. 1).
The Baz’ theory of threshold phenomena [69], which

are observed in the cross sections of open multiphoton
channel processes at the closing of the lowest open chan-
nel of a process, provides a good description of singular
features in HHG rates [43, 47, 48]. According to Ref. [69],
at the closing of the lowest open channel the behavior
of the partial cross sections in other open channels is
∝ |E−Eth|lmin+1/2, where E is the energy of an open re-
action channel, Eth is the threshold energy for the lowest
channel, and lmin is the minimal allowed orbital angular
momentum in the closing channel. The “cusp” or “step”-
like behaviors of cross sections as functions of the energy
in open channels occur for lmin = 0, while for lmin ≥ 1
the cross sections are smooth functions at E = Eth.
The simplest case for our phenomenological analysis is

that of an initial bound s-state (l = 0,m = 0). Accord-
ing to dipole selection rules, the absorption of a linearly
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polarized photon changes the orbital angular momentum
l by one (l′ = l ± 1) and keeps the magnetic projec-
tion unchanged if the polarization axis coincides with the
quantization axis (otherwise the magnetic projection is
changed by one, m′ = m ± 1). Thus the absorption of
an odd (even) number of photons changes the orbital an-
gular momentum of the active electron by an odd (even)
number. For the two-color field, an even multiphoton ion-
ization channel involves two partial channels. The first
one corresponds to the absorption of an odd number of
photons with energy 2~ω and an even number of photons
with energy ~ω. The second one corresponds to the ab-
sorption of an even number of photons with energy 2~ω
and an even number of photons with energy ~ω. The par-
tial ionization channel with absorption of an odd number
of photons with energy 2~ω may populate a continuum
state with minimal orbital angular momentum lmin = 1
(since the number of involved photons is odd), while the
second partial channel may populate an ionization chan-
nel with lmin = 0. Thus for an initial s-state the “cusp”
or “step”-like behavior of threshold phenomena should
be observed at the closing of an even parity multipho-
ton ionization channel for both even and odd harmonics
[see Figs. 1(a) and 1(b)]. The odd multiphoton ioniza-
tion channel corresponds to absorption of an odd number
of photons with energy ~ω and an arbitrary number of
photons with energy 2~ω. Since the components of a two-
color field are linearly polarized in orthogonal directions,
according to dipole selection rules, the interaction of the
active electron with these components cannot lead to an
ionization channel with l = 0 and thus the closing of an
odd multiphoton ionization channel for an initial s-state
results in a smoother (∝ |E−Eth|3/2) threshold behavior
of the HHG rates.
For an initial p-state, the “cusp” or “step”-like thresh-

old behavior of HHG rates is sensitive to both the parity
of the harmonics and the parity of the closing multipho-
ton ionization channel (see Sec. III A). In order to explain
this sensitivity, we note that the triply degenerate (in the
magnetic projection quantum number) p-state splits in a
two-color field into three states, so that each of them has
zero magnetic projection on one of the three Cartesian
coordinate axes [38] [cf. Eqs. (A10), (A11)]. The state
with zero magnetic projection on the Z-axis (ψ0, l = 1,
mz = 0) does not contribute, since the laser-induced
dipole is perpendicular to the orientation of this state.
The state having zero magnetic projection on the X-axis
(ψ−, l = 1, mx = 0) contributes significantly to the
generation of odd harmonics, while the state with zero
magnetic projection on the Y -axis (ψ+, l = 1, my = 0)
contributes to the generation of even harmonics [38]. In-
deed, the generation of odd harmonics is controlled by
the laser-induced dipole produced by the fundamental
frequency component. Owing to the orthogonality rela-
tion (eω · e2ω) = 0, the dipole producing odd harmonics
can be composed only from an odd number of vectors eω
and an even number of vectors e2ω, thus having the form:

d2N+1 = eωd2N+1, (29)

where d2N+1 is a scalar independent of an even number
of orthogonal vectors eω and e2ω, which fall out of the
problem by forming scalar products (eω · eω) = 1 and
(e2ω · e2ω) = 1. The direction of the dipole d2N+1 co-
incides with that of the X-axis and thus the state with
zero magnetic projection on the X-axis should give the
major contribution to the generation of odd harmonics.
[According to Eq. (29), the odd harmonics are linearly
polarized along the X-axis [70].] Similarly, the dipole
for even harmonics can only be composed from an odd
number of vectors e2ω and an even number of vectors eω:

d2N = e2ωd2N , (30)

where d2n is a scalar independent of the vectors eω and
e2ω. Thus the vector d2N is directed along the Y -axis and
the state ψ+ oriented along the Y -axis contributes most
to emission of linearly polarized (along the Y -axis) even
harmonics [70]. These phenomenological considerations
and the general results (29) and (30) for HHG dipoles
agree with analytic results of the TDER model presented
in Appendix A. Moreover, since the results (29) and (30)
for the directions of the HHG dipoles are valid for both
threshold-enhanced and “regular” harmonics, the thresh-
old phenomena we analyze do not affect the polarization
properties of the harmonics.
The occurrence of threshold phenomena for an initial

p-state may be summarized as follows. According to
dipole selection rules, if the active electron is in the ψ−

state (l = 1, mx = 0), a multiphoton transition into a
channel with zero magnetic projection (mx = 0) is possi-
ble in general only if the electron absorbs an even number
of photons with polarization vector e2ω (oriented along
the Y -axis) and any number of photons with polarization
vector eω. For HHG, according to Eq. (29), the number
of photons with polarization vector eω should be odd.
Finally, for an initial p-state, a multiphoton ionization
channel with l = 0 can be populated only if the number
of absorbed photons is odd. As a result, the closing of
an odd multiphoton ionization channel leads to cusp- or
step-like behavior of the HHG rates for odd harmonics.
Similar considerations show that for an active electron
in a ψ+ - state (l = 1, my = 0), the absorption of an
even number of ~ω photons and an odd number of 2~ω
photons makes possible the population of a continuum
channel with l = 0. Thus singularities in the HHG rates
of even harmonics are observed at the closing of an even
multiphoton ionization channel.

IV. SUMMARY

In this work we have studied threshold phenomena in
HHG spectra produced by a two-color laser field, whose
two components (with frequencies ω and 2ω) are linearly
polarized in orthogonal directions. Our TDER analysis
shows that in the case of a weak second harmonic com-
ponent and an initial s-state, the threshold anomalies
(such as the “cusp” or “step-like” behavior of HHG rates)
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are more pronounced near those thresholds of multipho-
ton ionization channels that correspond to even values of
the channel-closing number R. Thus the threshold be-
havior of HHG rates for a two-color field and an initial
s-state is similar to that for the case of a linearly po-
larized single-component field [43, 47]. However, for a
p-state we have found that even harmonics have singu-
lar “cusp” or “step-like” behavior near those multipho-
ton ionization channels that correspond to even values
of R, while for odd harmonics such singularities are ob-
served at the closing of multiphoton ionization channels
with odd channel-closing numbers (as for the case of a
linearly polarized monochromatic field [47]). This sensi-
tivity of the threshold behavior of HHG rates to the par-
ity of multiphoton ionization channels is associated with
the formation (from sub-states of the triply degenerate
p-state) of the two states, ψ− and ψ+, whose magnetic
projections on the polarization vectors eω and e2ω of the
two-color field components are respectively equal to zero
[cf. Eq. (A10)]. Based on dipole selection rules, we have
shown that a two-color laser field can populate multipho-
ton ionization channels with zero orbital momentum of
the ionized electron in alternative ways. For even har-
monics this is realized in even multiphoton ionization
channels and for odd harmonics in odd channels. Thus,
according to the general analysis of threshold phenom-
ena [69], the closing of the corresponding channel leads
to cusp- or step-like features in the intensity dependence
of HHG rates.

In contrast to the case of a weak second harmonic
component, for which the threshold singularities in HHG
rates are not sensitive to the relative phase φ between
the components of a two-color field, threshold anoma-
lies for the case of comparable intensities of both compo-
nents are highly sensitive to the relative phase. As our
analysis shows, for the phase φ = πn (where n is an in-
teger) the threshold phenomena are similar to those in
HHG spectra for the case of a weak second harmonic
component. However, for the phase φ = π/2 + πn,
the threshold phenomena in HHG spectra disappear, so
that the intensity dependence of HHG rates in this case
at the closing of multiphoton ionization channels is de-
scribed by smooth curves [cf. Figs. 2(b) and 3(b)]. This
suppression of threshold singularities in two-color HHG
spectra as the relative phase changes from φ = πn to
φ = π/2 + πn originates from a decreased number of
quantum trajectories whose properties (times of ioniza-
tion and recombination) are close to those for classically-
allowed closed trajectories in a single-component laser
field. (The “closeness” of the quantum trajectories to
the classical trajectories minimizes the imaginary part
of the classical action along these trajectories and en-
sures a large number of contributing trajectories, whose
interference at the multiphoton thresholds forms thresh-
old singularities [45, 46].) For the two-color field we have
considered, the phase φ = nπ ensures more favorable
conditions, for which the quantum orbits are closer to
the classical ones. In contrast, for φ = π/2 + πn, there

is only one trajectory contributing on each half-period
of the two-color field; all others are suppressed due to
the large imaginary part of the classical action, i.e., due
to suppression of the ionization factors. Thus, threshold
peculiarities do not appear. Finally, we note that thresh-
old phenomena in above-threshold ionization (ATI) in a
two-color field are also modified as compared to the case
of ATI in a single-frequency field. However, the specifics
of threshold phenomena in such a two-color ATI process
require a separate, detailed analysis.
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Appendix A: TDER model HHG amplitudes and

rates

In this Appendix we present the explicit form for the
HHG dipole in the strong field approximation (SFA) for
s and p-states of a bound electron. Similarly to the case
of a monochromatic field, our calculations show that for
a low-frequency two-color field (ω ≪ |E0|), the SFA re-
sults in the TDER model are in good agreement with
exact (numerically calculated) TDER results. Thus we
present the corresponding HHG dipoles in the SFA. We
emphasize that for any initial bound state the dipole for
odd harmonics is defined by its X-axis projection, while
the y-projection of the HHG dipole is equal to zero. For
even harmonics, the Y -axis component of the HHG dipole
is non-zero, while the X-axis component is zero.

1. HHG amplitudes and rates for an initial s-state

For an s-state with energy E0 = −κ2/2, the HHG
amplitude for odd harmonics (Ω = Nω, N = 2n+ 1) for
the two-color field (1) has the form:

d
(x)
2n+1 = N0

∫ ∞

0

eiλ(τ)

τ3/2

[

j
(1)
− (τ)Cn(τ ;φ)

−ij(1)+ (τ)Cn+1(τ ;φ)
]

, (A1)

while for even harmonics (N = 2n+ 2) the result is:

d
(y)
2n+2 =

βN0

2

∫ ∞

0

eiλ(τ)

τ3/2

[

e−iφj
(2)
− (τ)Cn(τ ;φ)

+eiφj
(2)
+ (τ)Cn+2(τ ;φ)

]

, (A2)
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where

N0 = in+1/2 κCκ0F

4Ω2
√
πω

, ǫ = − κ2

2up
− 1, (A3)

λ(τ) =
2up
ω

[

ǫτ +
sin2(τ)

τ
+ β2 sin

2(2τ)

16τ

]

, (A4)

j
(s)
± =

sin(sτ) sin(Nτ)

sτ
− N

N ± s
sin[(N ± s)τ ],(A5)

CM (τ ;φ) =

∞
∑

m=−∞

i−mJM−2m (z1)

×Jm
(

β2

8
z2

)

e−2imφ, up =
F 2

4ω2
, (A6)

zs =
up
ω

[

sin(2sτ)− 2
sin2(sτ)

sτ

]

, (A7)

Jk(z) is the Bessel function, and Cκl is the coefficient in
the asymptotic form of the radial wave function Rκl(r)
for the bound state of an electron with energy E0 and
angular momentum l in a short-range potential:

Rκl(r ≫ κ−1) = Cκlr
−1 exp(−κr). (A8)

The HHG rate for an s-state is given by the expression:

RN =
Ω3|dN |2
2πc3

, (A9)

where dN = eωd
(x)
2n+1 for odd harmonics and dN =

e2ωd
(y)
2n+2 for even harmonics.

2. HHG amplitudes and rates for an initial p-state

In a two-color field with orthogonal linear polariza-
tions, instead of the common description of a triply de-
generate p-state in terms of three substates with differ-
ent projections of the orbital momentum on the Z-axis
(m = 0 and ±1) it is convenient to introduce three other
substates, which correspond to zero magnetic quantum
numbers on the X- (ψ−), Y - (ψ+), and Z-axes(ψ0):

ψ±(r) = ϕκl(r)[Y1,1(r̂)± Y1,−1(r̂)], (A10)

ψ0(r) = ϕκl(r)Y1,0(r̂), (A11)

where ϕκl(r) is the radial wave function. Below we
present only the HHG dipoles for the ψ±-states, since
the contribution of the ψ0-state is negligibly small [since
this state is “oriented” orthogonally to the field F(t)].
Thus the total HHG rate RN for a p-state is given by a
sum of partial rates for the states ψ±:

RN =
1

3

(

R(−)
N +R(+)

N

)

, (A12)

R(±)
N =

Ω3|d(±)
N |2

2πc3
. (A13)

a. HHG amplitude for the ψ+-state

For the case of odd harmonics: N = 2n + 1, d
(+)
N =

eωd
(x)
2n+1,

d
(x)
2n+1 = N1

∫ ∞

0

eiλ(τ)

τ3/2

{

1

2τ

[

j
(1)
− (τ)Cn(τ ;φ)

−ij(1)+ (τ)Cn+1(τ ;φ)
]

+
upβ

2

2ω

[

ij
(1)
− (τ)Λ(2)

n (τ ;φ)

+j
(1)
+ (τ)Λ

(2)
n+1(τ ;φ)

]}

. (A14)

For the case of even harmonics: N = 2n + 2, d
(+)
N =

e2ωd
(y)
2n+2,

d
(y)
2n+2 =

βN1

2

∫ ∞

0

eiλ(τ)

τ3/2

×
{

1

2τ

[

e−iφj
(2)
− (τ)Cn(τ ;φ) + eiφj

(2)
+ (τ)Cn+2(τ ;φ)

]

+i
upβ

2

2ω

[

e−iφj
(2)
− (τ)Λ(2)

n (τ ;φ) + eiφj
(2)
+ (τ)Λ

(2)
n+2(τ ;φ)

]

+N
[

e−iφv
(2)
− Cn(τ ;φ) + eiφv

(2)
+ Cn+2(τ ;φ)

]}

, (A15)

where

N1 = −in+1/2 3Cκ1F

4κΩ2

√

ω

π
, (A16)

Λ(s)
q (τ ;φ) = v

(s)
− Cq(τ ;φ) −

1

2
v
(s)
+ is

[

e2i(s−1)φCq+s

+(−1)se−2i(s−1)φCq−s

]

, (A17)

v
(s)
± =

(

sin(sτ)

sτ
− cos(sτ)

)

×
(

sin(Nτ)

Nτ
− cos(Nτ)

)

± sin(Nτ) sin(sτ). (A18)

b. HHG amplitude for the ψ
−
-state

For the case of odd harmonics: N = 2n + 1, d
(−)
N =

eωd
(x)
2n+1,

d
(x)
2n+1 = N1

∫ ∞

0

eiλ(τ)

τ3/2

{

1

2τ

[

j
(1)
− (τ)Cn(τ ;φ)

−ij(1)+ (τ)Cn+1(τ ;φ)
]

+ 2
up
ω

[

ij
(1)
− (τ)Λ(1)

n (τ ;φ)

+j
(1)
+ (τ)Λ

(1)
n+1(τ ;φ)

]

+N
[

v
(1)
− Cn(τ ;φ)

−iv(1)+ Cn+1(τ ;φ)
]}

, (A19)
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For the case of even harmonics: N = 2n + 2, d
(−)
N =

e2ωd
(x)
2n+2,

d
(y)
2n+2 =

βN1

2

∫ ∞

0

eiλ(τ)

τ3/2

{

1

2τ

[

e−iφj
(2)
− (τ)Cn(τ ;φ)

+eiφj
(2)
+ (τ)Cn+2(τ ;φ)

]

+ 2i
up
ω

[

e−iφj
(2)
− (τ)Λ(1)

n (τ ;φ)

+eiφj
(2)
+ (τ)Λ

(1)
n+2(τ ;φ)

]}

. (A20)
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gos, Control of temporal mapping and harmonic inten-
sity modulation using two-color orthogonally polarized
fields, Phys. Rev. A 89, 023423 (2014).

[31] Y. Zheng, H. Diao, Z. Zeng, X. Ge, R. Li, and Z.
Xu, Manipulating electron-ion recollision in a midin-
frared laser field, Phys. Rev. A 92, 033417 (2015).

[32] D. Shafir, Y. Mairesse, H. J. Wörner, K. Rupnik, D. M.
Villeneuve, P. B. Corkum, and N. Dudovich, Probing
the symmetry of atomic wavefunctions from the point of
view of strong field-driven electrons, New J. Phys. 12,
073032 (2010).

[33] H. Niikura, N. Dudovich, D. M. Villeneuve, and P. B.
Corkum, Mapping molecular orbital symmetry on high-
order harmonic generation spectrum using two-color laser
fields, Phys. Rev. Lett. 105, 053003 (2010).

[34] H. Niikura, H. J. Wörner, D. M. Villeneuve, and P. B.
Corkum, Probing the spatial structure of a molecular
attosecond electron wave packet using shaped recollision
trajectories, Phys. Rev. Lett. 107, 093004 (2011).

[35] L. Brugnera, F. Frank, D. J. Hoffmann, R. Torres, T.
Siegel, J. G. Underwood, E. Springate, C. Froud, E. I. C.
Turcu, J. W. G. Tisch, and J. P. Marangos, Enhance-
ment of high harmonics generated by field steering of
electrons in a two-color orthogonally polarized laser field,
Opt. Lett. 35, 3994 (2010).

[36] H. Soifer, M. Dagan, D. Shafir, B. D Bruner, M. Yu.
Ivanov, V. Serbinenko, I. Barth, O. Smirnova, and N.
Dudovich, Spatio-spectral analysis of ionization times in
high-harmonic generation, Chem. Phys. 414, 176 (2013).

[37] J. Zhao and M. Lein, Determination of ionization and
tunneling times in high-order harmonic generation, Phys.
Rev. Lett. 111, 043901 (2013).

[38] T. S. Sarantseva, M. V. Frolov, N. L. Manakov, M. Yu.
Ivanov, and A. F. Starace, Harmonic generation spec-
troscopy with a two-colour laser field having orthogonal
linear polarizations, J. Phys. B 46, 231001 (2013).

[39] J. Cooper and R. N. Zare, Photoelectron angular dis-
tributions, in Lectures in Theoretical Physics, Vol. XI-C,

edited by S. Geltman, K. T. Mahanthappa, and W. E.
Britten (Gordon and Breach, New York, 1969), pp. 317-
337.

[40] M. Kitzler and M. Lezius, Spatial control of recollision
wave packets with attosecond precision, Phys. Rev. Lett.
95, 253001 (2005).

[41] J. Higuet, H. Ruf, N. Thiré, R. Cireasa, E. Constant,
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