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Abstract

Photoelectron momentum distributions (PMDs) of the hydrogen atom driven by multi-cycle,

elliptically polarized strong laser fields are studied in detail, based on the numerical solution of

the time-dependent Schrödinger equation and the Volkov wave propagation. Both short and long

driving pulses of 800nm field are considered, as well as the ellipticity dependence, to describe the

mechanism of symmetry breaking in the hydrogen atom PMD. Moreover, we demonstrate that the

amount of retardation angles the value of a retardation angle in the longitudinal PMD can depend

on the order of above-threshold ionization spectra.

∗ mitsuko@phys.ntu.edu.tw

1



I. INTRODUCTION

The photoelectron momentum spectroscopy of atoms using an elliptically polarized laser

field provides both temporal and structural information about ionizing electrons with un-

precedented accuracies. In the last decade, detailed measurements of rare-gas atoms were

conducted for both longitudinal [1–4] and transversal [5, 6] photoelectron momentum dis-

tributions (PMDs).

Experimentally observed PMDs exhibit some features which are in conflict with tra-

ditional theories. For instance, the Ammosov-Delone-Krainov tunneling model tends to

underestimate the transversal width of a PMD by 15% [5]; the location of a peak in the

longitudinal PMD does not align with the minor axis of a polarization ellipse as the strong

field approximation (SFA) predicts [1, 7]. These discrepancies were attributed in the past

to effects of ionic potentials, tunnelling delay time, dynamical Stark shifts, coulomb focus-

ing, or induced polarizations; see Ref. [8] and references therein. Theoretical calculations

of PMDs based on the time-dependent Schrödinger equation (TDSE) [7, 9–11] or the nona-

diabatic SFA [2, 12, 13] confirmed some of the findings of those experiments, but further

investigations are needed to address additional questions, such as the role of inner electrons

and the dependence on atomic species [14–17].

Recently, a detailed comparison between the TDSE and the nonadiabatic SFA calcula-

tions of the longitudinal PMD was made for the hydrogen atom, using 800nm, few-cycle driv-

ing lasers of various peak intensities [18]. Its authors argued that the hydrogen atom PMD

can be used as a reference to identify the multi-electron effect in the amount of retardation

angles value of retardation angle measured in attoclock experiments [1–3]. Moreover, the

ellipticity dependence on the transversal width of the PMD driven by a few-cycle laser pulse

was studied in Ref. [11] based on the TDSE of the hydrogen atom. The measurement of

hydrogen PMD has been realized only recently [19], raising the importance of accurate cal-

culations of the hydrogen atom as never before. In this work, we complement their study

of the hydrogen atom PMD using multi-cycle driving laser pulses (> 5 optical cycles). The

multi-cycle driving laser is useful in resolving above-threshold ionization spectra for each

number of photons absorbed. Combined with an XUV pulse train, it can probe subcycle

dynamics of electrons in a stroboscopic manner [20]. Effects of various laser parameters are

discussed, such as carrier envelope phase (CEP) and ellipticity, using the 800nm driving
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laser field of the peak intensity 5 × 1013 W/cm2. A particular emphasis is placed on the

study of symmetry breaking in the non-adiabatic regime. The calculation is based on the

generalized pseudospectral (GPS) method for the inner region [21] and the propagation un-

der the Volkov Hamiltonian in the momentum space for the outer region [22, 23]. The PMD

of the hydrogen atom driven by a multi-cycle, linearly-polarized driving laser field has been

studied in detail based on the GPS method in Refs. [24] and [25] in the past. Our work

extends them for elliptically-polarized driving laser fields.

The paper is organized as follows. In Sec. II, numerical methods to calculate the PMD of

the hydrogen atom in an elliptically-polarized laser field are described. Results are presented

in Sec. III. First, we describe the property of the hydrogen atom PMD driven by a long (20

cycle), circularly-polarized laser field in Sec. IIIA 1. The effect of ellipticity on the PMD

is studied in Sec. IIIA 2. We will find that the amount of retardation angles a retardation

angle in the longitudinal PMD can depend on the order of above-threshold ionization spectra.

Next, the symmetry breaking in the PMD and the effect of CEP associated with a shorter

driving laser (6 cycle) is are discussed in Sec. III B 1 and Sec. III B 2, respectively. Finally,

Concluding remarks are given in Sec. IV. Atomic units (e = me = ~ = 1) are used

throughout, unless specified otherwise.

II. METHODS

We solve the TDSE in the length gauge:

i
∂

∂t
ψ(r, t) = [H0 + V (r, t)]ψ(r, t). (1)

The stationary Hamiltonian H0 of the hydrogen atom for the GPS method is given in

Ref. [21]. The laser-atom interaction potential in the limit of dipole approximation is

V (r, t) = E(t) · r. We define an elliptically-polarized driving laser field of frequency ωo

as [3]

E(t) = Eo(t)

[

1√
ε2 + 1

cos(ωo t+ α) ẑ+
ε√
ε2 + 1

sin(ωo t+ α) x̂

]

, (2)

where ε is an ellipticity constant, α is a CEP, and Eo(t) is a pulse envelope function centered

around t = 0, given by

Eo(t) =
√

Io cos
2

(

ωo t

2n

)

, (3)
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with Io and n being the peak intensity for ε = 0 and the number of optical cycles (T = 2π/ωo)

per pulse, respectively. In the spherical coordinates, the interaction potential is therefore

V (r, t) = Eo(t)r

[

1√
ε2 + 1

cos θ cos(ωo t+ α) +
ε√
ε2 + 1

sin θ cosφ sin(ωo t+ α)

]

. (4)

Unless in a linearly-polarized field (ε = 0), the azimuthal symmetry of the total Hamiltonian

is broken, and therefore the fully three-dimensional TDSE is solved by using the GPS method

[26]. That is, we expand the solution in terms of the spherical harmonics Yℓm as

ψ(r, t) =
∑

ℓ,m

Rℓm(r, t)

r
Yℓm(θ, φ), (5)

and evolve the following radial wavefunction mapped onto the Legendre-Lobatto collocation

points {xj} ∈ [−1, 1].

ϕℓm(xj , t) = Rℓm(r(xj), t)

√

r′(xj)

PN(xj)

√

2

N(N + 1)
(j = 1, 2, · · · , N − 1), (6)

where PN(xj) is the Nth-order Legendre polynomial, and

{

xj : (1− xj
2)PN

′(xj) = 0
}

(j = 0, 1, 2, · · · , N). (7)

Its normalization condition (without the presence of absorbing boundaries) is simply

∑

ℓ,m,j

|ϕℓm(xj , t)|2 = 1 . (8)

Angular coordinates on the polarization plane are discretized regularly and mapped onto a

set of Legendre-Gauss collocation points {yλ} ∈ [−1, 1] as follows.

θλ =
πλ

Nℓ
(λ = 0, 1, 2, · · · , Nℓ), (9)

where yλ ≡ cos θλ are the roots of Legendre polynomials:

{yλ : PNℓ+1(yλ) = 0}. (10)

Azimuthal angles around the major polarization axis are discretized regularly as

φµ =
2πµ

2Nℓ + 1
(µ = 0, 1, 2, · · · , 2Nℓ). (11)

To eliminate reflections from the boundary in the configuration space, we split the wave

function at a given time t as [22, 23]

ψ(r, t) = f(r)ψ(r, t) + [1− f(r)]ψ(r, t) = ψ(in)(r, t) + ψ(out)(r, t), (12)
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where f(r) is an absorbing function that is one in the inner region (0 ≤ r ≤ Rb) and

smoothly decreases to zero in the outer region (Rb < r < rmax). In our calculations, Rb

is set at five times the classical oscillator radius (=
√
Io/ωo

2), whereas rmax is set either at

ten times the classical oscillator radius or at 100 au, whichever is larger. For the evaluation

of photoelectron spectra in particular, only the outer wave function is necessary, and it is

propagated in the momentum space under the Volkov Hamiltonian in the velocity gauge

[22]. That is, in each time step, we calculate the the Fourier transform of the outer wave

function:

ψ̃v
(out)(p, t) =

∫∫∫

d3r
e−i[p+A(t)]·r

(2π)3/2
ψ(out)(r, t), (13)

where A(t) = −
∫ t

−∞
E(t′)dt′ is the vector potential, and the superscript v in ψ̃v

(out) denotes

the velocity gauge. Coordinates in the momentum space are regularly discretized as

pj = j∆p (j = 1, 2, · · · , Np). (14)

The angular coordinates (θp, φp) of the outer wave function in the momentum space are

discretized in the same manner as (θ, φ) in the configuration space. For results presented in

this work (800nm, Io = 5× 1013 W/cm2), the number of collocation points used are N=250

and Nℓ=64, whereas the spacing for {pj} is ∆p = 0.005, and the time step is ∆t = 0.2. The

number of collocation points in the configuration space we chose ensures the convergence

of ionization probability during the time evolution. The fine spacing for ∆p was necessary

for the high-resolution presentation of PMDs, though the Volkov-wave propagation is stable

with lesser number of points in {pj}.
Using the spherical-wave expansion:

e−ip·r

(2π)3/2
∼

√

2

π

∑

ℓ,m

(−i)ℓJℓ(pr)Y
∗

ℓm(θ, φ)Yℓm(θp, φp), (15)

where Jℓ are the spherical Bessel functions, and (p, θp, φp) are the coordinates in the mo-

mentum space, Eq. (13) becomes

ψ̃v
(out)(pj, θλ, φµ, t) =

√

2

π
S
{

(−i)ℓ
∑

j

r(xj)
√

wjr′(xj)ϕ
v
ℓm (out)(xj , t)Jℓ(pjr(xj))

}

(θλ, φµ),

(16)

where S : (ℓ,m) → (θλ, φµ) is the spherical harmonic transform [27]:

S {ϕℓm(xj , t)} (θλ, φµ) ≡
∑

ℓ,m

Yℓm(θλ, φµ)ϕℓm(xj , t)

= ϕ(xj , θλ, φµ, t) , (17)
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and {wj} are the quadrature weights for the Legendre-Lobatto collocation points {xj}:

wj =
2

N(N + 1)

1

[PN(xj)]
2 . (18)

The velocity-gauge wave function in Eq. (16) is given by

ϕv
ℓm (out)(xj, t) = S−1

{

e−iA(t)·rS
{

ϕℓm (out)(xj , t)
}

(θλ, φµ)
}

(ℓ,m), (19)

where S−1 : (θλ, φµ) → (ℓ,m) is the inverse spherical harmonic transform.

Eq. (16) is added to the wave function ψv
∞

in the momentum space (where the subscript

∞ indicates that it is at a very large distance from the nucleus so that the binding potential

can be ignored) and evolved with the Volkov Hamiltonian in the velocity gauge:

Hv
∞
(t) =

[p+A(t)]2

2
, (20)

such that

ψv
∞
(pj , θλ, φµ, t+∆t) = e−iHv

∞
(t)∆t

[

ψv
∞
(pj, θλ, φµ, t) + ψ̃v

(out)(pj, θλ, φµ, t)
]

, (21)

with an initial condition: ψv
∞(pj, θλ, φµ, t0) = 0.

The PMD is evaluated from the outer state in the end of the time evolution (t = tf) as

D(pj, θλ, φµ) = |ψv
∞
(pj, θλ, φµ, tf )|2 . (22)

For calculations using short (n = 6 cycle) driving laser fields, the time evolution is continued

for two empty optical cycles after the end of the pulse to allow some time for relaxations.

III. RESULTS

A. PMD in the Adiabatic Regime

1. Circular polarization

Figure 1 shows the PMD of the hydrogen atom, driven by a long (n = 20 cycle), circularly-

polarized (ε = 1) 800nm laser field of peak intensity Io = 5 × 1013 W/cm2. The CEP of

Eq. (2) is set as α = π/2, which makes the field strength E(t) to maximize in the positive x-

direction at the pulse peak (t = 0); there are two equally strong field maxima in the opposite
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directions of the z-axis before and after the pulse peak, but their strength would be slightly

weaker than
√

Io/2 because of the CEP. The effect of CEP becomes important only with

shorter and stronger driving laser pulses, as we discuss in Section IIIB 2. With a 20-cycle

driving laser used for FIG. 1, the adiabatic approximation holds, i.e., subcycle modulations

in the field strength are averaged out. For a circularly polarized field in particular, the

kinetic energy of the electron on the polarization plane under the adiabatic approximation

is independent of the direction θp of momentum vectors and given by [28]

p2/2 = s ωo + no ωo − Ip − Up (s = 0, 1, 2, · · · ), (23)

where s is the number of above-threshold photons absorbed, Ip is the ionization potential,

Up = Io/4ωo
2 is the ponderomotive energy, and

no = ⌊Ip/ωo⌋+ 1. (24)

For the 800nm, Io = 5 × 1013 W/cm2 driving laser we use, Up = 2.994 eV, ωo = 1.55 eV,

and no = 9 for the hydrogen atom (Ip = 13.6 eV).

FIG. 1(a) shows the longitudinal PMD, i.e., the cross section on the polarization plane

(py = 0). In the adiabatic limit, the hydrogen atom PMD can be calculated for each s using

the S-matrix formalism [28]. In our calculation, all the different channels (s = 0, 1, 2, · · · )
contribute to the PMD with different strengths, but they appear separately at a radial

distance of

ps =
√

2(s ωo + no ωo − Ip − Up). (25)

FIG. 1(b) is the transversal PMD, i.e., the cross section on the plane perpendicular to the

polarization vectors (pz = 0). The SFA prediction for the transversal width of the hydrogen

atom PMD driven by a few-cycle laser is given in Ref. [12]. Their work also provides the

TDSE calculation for the hydrogen atom using a half-cycle linearly polarized driving laser.

The half-cycle linearly polarized laser is known to induce the same transversal width as a

few-cycle circularly polarized laser in the PMD of the soft-Coulomb potential [9]. The PMD

in the adiabatic regime, however, is split into many layers depending on the number of above-

threshold photons absorbed, as shown in FIG. 1(b). In Figure 2, we plot the transversal PMD

of FIG. 1(b) along the radius ps given by Eq. (25) as a function of angle φp, defined counter-

clockwise from the positive px-axis. For a comparison, their density is normalized between

φp = 90 and 270 degrees. We find that the distribution becomes narrower as the number
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of absorbed photons increases. The measurement of transversal PMD in Ref. [5, 6] did not

distinguish each layer at ps, whereas the time-resolved measurement using an attosecond

pulse train [20] or a two-color (XUV + near infared) free-electron laser [29–31] probably

would could.

In FIG. 1(c), we re-plot the transversal PMD of FIG. 1(a) as a function of angle θp, defined

counter-clockwise from the positive pz-axis, and of the kinetic energy (|pz|2 + |px|2)/2, on
the polarization plane. Eq. (23) predicts that the electron has negative kinetic energy when

s ≤ 1; they are classically forbidden transitions. FIG. 1(c) shows a faint but clear transition

line at 0.456 eV, which corresponds to the kinetic energy of the s = 2 transition. To clarify

the location of the spectral peaks, we plot the above threshold ionization (ATI) spectra in

Figure 3, which is obtained by integrating θp out of FIG. 1(c). The spectral strength peaks

at s = 5 and steadily falls beyond, consistent to he cutoff predicted by SFA; i.e., 2Up = 5.988

eV.

There is a striking difference between the ATI spectra of the hydrogen atom driven by a

circularly-polarized field in FIG. 3 and the ones generated by linearly-polarized fields. That

is, the lowest ATI peaks (s = 2, 3) in FIG. 3 show very low intensity in comparison to

the other peaks around the cutoff (s = 4, 5, 6), whereas the ATI peaks in linearly-polarized

fields have a pronounced fundamental peak followed by equally-strong plateau harmonics

[24, 25]. We must note that our present calculation employs the Volkov approximation,

i.e., the interaction of the electron with the nucleus is neglected during the propagation of

outer wave function, which could in principle result in an unphysical behaviour in the low-

energy ATI spectra, particularly when a long-wavelength (> 1µm) driving laser is used [32].

However, the lowest-order ATI peaks were also absent (or have negligibly small intensities)

in the experimentally measured PMDs [1–3], using near-infrared (∼ 800nm), near-circular

(ε = 0.87) driving lasers similar to our calculations. We thus believe the reduced intensity

at the lowest-order ATI peaks in FIG. 3 is not an artifact of the Volkov approximation but

real. One possible explanation is that, in the case of circular polarization, part of the energy

of a tunnelling electron is transferred into the kinetic energy in the transversal direction,

decreasing the longitudinal energy to break the binding potential [13]. This would make the

intensity at the lowest-order ATI spectra smaller compared to the linear polarization case.
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2. Ellipticity Dependence

Figure 4 shows the longitudinal PMD in the 20-cycle driving laser field (800nm, Io =

5 × 1013 W/cm2, α = π/2) for various ellipticity constants (0 ≤ ε < 1). In the adiabatic

regime, the angular distribution of a hydrogen atom PMD on the polarization plane is known

to have a two-fold symmetry [28]; that is,

Ds(ξ, θp) = Ds(ξ, θp + π),

Ds(p, θp) = Ds(p, θp + π), (26)

where Ds denotes the ionization probability to a fixed multiphoton channel s , computed at

the retardation angle ξ due to the Coulomb potential. In FIG. 4, we find that the above

symmetry indeed holds true regardless the ellipticity ε.

The ellipticity in a driving field introduces a preferred axis of ionization, which makes

the PMD to concentrate along the minor axis of a polarization ellipse (orthogonal to the

behaviour in the configuration space) but shifted by a retardation angle. A similar effect is

known for the PMD of hydrogen molecular ion (H2
+) in a circularly-polarized driving laser

field [33]; the preferred axis of ionization in this case is created by the molecular potential

itself, i.e., the most electron ionize along the molecular axis.

The retardation angle in a PMD is defined as a deviation of the PMD maximum from the

minor axis of a polarization ellipse [7]. A major contribution to the amount of a retardation

angle comes from the deflection of electron trajectories due to the Coulomb potential. In a

classical approximation, it is given by [34]

ξ = sin−1

(

1

ǫ

)

, (27)

where ǫ is an orbital eccentricity:

ǫ =

√

1 +
2Ls

2(s ωo + no ωo − Ip − Up)

mee4
, (28)

where Ls = sh~ is an angular momentum of an ionized electron, and h = 2ε/(ε2 + 1) is the

light helicity of a driving laser field. In particular, ε = 0 (linear polarization) makes Ls = 0,

and therefore Eq. (27) gives ξ = π/2; i.e., the PMD concentrates along the major axis of a

polarization ellipse, as shown in the inset figure of FIG. 4(a). In reality, the retardation angle
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also depends on the tunnelling time delay [13], the Wigner time delay [35], the relativistic

time delay [36], and other quantum-mechanical effects.

In FIG. 4(a) and (b), the field is either linear (ε = 0) or close to linear (ε = 0.2),

and we observe an interference of electron density creating nodes in the PMD along the

concentric circle of radius ps given by Eq. (25). The interference pattern in a PMD signifies

the rescattering of an electron with the ionized core [24]. In FIG. 4(c)-(f) where the field

is closer to circular (ε ≥ 0.4), there is no sign of rescattering, but the PMDs gradually

concentrate along the minor axis of the polarization ellipse shift the axis of concentration

toward the minor axis of a polarization ellipse (θp = ±90 degree), as an ellipticity ε of the

field increases. This can most clearly be seen in the inset figures, where we plot the radially

integrated and normalized electron distributions.

Furthermore in FIG. 4(c)-(f), we find that the lowest-order spectrum (s = 2) has much

larger retardation angle , i.e., the angle between the minor axis of polarization ellipse and

the PMD peak, than the rest (s > 2). To elucidate this point, we plot the longitudinal

PMDs of FIG. 4 as a function of polar angle θp and kinetic energy on the polarization plane

in Figure 5. In these figures, one can observe the way PMDs shift their peaks at each ps

(s = 2, 3, · · · ) to the negative θp direction as an ellipticity of the field increases. In these

figures, the retardation angle of the lowest-order (s = 2) channel is much larger than the

s = 4, which is consistent to the S-matrix prediction in Ref. [28]; the ionization mechanism

for the s = 2 channel should be very different from the rest. We also notice that the lowest-

order ionization s = 2 becomes less and less significant compared to the higher-order channels

as the ellipticity increases, indicating the enhancement of tunnelling from the excited states.

The retardation angles measured in the attoclock measurements for various ellipticity [3]

were not resolved for the number of photon absorbed, but our calculation suggests that a

separate measurement may be needed for each order of ATI spectra to reveal true electron

dynamics in an elliptically polarized field. Lastly, the Volkov approximation employed in

our calculation should be valid even for low-energy electrons (< 10 eV), as long as the

near-infrared driving-laser (< 1µm) is used [32]. It is nevertheless desirable to complement

our study with other theoretical approaches, such as the path-integrals [37] or the Froquet

theory [38] in the future.
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B. Non-adiabatic Effects

1. Symmetry Breaking

In this section, we demonstrate that the two-fold symmetry of hydrogen atom PMD in

Eq. (26) breaks down when the shorter and stronger driving laser pulse is used. Figure 6

shows the PMD of the hydrogen atom driven by a short (n = 6 cycle) circularly-polarized

driving laser pulse. All the driving laser parameters remain the same as in FIG. 1 except

for the driving laser duration. The symmetry breaking of the PMD is most clearly seen

in FIG. 6(c), where we plot the longitudinal PMD as s function of angle θp and kinetic

energy on the polarization plane. Unlike the adiabatic case in FIG. 1(c), the kinetic energy

is no longer a constant of θp but modulates with the subcycle change in the strengths of the

driving laser field; this causes an asymmetry in the PMD. In the classical limit, the electron

momentum vector would take a trajectory given by −A(t), as shown with a solid red line

in FIG. 6(a). As we set α = π/2 in Eq. (2), the classical momentum has its peak in the

direction of positive pz-axis (i.e., θp = 0), while the driving field E(t) has its peak in the

direction of positive x-axis. If we radially integrate the longitudinal PMD in FIG. 6(a), then

we would find that the electron density is largest at θp = 0 and smallest at θp = 180 degrees.

Aside from the symmetry breaking, we should also note that the spectral widths of the

PMD in FIG. 6 are broader than the adiabatic case in FIG. 1. When a few-cycle driving

laser pulse is used, the PMD does not resolve any spectra at all but forms one continuous

band concentrated at the peak of −A(t) but shifted by a retardation angle; see Ref. [18]

for such examples. The lowest-order transition at s = 2 in FIG. 6(c) is not as strong as in

FIG. 1(c) relative to the higher transitions; this would imply the enhancement of tunnelling

ionization from the excited states in the non-adiabatic regime, whose energy continuously

shifts upwards while passing through potential barriers [13].

2. Effect of CEPs

The effect of a CEP in a circularly polarized field (ε = 1) is simply to shift the modulation

of PMD on the polarization plane around the propagation axis [39]. For example, if we let

α = 0 in FIG. 6, the momentum vector for each s on the polarization plane would maximize

at θp = −90 degree, rather than at θp = 0 for the α = π/2 case as shown. In a long,
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circularly polarized field, phase shifts due to the CEP do not affect the appearance of PMD

at all, as shown in FIG. 1. However, with a shorter driving laser, the phase shift has a subtle

effect on the PMD when combined with the existence of a preferred axis of ionization.

Figure 7 shows the PMD driven by the 6-cycle, elliptically polarized (ε = 0.87) laser

field of two different CEPs: α = 0 and α = π/2. Notice that the longitudinal PMDs in

FIG. 7(a) and (d) are localized around θp ∼ ±110 degrees. In general, when 0 ≤ ε < 1, the

longitudinal PMD driven by an elliptically-polarized laser field would concentrate along the

minor axis of the polarization ellipse, but slightly shifted by the amount of a retardation

angle (Sec. IIIA 2); this is true regardless of the driving-laser duration or CEPs.

In FIG. 7, the 6-cycle driving laser induced pulse is inducing a modulation in the magni-

tude of the momentum vector, reflecting the subcycle change in the strengths of a driving

laser field, which broke breaks the symmetry relation (26) when α = 0 (top row). On the

other hand, when α = π/2 (bottom row), the symmetry is retained (see the inset figure),

but very few electron is ionizing are being ionized at the peak of the classical limit −A(t),

because it is not aligned with the minor axis of the polarization ellipse due to the shift by a

retardation angle. In the attoclock measurements [1–3], the CEP in an elliptically polarized

field has been stabilized to preserve the two-fold symmetry of PMDs.

IV. CONCLUSION

In this paper, we investigated the PMD of hydrogen atom driven by a multi-cycle, ellipti-

cally polarized laser field. Both long and short driving laser are considered to exemplify the

mechanisms of symmetry breaking in the hydrogen atom PMD. We showed that the electron

momentum on the polarization plane appear separately for the number of above-threshold

photons absorbed, and modulates its strengths magnitude only in the non-adiabatic regime,

reflecting the subcycle change in the strengths of a driving laser pulse. On the other hand,

the ellipticity in a driving-laser field creates the preferred axis of ionization regardless of the

driving laser duration. As a result, the two-fold symmetry of the PMD breaks down in the

non-adiabatic regime unless the CEP is adjusted so that there are two equally strong field

maxima along the major axis of the polarization ellipse. In addition, we found that the

retardation angle in the longitudinal PMD for the lowest-order ATI (s = 2) is much larger

than the rest of the spectra (s > 2). This suggests that the ionization mechanics can depend
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on the orders of the ATI.
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[30] S. Düsterer, L. Rading, P. Johnsson, A. Rouzée, A. Hundertmark, M. J. J. Vrakking, P. Rad-

cliffe, M. Meyer, A. K. Kazansky, and N. M. Kabachnik, Journal of Physics B: Atomic,

Molecular and Optical Physics 46, 164026 (2013).

[31] T. Mazza, E. Gryzlova, A. Grum-Grzhimailo, A. Kazansky, N. Kabachnik, and M. Meyer,

Journal of Electron Spectroscopy and Related Phenomena 204, Part B, 313 (2015).

14



[32] C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and L. F.

DiMauro, Nature Physics 5, 335 (2009).

[33] M. Odenweller, N. Takemoto, A. Vredenborg, K. Cole, K. Pahl, J. Titze, L. P. H. Schmidt,

T. Jahnke, R. Dörner, and A. Becker, Phys. Rev. Lett. 107, 143004 (2011).

[34] M. Bashkansky, P. H. Bucksbaum, and D. W. Schumacher, Phys. Rev. Lett. 60, 2458 (1988).

[35] E. Yakaboylu, M. Klaiber, and K. Z. Hatsagortsyan, Phys. Rev. A 90, 012116 (2014).

[36] I. A. Ivanov and K. T. Kim, Phys. Rev. A 92, 053418 (2015).

[37] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, Phys. Rev. A 49,

2117 (1994).

[38] D. A. Telnov and S.-I. Chu, Phys. Rev. A 61, 013408 (1999).

[39] C. P. J. Martiny and L. B. Madsen, Phys. Rev. Lett. 97, 093001 (2006).

15



-1 -0.5  0  0.5  1
pz

-1

-0.5

 0

 0.5

 1
p x

(a)

-1 -0.5  0  0.5  1
px

-1

-0.5

 0

 0.5

 1

p y

(b)

-180 -90  0  90  180
θp (deg)

 0

 5

 10

 15

K
in

et
ic

 E
ne

rg
y 

(e
V

)

0.0x100

5.0x10-5

1.0x10-4

1.5x10-4

2.0x10-4

2.5x10-4

3.0x10-4

3.5x10-4

(c)

FIG. 1. (Color online) The PMD of the hydrogen atom, driven by the 800nm, 20-cycle circularly

polarized laser field (ε = 1, α = π/2) of peak intensity Io = 5 × 1013 W/cm2: (a) cross section

of the PMD on the polarization plane (py = 0), and (b) cross section along the propagation axis

(pz = 0) of the driving laser field. (c) The longitudinal PMD in (a) is shown as a function of polar

angles θp, defined counter-clockwise from the positive pz-axis on the polarization plane (y = 0),

and of kinetic energy (|pz |2 + |px|2)/2 on the polarization plane.
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FIG. 2. (Color online) The transversal PMD in FIG. 1(b) at the radius ps given by Eq. (25) is

shown as a function of azimuthal angles φp, defined counter-clockwise from the positive px-axis on

the xy-plane (perpendicular to the laser polarization). The electron density for each s (the number

of absorbed photons above threshold) is normalized between φp = 90 and 270 degrees.
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FIG. 3. The longitudinal PMD in FIG. 1(c) is integrated over θp and shown in the logarithmic

scale.
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FIG. 4. (Color online) The longitudinal PMD of the hydrogen atom driven by the 800nm, 20-cycle

laser field (α = π/2) of peak intensity Io=5 × 1013 W/cm2 with various ellipticity: (a) ε = 0

(linear polarization), (b) ε = 0.2, (c) ε = 0.4, (d) ε = 0.6, (e) ε = 0.8, and (f) ε = 0.87. Inset

figures are the radially integrated and normalized density distributions. Color scales are given in

the corresponding figures in FIG. 5.
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FIG. 5. (Color online) The longitudinal PMDs in FIG. 4 are shown as a function of polar angle

θp, defined counter-clockwise from the positive pz-axis, and of kinetic energy on the polarization

plane (y = 0): (a) ε = 0 (linear polarization), (b) ε = 0.2, (c) ε = 0.4, (d) ε = 0.6, (e) ε = 0.8, and

(f) ε = 0.87.
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FIG. 6. (Color online) The same as FIG. 1, but the duration of driving laser pulse is reduced to 6

optical cycles. The classical limit of the electron momentum −A(t) is shown as a solid red line in

(a).
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FIG. 7. (Color online) The same as FIG. 6, but with the ellipticity ε = 0.87 and two different

CEPs: α = 0 (top row), and α = π/2 (bottom row). Inset figures in (a) and (d) show the radially

integrated and normalized density distributions.
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