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Abstract

The dynamics of closed quantum systems may be manipulated by using an applied field to

achieve a control objective value for a physical goal. The functional relationship between the

applied field and the objective value forms a quantum control landscape, and the optimization

process consists of a guided climb up the landscape from the bottom to the top. Two classes

of landscape features are important for understanding the ease of finding an optimal control

field. The first class of topological landscape features have been proven to be especially simple

in that no suboptimal local maxima exist (upon satisfaction of certain assumptions), which

partially accounts for the ease of finding optimal fields. Complementary to the topology, the

second class of features entails the landscape structure, characterizing the sinuous nature of the

paths leading to an optimal control field. Previous work found that landscape structure is also

particularly simple, as excursions up the landscape guided by a gradient algorithm correspond

to nearly straight paths through the space of control fields. In this paper we take an alternative

approach to examining landscape structure by constructing, and then following, exactly straight

trajectories in control space. Each trajectory starts at a corresponding point on the bottom

of the landscape and ends at an associated point on the top, with the observable values taken

either as the state-to-state transition probability, the expectation value of a general observable,

or the distance from a desired unitary transformation. In some cases the starting point is at

a sub-optimal critical point saddle with the goal again of following a straight field path to the

optimal objective yield or another sub-optimal critical point. We find that the objective value
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almost always rises monotonically upon following a straight control path from one critical point

to another, which shows that landscape structure is very simple, being devoid of rough bumps

and gnarled “twists and turns”. An analysis reveals that the generally featureless nature of

quantum control landscapes can be understood in terms of the occurance of many interfering

quantum pathways contributing while traversing the landscape, essentially smoothing out the

terrain. These results also provide a basis for further studies to seek a new efficient algorithm

to discover optimal fields by means of taking into account the inherently smooth landscape

structure.

1 Introduction

Quantum optimal control theory (OCT) [1, 2] has provided a foundation for the increasing success

of quantum control experiments [3]. Typically, these experiments involve adjusting the form of

an applied field under algorithmic guidance to produce the desired system performance. Recent

successes include manipulating population dynamics in Bose-Einstein condensates [4], controlled

ionization of silver atoms [5], minimizing the defects created in a quantum phase transition [6],

and coherently transporting energy in light-harvesting complexes [7], amongst many other appli-

cations. Closed-loop learning algorithms [8] directing pulse-shapers [9] have allowed for finding

optimal control fields with only modest experimental effort. Theoretical analysis bolstered by sim-

ulations [10] attribute the ease of finding effective controls to the nature of the underlying quantum

control landscape [11], which is the physical observable as a functional of the control field. The

present work employs simulations and carries out additional analysis to show that quantum control

landscapes appear exceptionally smooth. This finding provides the basis for ultimately creating

especially efficient optimal control algorithms.

We consider a closed N level quantum system driven by a time-dependent field E(t), t ∈ [0, T ].

In the dipole approximation, the system is described by the Hamiltonian

H(t) = H0 − µE(t), (1)

where H0 is a diagonal matrix representing the field-free Hamiltonian and µ is the dipole moment

matrix. The system evolves according to the unitary matrix U(t) ≡ U(t; 0), which satisfies the

Schrödinger equation

i~
∂U(t, 0)

∂t
= H(t)U(t, 0), U(0, 0) = 1. (2)
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The desired control objective J expressed as a function of the final propagator U(T ) specifies a cost

functional J [E(·)] forming a quantum control landscape, which associates a value of J with every

control field. In this work we will consider either the state-to-state transition probability land-

scape Jif = Pi→f = |〈f |U(T ) |i〉|2, the quantum ensemble control landscape JO = Tr (ρ(T )O) =

Tr
(

U(T, 0)ρ(0)U †(T, 0)O
)

, or the unitary transformation landscape JW = ‖W − U(T )‖2 = 2N −

2Re{Tr
(

W †U(T )
)

}, relevant for quantum information processing [12]. Here |i〉 and |f〉 are eigen-

states of H0, ρ(0) is the initial density martrix of the ensemble, W is a unitary matrix, and ‖·‖

denotes the Frobenius norm. Starting from an arbitrary control field, one may optimize a particular

cost functional J using a suitable algorithm, such as the D-MORPH [13] gradient-based procedure.

Using this algorithm, the form of the field will morph along a landscape gradient ascent trajec-

tory, and we conveniently introduce a variable 0 ≤ s ≤ smax which parametrizes the control field

E(t) → E(s, t) to follow its form as a function of t, as s is systematically increased. The goal is to

find a field E(smax, t) that produces a high quality outcome at s = smax located acceptably close to

the optimal value of the landscape. In this fashion an optimization can be viewed as generating a

corresponding trajectory through control space, starting from the initial field E(0, t), which yields

a low value of J , and then reaching to the final field E(smax, t) providing the nearly optimal value

of J .

Previous work found that when certain conditions are satisfied, the topology of the transition

probability control landscape Pi→f (T ) is especially amenable to finding an optimal quantum con-

trol, in that all critical points, or control fields E(t) for which
δPi→f

δE(t) = 0 ∀t ∈ [0, T ], are located at

either the bottom or the top of the landscape. In particular, this statement is valid, regardless of

whether the quantum system of interest is degenerate or not, whenever the following three basic

assumptions are satisfied: (i) the quantum system is controllable, (ii) the functional derivatives

δUij(T )
δE(t) ∀i, j are linearly independent functions of time t ∈ [0, T ], and (iii) the controls are not

constrained. Upon satisfaction of these assumptions (i.e., sufficient conditions), a gradient-based

algorithm will always achieve the maximum value of the cost functional starting from any initial

field [11, 14, 15]. Under the same assumptions, analogous studies of the landscape for JO and JW

show similar favorable topology including non-trapping saddle features at particular intermediate

elevations on these landscapes. In addition, the structure of the control landscape, which refers to

features other than the critical points, can play an important role in determining the efficiency of
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an algorithm (e.g., a local gradient procedure) for climbing the landscape. Highly complex land-

scape structure could force the algorithmically guided trajectory to take a circuitous path up the

landscape (and through control space), making optimally controlling quantum systems a demand-

ing task. However, recent studies using the gradient algorithm found that landscape structure is

very simple as manifested by R values near 1.0 [17, 18, 19], where R = dPL/dEL (≥ 1) is the ratio

of a control trajectory’s path length dPL to the Euclidean distance between its endpoints, dEL,

respectively, defined as

dPL =

∫ smax

0

[

1

T

∫ T

0

(

∂E(s, t)

∂s

)2

dt

] 1

2

ds, (3)

and

dEL =

[

1

T

∫ T

0
[E(smax, t)− E(0, t)]2 dt

]

1

2

. (4)

For a state-to-state transition probability control landscape [18], as well as for quantum ensemble

and unitary control landscapes [19], it was found that R generally took on values less than 2.0 for

gradient-guided control trajectories, starting from the bottom and ending at the top of the land-

scape (i.e., the notion of “bottom” and “top”, respectively, refer to the worst and best values of J ,

according to the application). Indeed, control trajectories were even found for which R− 1 ∼ 10−3

in some cases. Thus, these works reveal that quantum control landscapes admit a preponderance of

nearly straight gradient-based monotonic trajectories (here, monotonicity is assured by the gradient

algorithm) when going from the bottom to the top.

In this work, we further explore landscape structure by putting aside the gradient algorithm

and its assured monotonicity of J and consider the converse situation of following exactly straight

trajectories through control space with R = 1.0, while then assessing the degree to which J changes

monotonically. In this situation, if we find exactly straight control trajectories also being frequently

accompanied by monotonicity (or even near monotonicity) of J , then this occurrance would further

demonstrate the presence of very smooth and simple landscape structural features. Performing this

assessment is facilitated by prior control landscape analyses revealing the existence of submanifolds

of controls at the bottom or top of the landscape [14, 15]. Figure 1 depicts portions of these two

critical submanifolds in control space and shows a curved trajectory (in thick green color) created

by a gradient algorithm resulting in R > 1, while monotonically climbing the landscape. Also

shown in Figure 1 are straight trajectories (in red color), all satisfying R = 1, in control space
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connecting arbitrary points on the bottom and top submanifolds, thereby linking the lowest and

highest values on the landscape. By examining large collections of randomly chosen straight paths

between the bottom, top, as well as intermediate control submanifolds associated with quantum

control landscapes, we will show that a plurality of these paths produce monotonically increasing

values of J . One may liken this approach to assessing landscape smoothness as akin to taking a

helicopter ride over the Rocky Mountains, while flying along a straight level path, and observing

the height of the mountains directly below on the excursion. Naturally, the observer on such an trip

would generally report terrain of repeatedly rising and falling height encountered along the ride.

Similarly, the expectation is that following an analogous straight ‘flight’ (path) through control

space would encounter extended rising and falling J values on the way from the bottom to the

top of the landscape. Expressed in such terms, our observation in Section 3 of only relatively few

lapses of monotonicity in most cases, and modest variation from monotonicity in the remaining

cases, bolsters the evidence for the existence of unexpectedly simple quantum control landscape

structure. This finding does not in and of itself provide a simple constructive ‘straight shot’ control

algorithm, as the results in this paper rest on exploiting prior identification of the controls with

J values corresponding to the bottom and top of the landscape. However, our findings suggest

that an efficient algorithm may exist, specifically honed for quantum control, which can exploit the

generally smooth nature of control landscapes. The present paper lays the foundation for future

research along this line.

The remainder of the paper is organized as follows. Section 2 explains how the randomly chosen

straight control paths are constructed, and Section 3 furnishes illustrations of the landscape behav-

ior upon following such paths. Section 4 contains a discussion and conclusions. Finally, Appendix

A presents a statistical argument to explain the observed smooth features of the landscapes which

arise when many interfering pathways contribute to the control mechanism involved.

2 Straight field paths

The trajectories we consider in this work are straight paths in control space, where each path

begins at a field EI(t) producing a low (or poor) initial value of the cost function Jif = Pi→f on

the landscape and ends at a final field EF (t) producing a corresponding high (or good) value of Jif .

These paths are parameterized by a variable 0 ≤ v ≤ 1 (i.e., equivalent to s discussed above, but
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referred to as v here to distinguish the exactly straight paths from the gradient guided trajectories),

so that each path is defined by

E(v, t) = (1− v)EI(t) + vEF (t) (5)

where J [EI(·)] = JI and J [EF (·)] = JF . We also considered analogous cases for trajectories

between critical points (including the bottom and top) for JO and JW ; a critical point is where

the first derivative of the landscape cost function, with respect to the field, is zero. To generate

a straight trajectory, we first choose two random control fields, E1(0, t) and E2(0, t), and use

D-MORPH to continuously adjust each field until they respectively reach J [E1(smax1
, t)] = JI

and J [E2(smax2
, t)] = JF , where smaxi

is the appropriate final value of s in each case needed to

respectively reach either JI or JF . We then set EI(t) = E1(smax1
, t) and EF (t) = E2(smax2

, t) for

use in Eq. (5), and the process is repeated many times to create a family of controls lying as a set

of points on the bottom and top submanifolds (or specified critical points for JO and JW ). There

is no special relationship between the fields EI(t) and EF (t), as they are all randomly chosen as

pairs from the two respective manifolds. Each of the random fields is constructed starting with

E(t) =
1

F0
exp[−0.3(t − T/2)2]

M
∑

n=1

an sin(ωnt+ φn), (6)

where T = 10, and the amplitudes an and phases φn are chosen randomly from the uniform

distributions [0, 1] and [0, 2π], respectively. M is set to 20, with the frequencies being ωn = n, so

that the initial control field contains frequencies that coincide with every transition in the systems

given by H0 in Eqs. (7) and (11). The normalization factor F0 is set for each random field to

ensure that it has unit fluence. Each initial field chosen in Eq. (6) is then directed by the D-

MORPH algorithm to either go to the bottom submanifold or the top submanifold. This process

was performed by discretizing the initial random field in Eq. (6) into 104 time points, with the field

strength at these points being the control variables used by D-MORPH and in subsequent straight

paths through control space using Eq. (5). Typically, 500 field pairs corresponding to points on the

initial and final critical submanifolds were found. Arbitrary units are used in the simulations, and

T is the final time at which J is evaluated.
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3 Results

3.1 State-to-state transition probability landscape

We now provide numerical illustrations probing landscape structure revealed by following exactly

straight field paths with Eq. (5). The state-to-state transition probability landscape in this work

is associated with the Hamiltonian in Eq. (1) where

H0 =























−10 0 0 0 0

0 −7 0 0 0

0 0 −3 0 0

0 0 0 2 0

0 0 0 0 8























(7)

and

µ =























0 ±1 ±0.5 ±0.52 ±0.53

±1 0 ±1 ±0.5 ±0.52

±0.5 ±1 0 ±1 ±0.5

±0.52 ±0.5 ±1 0 ±1

±0.53 ±0.52 ±0.5 ±1 0























. (8)

The signs of the dipole matrix elements were chosen randomly such that the matrix remained

symmetric, and then were fixed for all the simulations. We remark that the diagonal elements of

Hamiltonian H0 are rather arbitrarily chosen, and the falloff of the dipole coupling in µ is physically

reasonable as the levels become further separated. Our extensive numerical studies revealed little

impact on the landscape features for reasonable variations of H0 and µ. Figure 2 displays the value

of P1→5(v) on the landscape as a function of v in Eq. (5) for a collection of 500 random straight

control space paths that were constructed using the procedure set out in Section 2. The paths begin

with initial fields E(0, t) all producing P I
1→5 = 10−4, which approximates the bottom submanifold

of the landscape, and terminate at a height of PF
1→5 = 0.99, which is considered to be an acceptably

high yield. Remarkably, the paths appear to be monotonic. However, the inset of Figure 2 shows

that approximately 45% of the trajectories initially proceed to lower values of P1→5 < 10−4; for

this set of trajectories, these “dips” only occur at in the beginning, at extremely low values on the

landscape.
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Since the non-monotonic behavior in Figure 2 occurs only near the initial submanifold where

P I
1→5 = 10−4 on the landscape, it is natural to consider the outcome of changing the starting

and ending values P I
1→5 and PF

1→5, respectively. We carried out simulations using similar values

of P I
1→5 but very different values of PF

1→5 (data not shown), which revealed that the degree of

monotonicity found along a straight control path is not affected by the choice of PF
1→5. However, it

was found that starting at larger initial values of P I
1→5 resulted in deeper dips like those in the inset

of Figure 2. These collective results imply that we may specify the final submanifold corresponding

to any desired high value of PF
1→5 and focus attention on taking the initial yield to its extreme limit

of P I
1→5 = 0.

As a step towards this latter limit, we performed additional simulations where P I
1→5 was further

reduced (i.e., below 10−4 in Figure 2), and as a result fewer trajectories were found to exhibit non-

monotonic behavior (not shown here). Note that the climb down from randomly chosen suboptimal

landscape levels at the initial value s = 0 to the near landscape bottom is very fast, indicative of

the structure being smooth in the lower portion of the landscape. We then considered the extreme

case of an initial field EI(0, t) = 0, which produces P I
1→5 ≡ 0, and collected 500 straight paths

where each final field EF (t) corresponded to the value PF
1→5 = 0.99. Utilizing these fields in Eq. (5)

with EI(0, t) = 0 produced the results shown in Figure 3, where all of the straight field paths led

to P1→5(v) proceeding monotonically up the landscape (we have verified this behavior by checking

for satisfaction of the inequality dP1→5

dv
=
∫

δP1→5

δE
∂E
∂v

dt > 0 at fine steps in v for all of the paths).

We note as well for this class of straight field paths that E(v, t) = vEF (t) is simply amplitude

modulation, 0 ≤ v ≤ 1, but with the field form EF (t) containing complex positive and negative

features arising from the sum in Eq (6). The results in Fig. (2), even with its small deviation from

monotonicity, and Fig. (3), showing strict monotonicty, imply that the Pi→f landscape is very

smooth.

3.2 Quantum ensemble control landscape

The bottom and top submanifolds are the only critical points of the Pi→f landscape. In contrast,

the quantum ensemble control landscape JO generally possesses intermediate saddle critical sub-

manifolds [16]. Thus, we consider quantum ensemble control in order to determine the effect of
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these saddle submanifolds on the monotonicity of a landscape climb upon following straight field

paths. We again utilize the Hamiltonian and dipole matrices of Eqs. (7) and (8), and specify the

initial density matrix

ρ =























1
3 0 0 0 0

0 1
3 0 0 0

0 0 1
5 0 0

0 0 0 1
15 0

0 0 0 0 1
15























(9)

with the observable

O =























0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1
2 0

0 0 0 0 1
2























. (10)

These matrices were chosen so that the null field EI(t) = 0 corresponds to a point located at the

bottom of the control landscape, where JO = Tr (ρO) = 1/15 ∼ 0.06. As in the previous section, we

optimize JO to the value 124
375 ∼ 0.331 (the absolute maximum value is 1

3) by starting with randomly

chosen control fields in Eq. (6) to obtain 500 final fields EF (t). The observable value JO along 500

straight paths between the null control field and random final fields is plotted in Figure 4. All of

the paths show that JO rises monotonically, indicating that the presence of intermediate critical

submanifolds (at observable values of JO = 2/15, 3/15, and 4/15) does not alter the conclusions of

the previous section.

We also addressed the circumstances of taking straight field paths which correspond to beginning

at an intermediate critical submanifold. This goal may be achieved by altering the order of the

initial eigenvalues of ρ. In particular, we stipulate a new initial density matrix which arises from

a permutation which swaps the third and last diagonal elements of ρ to form ρ′. With ρ′ and

EI(t) = 0 the initial value of the ensemble observable is JO = 2
15 , which is a saddle submanifold.

In Figure 5, we display JO associated with 500 straight field paths of the form E(v, t) = vEF (t)

where each final field EF (t) was determined by the procedure in Section 2. All of the paths are

again monotonic, thus suggesting that straight field paths to the top of the landscape need only

begin on a critical submanifold to monotonically climb the landscape.
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A final investigation pertains to whether straight field paths between two intermediate saddle

submanifolds are also monotonic in the observable value JO. To answer this, we altered ρ again in

Eq. (9) with a permutation matrix which swaps the first and last diagonal elements of ρ to form

ρ′′. As a result, the final objective is to reach JO = Tr (ρ′′O) = 3
15 which is a saddle submanifold.

The initial state is again ρ′ such that JO = Tr (ρ′O) = 2
15 starts out as a saddle submanifold with

EI(t) = 0. The control fields are all of the form E(t) = vEF (t) where EF (t) is found using the

procedure of Section 2 to reach the final saddle submanifold. In order to assure that JO = 3
15 is

actually a saddle, the target cost was ‖ρ[EF (t)] − ρ′′‖. Figure 6 displays JO associated with 500

straight field paths between two saddle submanifolds. Not all of the paths are monontonic in JO,

so the results suggest that, for the quantum ensemble control landscape, if both endpoints of a

straight field path correspondingly connect two intermediate saddle submanifolds, then JO shows

modest deviations from monotonicity.

3.3 Unitary transformation landscape

The unitary transformation landscape JW also possesses intermediate saddle critical submani-

folds [20]. We considered straight field paths for a unitary transformation landscape using the

Hamiltonian and dipole matrices

H0 =





























−10 0 0 0 0 0

0 −7 0 0 0 0

0 0 −3 0 0 0

0 0 0 2 0 0

0 0 0 0 8 0

0 0 0 0 0 15





























(11)

and

µ =























0 ±1 ±0.5 ±0.52 ±0.53 ±0.54

±1 0 ±1 ±0.5 ±0.52 ±0.53

±0.5 ±1 0 ±1 ±0.5 ±0.52

±0.52 ±0.5 ±1 0 ±1 ±0.5

±0.53 ±0.52 ±0.5 ±1 0 ±1























. (12)

For JW = ‖W − U(T )‖2 the worst field will produce the transformation U(T ) = −W such that

JW = 4N = 24 in the present circumstance with N = 6. The choice for W was picked as
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W = −UI(T ) where UI(T ) was generated from a random field EI(t) of the form in Eq. (6). A

set of 500 optimal fields EF (t) were generated by the procedure in Section 2 seeking the final cost

JW [EF (t)] = 0.01× 4N = 0.24. Straight trajectories through control space were then generated by

Eq. (5). The associated values of JW along these straight control paths are shown in Figure 7. As

in Figure 3, all of the straight field paths produce monotonic trajectories JW (v), and show no hint

of being influenced by saddle submanifolds occurring at values of JW = 4, 8, 12, and 16.

By finding a suitable initial field EI(t) such that the straight field path begins at a saddle

submanifold, we can further inquire whether straight trajectories beginning at a saddle point and

ending at the bottom of the landscape (the optimal value taken here is 0.01 × 4N = 0.24) are

also monotonic in JW . By specifying W = UI(T ) ∗X, where UI(T ) is defined as in the preceding

paragraph as generated from the random field EI(t) and X = diag(−1,−1,+1,+1,+1,+1), we

ensure that the randomly selected field EI(t) lies on a saddle point [20] with

JW = 2N − 2Re
{

Tr
(

XU †
I (T )UI(T )

)}

= 8.

Figure 8 displays JW along 500 straight field paths beginning at this saddle submanifold with the

field EI(t) and ending near the optimal value of the landscape following the procedure in Section

2 to generate the optimal fields EF (t). All of the trajectories on the landscapes are still monotonic

in JW .

Finally, we assessed whether straight field paths between two saddle submanifolds also pro-

duce monotonic paths for JW (v). In this case, after choosing the random initial field EI(t),

we specify W = UI(T ) ∗ Y , where UI(T ) is generated from EI(t) as described above and Y =

diag(−1,−1,−1,−1,+1,+1). As a result, the initial field EI(t) lies on a saddle submanifold with

JW = 2N − 2Re
{

Tr
(

Y U †
I (T )UI(T )

)}

= 16.

Then, we generate a set of 500 optimal fields EF (t) by starting with random fields according to

Eq. (6) and seeking to minimize the modified cost function J ′
W = ‖W ∗Y ∗X−U(T )‖2, where X is

defined as in the previous paragraph. As a result the final fields EF (t) lie on a saddle submanifold

with

JW = 2N − 2Re
{

Tr
(

XY Y U †
I (T )UI(T )

)}

= 8.

In Figure 9, we plot JW along 500 straight paths between these two saddle submanifolds. Although

a preponderance of the paths are monotonic, there are clearly several which fall below the initial
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value of JW = 8. It is noted that the results in Figures 7-9 each correspond to assessing features on

a statistically chosen family of landscapes, as distinct values ofW were generated for each trajectory.

4 Discussion and conclusions

This paper showed that nearly all the exactly straight paths in control space taking the yield from

close to the bottom of the landscape to the top correspond to monotonically increasing climbs.

Furthermore, when critical saddle submanifolds exist and can be exactly accessed, straight paths

in control space between saddle generating fields and the top are still monotonic in the yield, and

are not influenced by the other critical submanifolds. However, it was found that straight paths

between fields starting and ending at saddles showed a preponderance of monotonic behavior, along

with some modest deviations. Even the trajectories showing the highest degree of non-monotonic

behavior reflect merely gentle landscape features (i.e., typically at most a single small dip or rise

deviation from monotonicity was present in these cases, as evident in Figs. (6) and (9)). These

findings appear surprising, as the quantum control landscape is defined over a high dimensional

control space and encapsulates a generally very nonlinear relationship between the control field and

the cost function.

The collective observations from the simulations of this work bolster prior studies showing that

paths taken up the landscape guided by a gradient algorithm (and thus guaranteed to be monotonic

in the objective value) corresponded to nearly straight trajectories through control space giving R

close to 1.0 [17, 18, 19]. The present work gives a complimentary perspective on landscape structure

by following exactly straight control field trajectories and then finding that the objective value was

almost always monotonic if the trajectories connected critical submanifolds including the bottom

and top of the landscape. These dual perspectives are both reflective of the existence of dramatically

simple landscape structure. Appendix A establishes a statistical basis to understand the observed

general smoothness of the landscape by considering the multiple interfering pathways that often

arise in reaching the desired objective. In this regard, the analysis performed in Appendix A for

Pi→f and Tr (ρO) is distinct from considering ‖W − U‖2, but the conclusion in all cases is to

generally expect monotonic variation of the objective upon taking a straight path in control space.

The analysis involved is statistical, and as such some deviation from monotonicity could still occur,

12



as found in the simulations.

We remark again that all the studies in this work started and ended at submanifolds of critical

points. Each manifold is inherently flat with a countable number of steepest paths up (or down,

as appropriate) accompanied by an infinite dimensional flat null space. In this regard, we note

the finding with the transition probability landscape in Section 3.1 where starting further from the

bottom of the landscape leads to deeper dips before continuing on a final monotonic climb. Thus, we

performed a further numerical study of landscape structure based on taking straight shots between

arbitrary initial and final fields for all of the landscapes Jif , JO, and JW . We observed that straight

paths between fields chosen randomly from arbitrary locations on any of the landscapes showed only

modest degrees of non-monotonic behavior, again consistent with the landscapes being remarkably

free of gnarled structures.

The emerging picture of very smooth control landscape structure suggests seeking an efficient

climbing algorithm which is able to discover straight paths through control space while attaining

at least near monotonicity of the yield while climbing. In this regard, it is significant to note that

the submanifold at the top of the landscape has vanishing measure in an infinite-dimension control

space, so it would seem that picking an initially fixed direction to proceed along in control space

would rarely, if ever, yield a monotonic path to the top or even arrive close to it. However, the

results in this work show that such desirable directions exist. The challenge is to find a constructive

algorithm that does not utilize prior knowledge of fields on the top submanifold to identify those

initial directions. In creating such an algorithm, the straight nature of a control path arriving

at the top of the landscape appears to be a more desirable characteristic than monotonicity of

the yield, as straight control paths are likely to be shorter and require fewer evaluations of the

cost functional. In this context, the evidence shows [17, 18, 19] that the gradient algorithm is

already very good, as all runs generally achieve R < 2.0, but the gradient algorithm still appears

to be wanting in terms of reaching the desired ideal efficiency, given the evidently generic simple

structure of quantum control landscapes. We leave open for future work to consider the possibility

of creating a constructive algorithm for climbing the landscape by progressing in a straight line in

control space.

As a concluding remark we return to the prior analyses of generally finding very favorable

control landscape topology based on what appears to be easily satisfied assumptions [11, 14, 15].
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We now also see that landscape structure rarely shows any significant gnarled structure. The dual

very attractive landscape features of topology and structure, although apparently each of distinct

physical origin, act in a cooperative fashion to provide a basis to generally expect ready discovery

of effective control fields.
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Appendix A Understanding the basis for the observation of gen-

erally structure free quantum control landscapes

A.1 Background

As discussed in the main text, an experimental study [17] and a number of simulations [18, 19, 21]

guided by the gradient algorithm revealed that the observed path length ratio R is generally small

R . 2 for climbing various types of quantum control landscapes. The simulations included either

fields or Hamiltonian time-independent structural variables as controls. These studies considered

either Pi→f ,Tr(ρO), or ‖W − U‖2 as objectives for optimization, in each case on the landscape

denoted by J . The overall finding that R . 2 implies that quantum control landscapes appear to

be nearly devoid of structural features upon using a gradient algorithm to guide the optimization

process. The present paper bolsters this finding by putting aside the gradient algorithm and,

instead, following straight shot paths through control space from an initial to final field accompanied

by an observation of the evolving value of the landscape height along a climb. The key finding in

this paper is that almost all such trajectories are monotonic, again reflecting the presence of simple

landscape structure.

The Appendix will lay out a foundation for understanding the collective observations about

landscape structure summarized above. Importantly the explanation has a generic character, in

keeping with the observed simplicity of the structural findings found over a wide set of circum-

stances. Interestingly, the explanation of the landscape topological features also rests on generic

theoretical foundations, but the structural analog has a distinct explanation linked to the nature

of quantum control mechanisms possibly containing large numbers of significant participating in-

terfering terms in the Dyson expansion of the unitary transformation driving a particular control

objective. This definition of control mechanism expressed through the Dyson expansion [22] has

proved to be useful in many simulations, and it also may be experimentally implemented [23]. The

technical details of how to extract the relevant Dyson expansion terms are not important for un-

derstanding their linkage to explaining the general finding of small values for the path length ratio

R.

Section A.2 below will lay out the Dyson expansion in a form particularly relevant to the

pathway analysis, and section A.3 will consider the expected behavior of R(v) where 0 ≤ v ≤ 1
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is the progress variable along a straight line field trajectory specified in Eq. (5) of the main text.

Section A.3 will consider the behavior of R(v) in a separate fashion for the individual cases of either

Pi→f ,Tr (ρO), or ‖W − U‖. Some concluding remarks will be given in section A.4.

A.2 Quantum control mechanism viewed from the significant terms in the

Dyson expansion

The Schrödinger equation for all applications considered in this paper may be written as follows

by combining Eqs. (1), (2), and (5) of the main text

i~
∂U(t)

∂t
= [(H0 − µEI(t)) − vµ (EF (t)− EI(t))]U(t), (A.1)

where it is understood that U(t) ≡ U(t, 0). Various cases were considered in the text, including

where EI(t) = 0, but the analysis in the Appendix will consider the general form in Eq. (5) that is

re-expressed in the Hamiltonian on the right side of Eq. (A.1). In the cases of J being either Pi→f

or Tr (ρO), in the text we considered that J was being maximized with EI(t) giving a lower yield

than EF (t). If the opposite cicumstance was of interest, then the operator on the right hand side

of Eq. (A.1) needs to be equivalently written as

[(H0 − µEF (t))− (v − 1)µ (EI(t)− EF (t))] . (A.2)

In this case the derivations of Sections A.3.1 and A.3.2 follow the same way with the conclusions

being that monotonic minimization is expected. In the case of J = ‖W − U‖2 in the text and

Section A.3.3 we naturally started at a higher critical point on the landscape seeking to be at a

final lower one. If once again the opposite circumstance was sought, then the Hamiltonian form

in Eq. (A.2) applies with the result on the monotonicity being more complex to assess. However,

in all practical physical circumstances the goal is to minimize J = ‖W − U‖2, and the analysis as

presented is consistent with the general findings in the simulations.

For notational simplicity, we make the definitions H ′
0(t) = H0 − µEI(t) and ∆E(t) = EF (t) −

EI(t) to rewrite Eq. (A.1) in the following form:

i~
∂U(t)

∂t
=
[

H ′
0(t)− vµ∆E(t)

]

U(t). (A.3)

A new evolution operator is defined U(t) where U(t) = U0(t)U(t), permitting Eq. (A.3) to be
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rewritten in the interaction representation,

i~
∂U(t)

∂t
= −vµ(t)∆E(t)U(t) (A.4)

where µ(t) = U †
0 (t)µU0(t) with i~∂U0(t)

∂t
= H ′

0(t)U0(t). In a standard fashion, the Schrödinger

equation in Eq. (A.4) may be iterated to form a Dyson expansion

Uif (T ) ≡ 〈i| U(T ) |f〉 =

∞
∑

n=0

vnUn
if (A.5)

where the states |i〉 and |f〉 may be eigenstates of H0 or chosen in some other physically motivated

fashion associated with the nature of the objective. The n-th term in Eq. (A.5) has the form:

Un
if = (

i

~
)n
〈

i

∣

∣

∣

∣

∫ T

0
dtnµ(tn)∆E(tn)

∫ tn

0
dtn−1µ(tn−1)∆E(tn−1) · · ·

∫ t2

0
dt1µ(t1)∆E(t1)

∣

∣

∣

∣

f

〉

.

(A.6)

The landscape structural analysis in section A.3 is based on the assumption that control mechanism

has a number of significant amplitudes Un
if entering into Eq. (A.5). A variety of studies have

been carried out investigating this matter with some evident trends in behavior. Two extreme

limiting cases are shown in Figures 10 and 11, respectively corresponding to a few constructively

cooperating amplitudes Un
if out to a very large number of rather uniformly distributed amplitudes

in the complex plane. Most cases studied lie between these extremes, but still with a significant

number of amplitudes scattered in the complex plane.

A previous work examined the relation of landscape structure to mechanism based on the

Dyson expansion [25]. Although no evident pattern was found in relating mechanism to structure,

all of the cases considered in the latter study had at least modest number of significant terms in

Eq. (A.5). This Appendix takes a closer look at the relation of mechanism and landscape structure

viewed through the Dyson expansion. The analysis will assume that a significant number of terms

contribute to Eq. (A.5) leading to a particular approximation whose conclusion is consistent with

the observed generally monotonic climbs of the landscape. Although this conclusion explains the

observed rather featureless structure of the landscape, the result rests on specified approximations,

such that some exceptions to the conclusion may be expected to arise, as found in the numerical

results in the main body of the text. Importantly, the exceptions to monotonicty still reveal very

modest landscape structure. Finally, the analysis below utilizes the interaction representation at

the final time U(T ) = U0(T )U(T ), which at most introduces a basis set change from the numerical
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studies in the main text. This basis set change is not significant as the target goals in the main

text were all chosen arbitrarily.

A.3 Landscape structure assessment

The assessment in this section will separately consider the three cases of either Pi→f , Tr (ρO), or

‖W − U‖2.

A.3.1 Pi→f , i 6= f

We have that

Pi→f = |Uif |
2. (A.7)

It is convenient for our purposes here to rewrite Eq. (A.5) as

Uif = δif +

∞
∑

n=1

vn|Un
if |exp(iφ

n
if ) (A.8)

=
∞
∑

n=1

vn|Un
if |exp(iφ

n
if ) (A.9)

where Un
if = |Un

if |exp(iφ
n
if ) and the last step is based on i 6= f . Combining Eqs. (A.7) (A.9) gives

Pi→f =

∞
∑

n=1

∞
∑

n′=1

vn+n′

|Un
if ||U

n′

if |exp
[

i
(

φn
if − φn′

if

)]

. (A.10)

Under the assumption that a significant number of terms enter into Eq. (A.10) with {exp(iφn
if )}

rather uniformly spread over 2π radians in the complex plane along with the moduli {|Un
if |} being

slowly varying with respect to n, we may make a random phase approximation in Eq. (A.10) to

arrive at

Pi→f ≃

∞
∑

n=1

v2n|Un
if |

2. (A.11)

As we have v satisfying 0 ≤ v ≤ 1, along with |Un
if |

2 being positive, it then follows that the climb

of the landscape should be monotonic which is evident upon differentiating Eq. (A.11) to produce

dPi→f

dv
=

∞
∑

n=1

2nv2n−1|Un
if |

2 ≥ 0. (A.12)

18



A.3.2 J = Tr (ρ(T )O)

The objective, in the section title, may be rewritten as

J = Tr [U(T )ρU†(T )O] (A.13)

which becomes

J =
∑

if

|Uif |
2ρiOf . (A.14)

Here, ρi and Of are the eigenvalues of the respective initial density matrix ρ and observable operator

O with an appropriate basis {|i〉} and {|f〉} consistent with that circumstance. We may consider

all of the eigenvalues of O as positive for convenience by adding an appropriate constant C to O

as needed (i.e., this operation, if necessary, simply makes the shift J → J +C). Upon substituting

Eq. (A.8) in Eq. (A.14), we obtain

J =
∑

if

|δif +

∞
∑

n=1

vn|Un
if |exp(iφ

n
if )|

2ρiOf (A.15)

=
∑

i

ρiOi + 2
∑

i

(

∞
∑

n=1

vn|Un
ii | cos (φ

n
ii)

)

ρiOi (A.16)

+
∑

i,f

∞
∑

n=1

∞
∑

n′=1

vn+n′

|Un
if ||U

n′

if |exp
[

i
(

φn
if − φn′

if

)]

ρiOf . (A.17)

Here, the lead term
∑

i ρiOi is just the initial value of J determined at v = 0. Upon making the

same assumptions that were introduced regarding the behavior of the Dyson expansion in section

A.3.1, we expect that the second term in Eq. (A.15) may be neglected due to the cosine fluctuating

rather uniformly over positive and negative values, finally resulting in the approximation

J ≃
∑

i

ρiOi +
∑

i,f

∞
∑

n=1

v2n|Un
if |

2ρiOf . (A.18)

Differentiation of this expression gives the result

∂J

∂v
=
∑

i,f

∞
∑

n=1

2nv2n−1|Un
if |

2ρiOf ≥ 0, (A.19)

which implies that we generally expect a monotonic climb of an observable landscape, as verified

in numerical simulations in the main body of the paper. The expression in Eq. (A.19) also reduces

to that of Eq. (A.12) upon making a pure state transition with ρ = |i〉 〈i| and O = |f〉 〈f |, i 6= f .
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A.3.3 J = ‖W − U‖2

The objective in this section reduces to J = 2N − 2ReTr (W †U), and hereafter we will neglect the

constant 2N . Thus the objective function becomes

J = −2Re
∑

i,f

(|W †
fi|Uif )exp(−iχfi), (A.20)

where we have defined an element of the objective unitary transformation asW †
fi = |W †

fi|exp(−iχfi).

Eq. (A.20) is assumed to be subject to minimization whether seeking W or some saddle as a target.

In the present context, it is convenient to rewrite the expression in Eq. (A.8) in the following form

Uif = δif +

∞
∑

n=1

vn|Un
if |exp

[

i
(

δφn
if + χfi

)]

. (A.21)

Substitution of Eq. (A.21) into Eq. (A.20) results in

J = −2
∑

i

|W †
ii| cos(χii)− 2

∑

i,f

|W †
fi|

∞
∑

n=1

vn|Un
if | cos(δφ

n
if ). (A.22)

Here we note that the first term in Eq. (A.3.3) is independent, of v and δφn
if is similarly independent

of v. Thus, upon differentiation of Eq. (A.3.3), we obtain

∂J

∂v
= −2

∑

i,f

|W †
fi|

∞
∑

n=1

nvn−1|Un
if | cos(δφ

n
if ). (A.23)

The analysis of this case follows a different argument than those arising in sections A.3.1 and A.3.2.

However, we expect that the phase δφn
if will likely satisfy |δφn

if | ≪ 1 for the case of U → W or

approaching a saddle of J , as each of the elements of U must appropriately match those of W ,

which motivated the choice of Un
if = |Un

if |exp
[

i
(

δnif + χfi

)]

in Eq. (A.21). These arguments lead

to the conclusion of expecting the approximate result ∂J
∂v

. 0 with cos(δφn
if ) > 0 likely satisfied.

Thus, we generally expect the trajectories of J(v) to follow a monotonic path towards minimization

of J , as overwhelmingly found in the simulations of the main text.

A.4 General comments

In summary, the cases of either Pi→f or Tr (ρO) in sections A.3.1 and A.3.2, respectively, are

expected to exhibit monotonic optimization behavior for sufficiently rich or multi-term control

mechanisms. The case of J = ‖W − U‖2 in section A.3.3 is analyzed on a different basis, but
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still leading to the same conclusion of expecting monotonic minimization of the objective over the

landscape. As all of the arguments involve approximations, exceptions could arise but the evidence

in the main body of the text shows that exceptions are rare.
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Figures

Figure 1: A schematic showing portions of the initial and final submanifolds of fields respectively {EI(t)}

and {EF (t)}, in control space corresponding to a high final yield and a low initial yield. The specification

of an initial or final yield J depends on the physical situation, as explained in the text. Straight paths

in control space are displayed in red connecting pairs of randomly selected points on the initial and final

submanifolds. A gradient path, in green, originates at the same point as one of the monotonic straight paths

(marked by a star on the initial submanifold) but veers away, ending at a significantly different final control

field on the final submanifold. The functional J always changes monotonically along a gradient path, but in

general these paths are not straight. In contrast, along the exactly straight paths from the bottom to the

top, J is observed to generally exhibit nearly, if not fully, monotonic behavior.
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Figure 2: (Color online) The value of P1→5 along a collection of 500 straight paths between randomly chosen

points E(0, t) = EI(t) on the submanifold close to the bottom of the landscape, such that J [E(0, t)] = 10−4,

and randomly chosen points E(1, t) = EF (t) on the submanifold close to the top of the landscape, such that

J [E(1, t)] = 0.99. For a large portion of the paths, P1→5(v) increases monotonically over 0 ≤ v ≤ 1 as the

path is traversed from the bottom to the top utilizing Eq. 5. The inset, near the bottom of the landscape,

shows that for a subset of the straight control paths, the value of P1→5 initially decreases by a small amount

near the beginning of the trajectory.
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Figure 3: (Color on line) The value of P1→5 for a collection of 500 straight control paths with each initial

point located at E(0, t) = EI(t) = 0, producing P1→5 ≡ 0, and the final point being a randomly chosen field

E(1, t) = EF (t) such that P1→5[E(1, t)] = 0.99. Each of these straight paths in control space results in a

strictly monotonic climb of the transition probability P1→5 control landscape.
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Figure 4: (Color online) The value of JO along a collection of 500 straight control paths. The initial point

of each path is a null field E(0, t) = EI(t) and the final point of each path is a randomly chosen field

E(1, t) = EF (t) located at the top of the landscape. All of the straight paths monotonically climb to the

top.
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Figure 5: (Color online) The value of JO along a collection of 500 straight control paths. Each path is driven

by a field E(v, t) = vEF (t), where EF (t) is determined to produce a maximal yield (i.e., at E(1, t) = EF (t))

by first starting with a random field and then optimizing it with D-MORPH. The field E(0, t) = EI(t) = 0

gives a yield located on the saddle critical submanifold at JO = 2/15. Importantly, all of the straight control

paths correspondingly start at a saddle, and the trajectories all monotonically climb to the top.
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Figure 6: (Color online) The value of JO along a collection of 500 straight control paths. The initial point of

each path is a randomly chosen field E(0, t) = EI(t) located on the saddle critical submanifold at JO = 2/15,

and the final point of each path is a field E(1, t) = EF (t) located at the saddle critical submanifold with

JO = 3/15. Here not all of the straight control paths are monotonic in the cost function but the deviations

from monotonicity reveal a gentle landscape free of gnarled features.
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Figure 7: (Color online) The value of JW along a collection of 500 straight control paths, with the initial

point of each path located at a randomly chosen field E(0, t) = EI(t) yielding a unitary evolution operator

U = −W and the final points located at a randomly chosen field E(1, t) = EF (t) yielding an evolution

operator U = W . Each straight control path interpolates between fields at the bottom and top of the

unitary transformation landscape according to Eq. (5), and the landscape trajectory displays monotonic

behavior, with no sign of being influenced by the intermediate saddle submanifolds of the landscape.
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Figure 8: (Color online) The value of JW along a collection of 500 straight control paths. Each path

begins at a random field E(0, t) = EI(t) located on a saddle point where JW = 8, and ends at a random

field E(1, t) = EF (t) located at the bottom of the unitary transformation landscape. All of the runs are

monotonic.
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Figure 9: (Color online) The value of JW along a collection of 500 straight control paths, with the initial

point of each path located at a randomly chosen field E(0, t) = EI(t) on a saddle point with JW = 16 and

the final points located at a randomly chosen field E(1, t) = EF (t) also located on a saddle point, with

JW = 8. A small subset of the paths display nonmonotonic behavior of the cost function consistent with

encountering only modest landscape structural features.
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Figure 10: The complex amplitudes entering into the Dyson expansion Eq. (A.5) are shown for optimizing

P1→3 in a four level system. The amplitudes have been slightly separated for visual clarity. Note that these

amplitudes in the complex plane are referred to as “composite pathways” with each arrow likely arising

from multiple distinct terms in the Dyson expnasion, and therefore exhibiting more interference structure

than is directly evident. Reprinted figure with permission from Ref. [22]. Copyright (2003) by the American

Physical Society.
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Figure 11: Here the complex amplitudes of the Dyson expansion Eq. (A.5) are shown for an intense field

eliciting many higher order multiphoton processes. In spite of the magnitude of the amplitudes above,

their combined sum is equal to 1.0 within computational precision. Reprinted figure with permission from

Ref. [24]. Copyright (2004), AIP Publishing LLC.
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