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Strong-field ionization (SFI) has been shown to prepare wave packets with few-femtosecond pe-
riods. Here, we explore whether this technique can be extended to the attosecond time scale. We
introduce an intuitive model, which is based on the Fourier-transform of the sub-cycle SFI rate,
for predicting the bandwidth of ionic states that can be coherently prepared by SFI. The coherent
bandwidth decreases considerably with increasing central wavelength of the ionizing pulse but it is
much less sensitive to its intensity. Many-body calculations based on time-dependent configuration-
interaction singles (TDCIS) support these results. The influence of channel interactions and laser-
induced dynamics within the ion is discussed. Our results further predict that multi-cycle fem-
tosecond pulses can coherently prepare sub-femtosecond wave packets with higher selectivity and
versatility compared to single-cycle pulses with an additional sensitivity to the mutual parity of the
prepared states.

PACS numbers: 32.80.Rm,31.15.A-,42.65.Re

I. INTRODUCTION

The measurement of electronic wave packets has re-
cently attracted widespread interest. Time-domain stud-
ies of electrons in atoms, molecules and the condensed
phase offer new approaches to understanding electronic
structure and electronic correlations (see e.g. [1–6]).
Electronic wave packets have been measured in the
valence-shell of atomic ions using transient absorption
[7, 8] or sequential double ionization [9, 10] and in the
valence shell of neutral molecules using high-harmonic
spectroscopy (HHS) [11–13].

One necessary condition for creating electronic motion
is the population of multiple electronic states. Strong-
field ionization is well known to fulfill this condition [14–
18]. The second requirement, which has received much
less attention, is the coherent preparation of these elec-
tronic states. Since ionization is inherently an open-
system quantum process with respect to the cation, the
coherence between the quantum states of the cation is
always imperfect. In other words, SFI leaves the ion in a
mixed state which may display no time dependence at all.
Hence, a method for predicting the degree of coherence
created by SFI is urgently needed.

The partial coherence of electronic states generated by
SFI has been studied in rare-gas ions, both theoretically
[19, 20] and experimentally [7, 8]. These studies showed
that the degree of coherence decreases with increasing
duration of the ionizing pulse and suggested that the op-
tical cycle sets a natural lower bound to the period of
wavepackets accessible through SFI.

The subject of this article is particularly relevant for
applying SFI to initiate charge migration [1, 21, 22] which
is usually discussed in the context of single-photon ion-

ization in the sudden limit. A recent study of single-
photon ionization by attosecond pulses has shown that
a necessary condition for the coherent population of
cationic states is that the bandwidth of the ionizing ra-
diation exceeds their energetic separation [23]. In con-
trast, the existence of a similar condition for SFI in the
non-perturbative regime is not obvious and has, to our
knowledge, not been discussed previously. In the case of
perturbative, non-resonant SFI by n photons, the coher-
ence bandwidth should be given by the Fourier transform
of the nth power of the time-dependent electric field. This
pronounced dependence on the number of photons should
disappear in the non-perturbative regime. Alternatively,
in analogy to single-photon ionization, the spectral width
of the created photoelectron wave packet (2 times the
ponderomotive potential) could be the key quantity in
determining the coherence. We show that it is in fact a
third quantity, namely the temporal confinement of SFI,
that is the key to defining the coherent bandwidth. This
result suggests a surprisingly simple and general method
for predicting the potential of SFI to prepare attosecond
dynamics in a specific system.

In this article, we introduce the concept of a “coher-
ence window” which represents the bandwidth of ionic
states that can be coherently prepared by SFI. The co-
herence window is obtained by Fourier-transforming the
sub-cycle time dependence of the SFI rate. We de-
rive this conceptually intuitive model from the strong-
field approximation (SFA) and validate it using the
time-dependent configuration-interaction singles (TD-
CIS) method [24, 25], an ab-initio many-body approach.
Our model predicts a pronounced decrease of the coher-
ence window with increasing central wavelength. The
TDCIS results reveal substantial changes in the presence
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of laser-driven transitions in the ion and a reduction of
the coherence caused by channel interactions. Most im-
portantly, all results agree in displaying energy-domain
recurrences of the coherence that enable highly-coherent
attosecond wave packets to be selectively prepared by
multi-cycle femtosecond pulses. This property is partic-
ularly valuable for preparing only selected electronic co-
herences in molecules where SFI would usually prepare
highly complex wave packets.

II. RESULTS

A. Simple Model

Our approach is motivated by the Fourier principle.
The more a physical event is confined in time, the larger
is the associated energy bandwidth. Applied to SFI, we
conjecture that the sub-cycle evolution of the strong-field
ionization rate Γ(t) := Γ(E(t)) is the key quantity in de-
termining the bandwidth of states that can be coherently
prepared, where E(t) is the instantaneous electric-field
strength. The highly non-linear dependence of Γ on E
results in a wide coherence window that can span several
electron volts. We first illustrate this result numerically,
then derive it from the SFA and finally test it against ab
initio multi-electron (TDCIS) calculations.
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FIG. 1: (color online) (a) Electric field of a 6.3 fs pulse cen-
tered at 800 nm and non-adiabatic SFI rate for a peak inten-
sity of 1014 W/cm2, ionization energy of 12.1 eV and angular
momentum quantum numbers ` = 1 and m = 0. (b) Fourier-
transform amplitude of the full SFI rate (solid blue line) or
the SFI rate restricted to the window shown in (a) (green
dashed line). The dotted blue line shows the degree of coher-
ence C between the ground state and an excited state with
Ip = 12.1eV + ∆E as a function of ∆E, calculated according
to Eqs. (3) and (4).

Figure 1a shows a linearly polarized few-cycle pulse
and the associated non-adiabatic SFI rate [26] for a
hydrogen-like atom. Figure 1b shows the absolute value
of the Fourier transform of both the complete SFI rate
(full blue line) and its restriction to the central half cy-
cle (green dashed line). This latter curve represents the

coherence window associated with a single half cycle,
whereas the former represents the coherence window as-
sociated with the complete pulse.

The following conclusions can be drawn from Fig. 1,
which shows results for 800 nm central wavelength and
1014 W/cm2 peak intensity. These pulse parameters give
rise to a half width at half maximum of 3.9 eV, corre-
sponding to a temporal period of 1.06 fs. The shortest
accessible period thus lies far below the optical-cycle pe-
riod of 2.67 fs, which is a consequence of the non-linearity
of SFI. A single-cycle pulse can thus coherently prepare
any pair of levels lying within the single-cycle coherence
window (dashed green line in Fig. 1b), whereas a multi-
cycle pulse can only coherently prepare levels lying within
the narrower maxima of the multi-cycle coherence win-
dow (full blue line). In the case of an inversion symmetric
medium these maxima are spaced by 2nω (with n inte-
ger) because the SFI rate does not distinguish between
positive and negative extrema of the electric field and
thus possesses twice the angular frequency ω of the elec-
tric field. The case of non-inversion-symmetric systems
and the role of parity are discussed below.

B. Derivation from the Strong-Field
Approximation

We now provide an analytical derivation of the coher-
ence window from the SFA. The SFA [27–32] has been
widely used to calculate photoelectron momentum dis-
tributions. It has explained properties of SFI such as
above-threshold ionization peaks and their ponderomo-
tive shift, intracycle interference [33, 34], and the lat-
eral width of momentum distributions [35]. The SFA
has not previously been used to investigate coherence in
ions. Here we use the SFA to derive the density matrix
of ions created by SFI. An atom or a molecule, initially
in its ground state Ψ0, is ionized by a linearly polarized
pulse with electric field E(t)ez. In length-gauge SFA, the
complex amplitude for creating an ion in the state J ac-
companied by an electron with momentum k, taken at
the final time tf and in atomic units, is

MJ(k) = i

tf∫
−∞

dt DJ(vk(t))E(t) eiSJ (k,t) e−iEJ tf . (1)

Here DJ(v) = 〈v, J |Dz|Ψ0〉 is the transition dipole to
the product state |v, J〉 of a plane wave with momen-
tum v and the ionic state J with energy EJ relative
to the neutral-atom ground state. The electron kinetic
momentum is vk(t) = k+A(t) with A(t) = A(t)ez =

−
∫ tE(t′)ez dt

′, and the action is given by SJ(k, t) =

EJ t− 1
2

∫ tf
t
vk(t′)2 dt′.

Tracing out the degrees of freedom of the unobserved
photoelectron produces the reduced density matrix of the
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ion,

ρJK =

∫
d3k MJ(k)MK(k)∗. (2)

We evaluate the time integral in Eq. (1) by a saddle-point
approximation. In the tunneling regime, the complex
saddle-point times given by ∂

∂tSJ(k, t) = 0 are near the
classical ionization times defined by kz +A(t) = 0. For
simplicity, we assume that the transition dipoles do not
have a singularity at the saddle point, which is true for
bound states of limited spatial extension. Electron wave
packets contributing to the same final momentum, but
emitted at different times, have small overlap because of
rapid wave-packet spreading in the continuum. Hence,
we determine the coherence by neglecting terms where
two ionic states are populated at different classical times.
We restrict the kz integration to the classically allowed
range and rewrite it as a time integral by substitution.
For tf→∞, small EJ and small k2⊥ = k2x + k2y, we thus
find

ρJK =

∞∫
−∞

dt
√

ΓJ ΓK sgn(E(t))(2−PJ−PK)/2 ei(EJ−EK)t.

(3)
To reach this result, we have approximated DJ =
cJ D(k⊥) fJ(sgn(E(t))) with a constant cJ and a state-
independent function D. The function fJ(x) =
x(1−PJ )/2|fJ(x)| with PJ = ±1 describes inversion
symmetry: for states with defined electronic parity,
we have fJ(x) = x(1−PJ )/2; for polar molecules,
fJ accounts for the asymmetry of ionization. The
instantaneous ionization rate is given by ΓJ(t) =

exp
(
− 2
√
2EJ

3

3|E(t)|

)
|cJ fJ |2 Γ⊥(t) with Γ⊥(t) capturing the

state-independent integral over the transverse momen-
tum. The ionization rates can be quantitatively calcu-
lated by improved methods that include the Coulomb po-
tential, nonadiabatic effects or molecular electronic struc-
ture [26, 31, 36, 37]. These results enable us to calculate
the coherence between states J and K as follows:

C =
|ρJK |√
ρJJρKK

. (4)

The limit C = 1 represents a pure state, whereas C = 0
represents a mixed state which displays no time depen-
dence at all.

The results obtained from this derivation are compared
to the simple model in Fig. 1. The dotted curve in
Fig. 1 shows the degree of coherence C between the
ground state and an excited state as a function of their
energy separation, calculated according to Eqs. (3) and
(4) using the non-adiabatic tunneling rate [26]. The close
agreement between the two blue curves in Fig. 1 shows
that the Fourier-transform based coherence window (full
curve) is a good predictor of the coherence (dotted curve)
that we derive more rigorously below. These results thus

confirm our conjecture and Eq. (3) simultaneously intro-
duces two important refinements. First, the coherence
window depends on the SFI rates to both final states,
the ground and the excited state. Indeed, Eq. (3) rep-
resents the Fourier transform of the geometric mean of
the two ionization rates evaluated at the difference of the
ionization energies ∆E = EK−EJ . The comparison of
the full and dotted lines in Fig. 1b shows that this effect
is only important at high internal energies of the cation.
Second, the shape of the coherence window is sensitive to
the parity of the final states. If J and K have the same
parity (PJPK = 1), the coherence will peak at ∆E = 0.
For a long pulse, the integrand is nearly a periodic func-
tion leading to peaks of the coherence when ∆E is an
even multiple of ω. If, on the other hand, J and K differ
in parity (PJPK = −1) the integrand changes sign every
half cycle and the coherence peaks at odd multiples of ω.
For polar molecules, electronic parity is not defined and,
consequently, the coherence peaks appear at all integer
multiples of ω.

C. TDCIS calculations

EΔ

EΔ

5s5s1/2

5p3/2

5p1/2

12.1 eV

5p

23.4 eV

12.1 eV

(a) same parity (b) opposite parity

FIG. 2: Level structure of the artificial xenon atom used in
the TDCIS calculations to represent the case of initial states
of the (a) same parity and (b) opposite parities.

We now validate these predictions beyond the frame-
work of the SFA and additionally analyze the roles played
by laser-induced transitions and channel interactions by
turning to TDCIS calculations [39][40]. All TDCIS calcu-
lations in this article use an artificial Xe atom with tun-
able energy-level separations as illustrated in Fig. 3. Fig-
ure 2 illustrates the role of parity through the coherence
C between two ionic states of (a) the same and (b) oppo-
site parities as a function of their energy separation ∆E.
The lowest ionization energy (12.1 eV) is kept constant
in all cases. We illustrate the case of equal parity, using
the 5p−11/2 and 5p−13/2 fine-structure states (mJ = 1/2) of

Xe+. The 5s−1 and 5p−1 states with spin-orbit coupling
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artificially set to zero serve as illustration for the case of
final states with opposite parities.
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FIG. 3: (color online) Coherence between two ionic states pre-
pared by SFI with the same (a) or opposite (b,c) parities as
a function of their separation ∆E. The states in (a) are the
5p−1

1/2 and 5p−1
3/2 of Xe+ (mJ = 1/2), and in (b) the states 5s−1

and 5p−1
0 with spin-orbit interactions turned off. Results are

shown for TDCIS (solid red) and Eq. (4) using non-adiabatic
tunneling rates [38] (dotted blue). (c) same as (b) comparing
the full TDCIS calculation with the result obtained by set-
ting the 5s−1 ↔ 5p−1

0 transition dipole moment to zero. In
all panels the ionizing pulse is 12.7 fs (FWHM) long, has a
peak intensity of 1014 W/cm2, and a central wavelength of
1900 nm. The vertical dashed lines mark energy splittings
corresponding to 2nω and (2n+ 1)ω, respectively.

III. DISCUSSION

Figure 3 compares the TDCIS results (red line) with
the model (Eq. (4)) based on the non-adiabatic tunneling
rates. Both theories agree in predicting the local maxima
of the coherence at ∆E = 2nω for the same-parity case
and ∆E = (2n+ 1)ω for the opposite-parity case. In the
case of equal parities (Fig. 2a), a very good general agree-
ment between the model and the TDCIS calculations is
obtained. This result shows that the model accurately
captures the physical processes behind the creation of
coherence. In the case of opposite parities (Fig. 2b), the
model and TDCIS calculations still agree very well, ex-
cept for the 1ω peak which is unexpectedly small in the
TDCIS calculations. Panel (c) shows that this suppres-
sion is a consequence of laser-driven transitions between
the dipole-coupled 5p−1 and 5s−1 states of Xe+. When
the corresponding transition dipole moment is set to zero

in the TDCIS calculations, the normal situation of mono-
tonically decreasing coherence peaks is recovered.
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FIG. 4: (color online) (a) Effect of the intensity on the coher-
ence between the 5p−1

1/2 and 5p−1
3/2 states of Xe+ (mJ = 1/2)

as a function of their energy separation from TDCIS calcula-
tions. (b) same as (a) for the 5s−1 and 5p−1

0 states. All other
pulse parameters are the same as in Fig. 3. (c) Effect of the
wavelength on the coherence between 5p−1

1/2 and 5p−1
3/2 using

an energy-level separation of 1.3 eV, a peak intensity of 1014

W/cm2 and a single-cycle pulse at each wavelength.

Figure 4 shows the dependence of the coherence on the
intensity (a,b) and wavelength (c) of the driving pulse.
The influence of the intensity is generally rather weak. In
the case of equal parities, higher intensities suppress the
coherence for high-lying excited states. This is explained
by the broadening of the temporal ionization window
with increasing intensity. In the case of opposite pari-
ties, an increase of the intensity leads to a suppression of
the first peak, which supports the interpretation of Figs.
2b and 2c that laser-induced transitions reduce this co-
herence. A complementary behavior is observed in the
3ω peak which is found to increase with the intensity.

The effect of the wavelength is studied in Fig. 4c by
displaying the coherence between the 5p−11/2 and 5p−13/2

states of Xe+ (mJ = 1/2), using a single-cycle laser
pulse at all wavelengths. We compare the results of the
model using non-adiabatic tunneling rates (blue dotted
line) with the model using quasi-static rates (green dot-
ted line). We find that the two models agree at long
wavelengths, but the quasi-static rates overestimate the
coherence at wavelengths ranging from 800 to 2000 nm.
The additional comparison with TDCIS calculations (red
line) shows that the interaction between ionization chan-
nels, present in TDCIS but absent in both model calcu-
lations, additionally suppresses the degree of coherence
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at all wavelengths.

IV. CONCLUSION

In conclusion, we have introduced an intuitive ap-
proach to predicting the degree of coherence between
multiple states of a cation prepared by SFI. We showed
that laser-induced transitions, non-adiabatic effects
in tunneling and channel interactions generally tend
to decrease the degree of coherence predicted by our
simple model. We have further shown how coherent hole
wave packets can be selectively created with multi-cycle
strong-field pulses that may be much longer than the
period of the prepared dynamics itself. This property
alleviates the need for single-cycle IR pulses that are
challenging to create. In inversion-symmetric systems,
the hole coherence maximizes at ∆E = 2nω, with n
integer, for ionic states of the same parities and at
∆E = (2n + 1)ω for states of opposite parities. In
systems lacking inversion symmetry, such as polar
molecules, local maxima of the coherence are in contrast

expected for ∆E = nω. The described approach finally
also offers a way to selectively create coherent wave
packets involving specific hole states that could not
be generated with short “delta-like” strong-field or
attosecond XUV pulses. A generalization to multi-color
pulses opens the path to an even higher selectively in
creating attosecond electronic wave packets involving
multiple ionic states.
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