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It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the
resonant optical depth of the cloud. Further, it is demonstrated how the strong directionality of the
coherent interactions causes the cloud’s spectra to depend strongly on its shape, even when the cloud
is held at constant densities. These two numerical observations can be predicted analytically by
extending the single photon wavefunction model. Lastly, elongating a cloud along the line of laser
propagation causes the excitation probability distribution to deviate from the exponential decay
predicted by the Beer-Lambert law to the extent where the atoms in the back of the cloud are more
excited than the atoms in the front. These calculations are conducted at low densities relevant to
recent experiments.

PACS numbers:

I. INTRODUCTION

Since the seminal work of Dicke [1], the effects of collec-
tive emission in an ensemble of radiators has been stud-
ied extensively. Collective long-range interactions have
shown their import in many phenomena such as coher-
ent forward scattering [2, 3], the collective Lamb shift
[4], fault-tolerant quantum computation [5], laser cool-
ing [6], and homogeneous line-broadening [7]. The study
of collective effects and their role in transition lines is of
particular importance for the implementation of highly
accurate atomic clocks [8–12], where achieving narrow
resonance lines is essential. As the quest for extremely
accurate atomic clocks progresses, an understanding of
the plethora of physical processes in cold atomic gasses,
such as density dependent line-broadening [8], will need
to be understood using models that extend the classi-
cal theories of line-broadening, since these models mainly
rely on local interactions [13–15].
Although the interaction between an individual pair

of atoms or molecules in a cold, diffuse gas can be tiny,
the long-range nature of the dipole-dipole couplings can
lead to the substantial constructive buildup of small in-
teractions over an entire ensemble [2, 3, 16–20]. This
understanding has been improved using single photon
wavefunction theories that provide analytic predictions
about the line-broadening seen in an atomic cloud when
driven by an extremely weak laser [3, 16, 19]. Here we
explore this concept for very low atomic density, showing
that the model remains valid whenever inhomogeneous
broadening is negligible. For example, the line-width
(Γ′) for an N atom gas with a Gaussian density distri-

bution increases according to Γ′ = (1 + ξb0
8 )Γ, where b0

is the cooperativity parameter, b0 ≡ 3(N−1)
k2σ2 , ξ is a num-

ber parameterizing the cloud-shape (see Eq. 4), N is the
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number of atoms in the cloud, and Γ is the single atom
line-width. Unlike collisional broadening where the ex-
tra line-width is only proportional to the average density,
the extra line-width from the dipole-dipole interaction is
proportional to the average density and the linear size of
the gas. This scaling should affect the spectroscopy of
cold atoms since the extra line width can be substantial,
even at low densities. This also has implications for fault
tolerant quantum computation, specifically the threshold
theorem which assumes spatially and temporally local
interactions [21, 22]. Here large separations ensure the
absence of collisional broadening but the dipole-dipole
interaction will still lead to an extra line-width, implying
a faster decoherence [5].

FIG. 1. The scattered radiation is studied for (i) clouds in-
creasing in number of atoms while being held at constant av-
erage density and shape, and (ii) clouds with varying shapes

with respect to k̂ held at constant average density and atom
number. The figure also shows the level diagram of the tran-
sitions focused on in this letter: the 88Sr J=0 to J=1 inter-
combination line where the 3P1 level can be either degenerate
in MJ (a) or Zeeman split (b).

By studying the photon scattering rate versus detun-
ing, we illustrate how cold atom clouds with average den-
sities such that ρ̄/k3 ≪ 1, exhibit collective effects similar
to those predicted using single photon wavefunction the-
ories [3, 16, 19]. Even at densities where individual inter-
actions are tiny, a cloud can still show signs of coherence

due to the buildup of the eikr

r term present in dipole-
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dipole couplings. This leads the line-broadening and the
excitation distribution of a cloud to depend strongly on
its overall shape, since interactions add constructively
between atoms separated by a position vector parallel to
the direction of the driving laser (k̂ ≡ k

|k| ). For constant

ρ̄ and N, clouds that are elongated parallel to k̂ are more
broadened than those elongated perpendicular to k̂.
This work is organized as follows: In Sec. II, we de-

scribe our numerical approach, as well as a variant of the
Gauss-Seidel iteration routine that allows for the simula-
tion of larger numbers of atoms. In Sec. III, we provide
an analytic derivation of the dependence of a cloud’s line-
shape on its density, aspect ratio, and number of atoms.
This is done using an improvement of the single photon
wavefunction model so that it includes a vectorized elec-
tromagnetic field, as well as a spherically non-symmetric
Gaussian cloud. In Sec. IV, we discuss the results of our
numerical model. Here we show that until a cloud be-
comes too elongated along the line of laser propagation,
the results of our analytic model are numerically accu-
rate. Lastly, we show that for clouds highly elongated
along k̂ and driven by a red detuned laser, a counter-
intuitive excitation distribution develops: the atoms in
the back of the cloud (farther along k̂) are more likely to
be excited than the atoms in the front of the cloud. This
is the reverse of the typical exponential decay predicted
by the Beer-Lambert law. We discuss experimental pos-
sibilities and provide concluding remarks in Sec. V.

II. NUMERICAL METHOD

For a weak laser, a collection of atoms can be treated
as classical radiating dipoles or equivalently as coupled
damped harmonic oscillators [20, 23–25],

ȧµα(t) = (i∆− Γ/2)aµα(t)− i(d/~)Eµ(rα)

− (Γ/2)
∑

β 6=α,ν

Gµν(rβ − rα)a
ν
β(t), (1)

where aµα represents the µth polarization amplitude of the
αth atom, d is the electric dipole matrix element, Eµ(rα)
is the µth component of the laser field at atom α, ∆ is the
detuning, and Gµν(r) is the usual dipole field propagator
[26],

Gµν(r) =
3eikr

2ikr
{[δµν− r̂µr̂ν ]+[δµν−3r̂µr̂ν ][

i

kr
− 1

(kr)2
]},
(2)

where r = |r|, and r̂α are the components of the vector
r̂ = r/r. These coupled equations can be rewritten in
matrix-vector form:

ȧ = Ma− i
d

~
E (3)

and the steady state solution (ȧ = 0) may be obtained
by inverting a symmetric 3N × 3N matrix for systems
where the atoms’ energy levels are degenerate in MJ ,

and a N × N matrix for the system with Zeeman split-
ting. For these calculations, we average over 1.2× 105/N
randomly distributed atom positions for the line-shape
calculations and 9.6 × 105/N randomly distributed po-
sitions for the excitation distribution calculations. The
atoms are treated as stationary and distributed according
to a Gaussian density distribution:

ρ(r) =
N

σ3(2π)3/2
exp

( −1

2σ2

{

ξ(y2 + z2) +
x2

ξ2
}

)

(4)

where σ is the standard deviation of a spherically sym-
metric cloud chosen to produce a specific average density
ρ̄ = N/(4πσ2)3/2 and ξ is a constant that parametrizes
the shape of the cloud with respect to the laser direction.
Here the laser is set so that it is propagating in the x̂ di-
rection and polarized in the ẑ direction. For spherically
symmetric calculations (ξ = 1), we find that the results
using a Gaussian density distribution agree with a con-
stant density distribution to within 5%, for up to 104

atoms.
In order to avoid the usual N3 scaling of the computa-

tion time, we solve this matrix equation using an adap-
tation of the Gauss-Seidel [27] iteration algorithm. This
may be written in the form:

an+1 = D
−1

( id

~
E − (M −D)an

)

(5)

For the usual Gauss-Seidel iteration routine, D would
consist of the diagonal elements of M . However, this
diverges whenever D−1(M −D) contains an eigenvalue
with an absolute value greater than 1. We avoid this
problem by allowing D to change depending on the cur-
rent row during a matrix multiply. When a row cor-
responding to a particular atom is being updated in a,
we choose D such that it contains current atom’s cou-
plings to its m closest neighboring atoms. This routine
allows the largest couplings, that would lead to the diver-
gence discussed above to be conducted exactly, while the
majority of the smaller couplings are iterated. This algo-
rithm scales at a rate close to N2, allowing us to simulate
much larger numbers of atoms than we could otherwise.
Note that this numerical method is much more efficient
at lower densities.

III. SINGLE-PHOTON MODEL FOR A
NON-SYMMETRIC GAUSSIAN CLOUD

This study is conducted in the limit of weak laser in-
tensity. Because of this, the single photon wave-function
model [3, 19] should be a fair approximation. Following
this model, we write our wave-function as:

|Ψ(t)〉 = β+(t) |+〉 |{0}〉+
∑

αβα(t) |−(α)〉 |{0}〉+ (6)
∑

kλγkλ(t) |g〉 |{nkλ = 1}〉 (7)
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where |+〉 is the superradiant Dicke timed state:

|+〉 = 1√
N

∑

j

eik0·rj |j〉 (8)

where |j〉 refers to the state where the jth atom is excited
and the rest are in the ground state, and |−(α)〉 is the αth

subradiant state defined so that it is orthogonal to |+〉.
For the purpose of simplicity, we assume the cloud con-

sists of two-level atoms polarized in the x̂ direction driven
by a laser propagating in the ẑ direction. This differs the
rest of the paper, but it simplifies the analytic calculation
without changing any effects. We model the Hamiltonian
as:

H = H0+~

∑

j

∑

kλ

(ǫ̂kλ ·x̂)gkπ†
j âkλe

−iωkt+ik·rj +c.c. (9)

where H0 is the single atom Hamiltonian, gk =
−i℘

√

2π~ωk/V is the atom-photon coupling constant for

the kλ mode, where ℘ is the dipole matrix element, π†
j

is the raising operator for atom j, and âkλ is the photon
lowering operator for the kλ mode. Switching into the
Dirac picture, if we multiply the Schodinger Equation by
〈+|, we obtain an equation for β̇+(t):

β̇+(t) =
−i√
N

∑

j

∑

kλ

(ǫ̂kλ · x̂)gkei(k−k0)·rj+i∆tγkλ(t) (10)

where ∆ ≡ (ω0 − ωk). Similarly we obtain:

γ̇kλ =
−i√
N

∑

j

{

(ǫ̂kλ · x̂)g∗ke−i(k−k0)·(rj)−i∆tβ+(t)

+
∑

α

cα,jβα(t)
}

(11)

β̇(α)(t) =
−i√
N

∑

j

∑

kλ

(ǫ̂kλ · x̂)gkcα,jei(k−k0)·rj+i∆tγkλ(t)

(12)
where cα,j refers to amplitude of the jth ket of the αth

subradiant state. However, in the limit kσx,y,z ≫ 1 and
N ≫ 1, there is no Agarwal-Fano coupling [3], meaning
that the (N-1) subradiant states will not interact with
the superradiant or ground states. This allows one to
write the differential equation for β̇+(t) as:

β̇+(t) =
−1

N

∑

j,j′

∑

kλ

∫ t

0

dt′β+(t
′)ei∆(t−t′)(ǫ̂kλ · x̂)2|gk|2

e i(k−k0)·(rj−rj′ ). (13)

The sum over atom positions now gives:

∑

j,j′

ei(k−k0)·(rj−rj′ ) = N +
∑

j,j′ 6=j

ei(k−k0)·(rj−rj′ ). (14)

Changing the sum in Eq. 14 into an integral over atom
positions in a Gaussian cloud elongated along the line of
laser propagation gives:

N +N(N − 1)

∫ ∫

d3x1d
3x2

exp
( −1

2σ2

{

ξ(x2
1 + x2

2 + y21 + y22) +
z21 + z22

ξ2
}

)

exp
(

i
{

k − k0

}

·
{

r1 − r2

}

)

. (15)

Performing the integrals over atom positions gives:

N+N(N − 1) exp
(

− σ2

{ 1

ξ
(|k0 − k|x + |k0 − k|y) + ξ2|k0 − k|z

}

)

(16)

Setting k0 = k0ẑ, and plugging Eq. (16) into Eq. (13)
and converting the sum over k into an integral gives:

β̇+(t) = −V
8π3

∫∞

0

∫ π

0

∫ 2π

0 dkdθdφk2 sin(θ)
∫ t

0 dt
′β+(t

′)

ei∆(t−t′)|gk|2(1− sin2(θ) cos2(φ))

{

1 + (N − 1)(17)

exp
(

− σ2
{

k2 sin2(θ)
ξ + ξ2(k0 − k cos(θ))2

})

}

Performing the Markovian approximation, evaluating the
angular integrals, and then keeping only the first order
terms when invoking the limits ξ ∼ 1 and kσ ≫ 1 gives:

β̇+(t) = −Γ

2

(

1 +
ξb0
8

)

β+(t), (18)

where Γ = 4ω3|℘|2

3~c3 , is the single atom decay rate and

b0 = 3(N−1)
k2σ2 is the cooperativity parameter of the gas.

IV. NUMERICAL RESULTS

A. Line-Broadening

Our numerical calculations show that for spherically
symmetric clouds, our the analytic prediction of Sec. III
is correct. This section shows that a spherically symmet-
ric cloud (ξ = 1) with a density such that ρ̄k3 ≪ 1, emits
light with a line-width that is approximately (1 + ζb0)Γ,
where ζ is a numerically determined constant. Using
numbers for the 1S1 → 3P1 transition of 88Sr, we calcu-
late the value of ζ for two cases: first, for the transition
from the 3P1 state without a magnetic field, and second
for the transition from the ẑ polarized state, where 3P1

has been Zeeman split. For the Zeeman split case, we
choose the |Jg = 0,Mg = 0〉 to |Je = 1,Me = 0〉 transi-
tion with the driving laser polarized in the ẑ direction.
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This choice gives a maximum laser coupling between the
states and gives a large effect from the dipole-dipole in-
teraction. We show that the fractional change in line-
width, (Γ′ − Γ)/Γ, is ζb0 using up to 3 × 103 atoms for
the system that is degenerate in MJ and up to 2 × 104

atoms for the system with Zeeman splitting. For atoms
experiencing no magnetic field, it is determined that ζ ≃
0.126 and for the Zeeman split case, ζ ≃ 0.127. This is
in good agreement with the result of ζ = 1/8 derived in
Sec. III using our extension of the single photon model.
The fact that the numerical calculations with and with-
out Zeeman splitting give essentially the same answer,
even though one includes four states and the other only
two states, is due to the strong forward dependence of
the coherent interactions. Since a laser polarized in the
ẑ direction will only illuminate the polarization state cor-
responding to ẑ, and scattered radiation in the forward
direction has the same polarization as the laser, coherent
radiation will mainly interact with states that are ẑ po-
larized. Therefore, the states that coherently contribute
to the line-broadening of the cloud will be the same for
both systems.

For illustrative purposes, we rewrite our equation for a
system’s fractional change in line-width as, (Γ′ −Γ)/Γ =
12πξζρ̄2/3N1/3/k2 = 24π3/2ξζρ̄σ/k2, in the limit N ≫ 1.
These equations explicitly show the parametric depen-
dence of Γ′. In order to demonstrate this in our calcu-
lations, Fig. 2a shows the photon scattering rate γ ver-
sus N at a constant density of ρ̄=5 × 1017m−3 (ρ̄/k3 ≃
6.6 × 10−4). In Fig. 2b, we show that (Γ′ − Γ)/(Γρ̄2/3)
when plotted against N1/3 gives a straight line, which
agrees with our analytic result for values of ρ̄ between
1015m−3 and 5× 1017m−3. This plot shows no cutoff for
clouds up to 2× 104 atoms.

The power law N1/3 scaling of the fractional change in
line-width can be understood qualitatively using the fol-
lowing picture. Since the average spacing of the atoms for
the largest densities shown is over 1.8λ, large-scale effects
only occur if there is constructive interference in the sum
over many photon-propagation paths. Here constructive
interference occurs because the phase difference between
the driving laser at atom α and at atom β is exactly the
phase difference a photon will gain when traveling from
atom α to β if

rα−rβ

|rα−rβ |
· k̂ ≃ +1. On the other hand if

rα−rβ

|rα−rβ |
· k̂ 6= +1, the phases will randomize, resulting in

no constructive interference. Just as in the case of co-
herent forward scattering, where the scattered emission
from a cloud adds coherently along k̂ [2, 3], the atom-
atom interactions that contribute to broadening also add
coherently along k̂. Thus, for a given ρ̄, the number
of atoms that interact coherently and contribute to the
line-broadening increases with the size of the cloud.

B. Comparison with Ref. [8]

This equation for Γ′ may be relevant to the density de-
pendent line-broadening observed in Ref. [8]. For densi-
ties of 5.0×1017m−3, Ref. [8] measures the homogeneous
line-width of their sample to be ≃ 29 kHz, compared to
the measured low density line-width ≃ 14.5 kHz, making
the density dependent broadening≃ 14.5 kHz. Our equa-
tion for line-broadening predicts this value to be ≃ 26.8
kHz, assuming a single atom lifetime of 21.3µs [29]. This
calculation also assumes N = 106 and a spherically sym-
metric cloud, both of which were not specified in Ref. [8].
Reference [8] does note that at constant ρ̄, clouds con-
taining more atoms have larger homogeneous line-widths,
which was explained by noting that the collisional scat-
tering lengths for atom-atom collisions increases as the
relative motion between the molecules decreases. Alter-
natively, the increased broadening with N seen in Ref. [8],
could be explained using the above formula in which the
fractional change in line-width increases proportional to
N1/3 for a given average density. The difference between
our extrapolated result and Ref. [8] might be due to the
simplicity of our model and/or the lack of important in-
formation about experimental parameters (for example
the number of atoms in particular measurements). A
more accurate calculation for this system will require the
effects of atomic collisions and non-stationary atoms as
well as knowledge of the shape of the atomic cloud. We
address the importance of the cloud shape below.

C. Dependence of Line-Shape on the Aspect Ratio

Because the dipole-dipole interactions parallel to k̂ add
constructively, the scattering rate will also depend on the
shape of the atomic cloud. A cloud that is highly elon-
gated along k̂ will have a larger fraction of its atoms
interact constructively, causing the absorption line to be
significantly more broadened. We illustrate this in Fig.
3, where we show how the Lorentzian line-shape, changes
significantly as we morph the cloud from being flattened
against k̂ to being elongated along k̂. In these calcu-
lations, we parametrize the spatial distribution with the
variable ξ defined by Eq. 4, so that the ρ̄ is kept constant
while the cloud is elongated parallel or perpendicular to
x̂. Here the length to width ratio is proportional to ξ3/2.
Varying the value of ξ produces several effects. First,

the line-width of our scattered emission profile grows as
the cloud is elongated along k̂ until finally it deviates
from a Lorentzian profile. Numerically, we find that
Γ′ = (1 + ξζb0)Γ for 0.0 < ξ ≤ 2.0, which agrees with

our analytic result (1 + ξb0
8 )Γ. For values of ξ > 2, the

line-shape of the scattered light begins to deviate from a
Lorentzian profile. Both of these effects are shown in Fig.
3. The deviation from a Lorentzian at large values of ξ
implies that the approximation of 1 superradiant state
and (N-1) non-interacting subradiant states [3, 16, 19]
is not valid in this regime, which means that many dif-
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FIG. 2. (a) Photon scattering rate γ in arbitrary units versus
detuning divided by Γ (δ ≡ ∆/Γ), for a symmetric Gaussian
cloud with ρ̄=5 × 1017m−3. (b) Broadening normalized by

ρ̄2/3, η ≡ (Γ′
− Γ)/(Γρ2/3), in units of 10−12m2 for densities

1015m−3
− 5.0 × 1017m−3 compared to the broadening pre-

dicted using the single photon wavefunction model. These
densities span a range ρ̄/k3 = 1.3 × 10−6

− 6.6 × 10−4.

ferent modes, each with their own decay rate, begin to
contribute to the overall line-shape [30]. Also, a fitted
Lorentzian profile begins to show a red-shift in the peak
position that increases with the value of ξ. These cal-
culations show that one must consider the shape of the
ensemble as a whole when calculating the line-shape of a
cold, atom cloud.The linear dependence of the line-width
on ξ could be beneficial in experiments where the ability
to control homogeneous broadening in a cloud is impor-
tant.

D. Counterintuitive Excitation Distribution

Figure 4 shows the average probability that an atom is
excited in a cloud of 104 atoms versus the distance along
the laser direction for different values of ξ (Fig. 4a) and
for different detunings (Fig. 4b). For values of ξ > 5 and
red detunings, the excitation distribution shifts towards
the back of the cloud, in contrast to the exponential decay

FIG. 3. Photon emission rate γ in arbitrary units versus δ (see
Fig. 2) for an axially symmetric Gaussian cloud of 104 atoms
at ρ̄ = 5 × 1017m−3 for different values of ξ. All calculations
are for the same intensity laser.

predicted by the Beer-Lambert law. A similar effect has
been observed in arrays of several metallic nanospheres
[31] and is due to the constructive buildup of electric field
along the line of radiators. For clouds stretched parallel
to k̂, we see that for red detuned lasers the excitation
distribution of the sample is altered such that a larger
fraction of the atoms are excited, causing an effective
red-shift of the scattered line-shape.

V. DISCUSSION/CONCLUSION

All of these phenomena should be observable experi-
mentally. The calculations in Figs 2-4 focus on the 88Sr
1S1 → 3P1 transition, but the effects shown here are inde-
pendent of the value of Γ since the damping and coupling
terms in Eq. 1 both contain Γ. The predictions described
above should be realizable for any azimuthally symmet-
ric cloud of atoms with densities similar to those shown
here when the inhomogeneous broadening is negligible.
Manipulating cold atomic clouds is common in experi-
ments [8, 32–35], which makes testing the predictions of
this letter feasible. For example using a magneto-optical
trap (MOT), one could create a cold atomic cloud with
a Gaussian density distribution equivalent to that in Eq.
4 and change the values of σx,y,z [32]. In this manner,
the Γ′ = (1 + ξζb0)Γ relationship could be measured by
driving the cloud with a low intensity laser and measur-
ing the emitted spectra for various numbers of atoms and
cloud geometries. The predicted excitation distribution
could also be shown by measuring the intensity of light
emitted by different parts of the cloud.
In conclusion, collective effects can be manipulated in

a cold gas of atoms, while keeping the average density
of the atoms constant. When ρ̄/k3 ≪ 1, the fractional
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FIG. 4. The average probability of an individual atom being
excited in a 104 atom cloud for various values of δ (see Fig. 2)

and shapes ξ versus k̂ · r in units of 105a0 (setting the center
of the cloud as the origin). (a) The average probability of
excitation (P) for a cloud driven by a red detuned laser (δ=-
3.1) for increasing values of ξ. It should be noted that in the
figure, plots with larger values of ξ average over fewer atoms
since those clouds are stretched beyond the region plotted.
(b) The ‘Normalized’ average probability of excitation (P′)
for a cloud at ξ = 5 for positive and negative laser detunings,
where ‘Normalized’ means that each curve is divided by it’s
initial point.

change in the line-width of a uniformly driven cloud of
atoms undergoing J = 0 to J = 1 transitions is ≃ ξζb0,
where ζ ≃ 1/8 is a numerically determined constant, b0
is the cooperativity parameter 3(N − 1)/(kσ)2, and ξ is
the shape parameter defined in Eq. 4. This supports the
dependence on b0 noted by previous authors using single
photon wavefunction theories [3, 16] as well as provide a
more quantitatively accurate broadening rate. Because
of the strong directionality of the coherent interactions,
the photon scattering rate and the excitation distribution
become strongly dependent on the shape of the cloud
with respect to k̂. For clouds highly elongated along
k̂, a counter-intuitive reversal of the excitation distribu-
tion of the atoms develops, where atoms in the back of
the cloud have the largest excitation probability. These
calculations show that extremely small interactions can
build constructively over an entire ensemble to give a
strikingly large effect. The incorporation of new param-
eters such as collisions, inhomogeneous broadening [36],
and the resultant role of subradiant states [30], will surely
provide new insights into similar systems in the future.

We thank C.H. Greene for several informative discus-
sions. We also thank the groups of M.J. Holland, A.M.
Rey, and J. Ye at Colorado for very informative poster
and discussion at DAMOP 2015. This material is based
upon work supported by the National Science Founda-
tion under Grant No. 1404419-PHY.
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