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The effects of endohedral confinement on the correlation energy of Be, Mg, and Ca atoms have
been investigated using modified Hartree-Fock (HF) and multiconfiguration Hartree-Fock (MCHF)
methods where the endohedral system (A@Csp) is approximated as an atom enclosed in an attractive
spherically symmetric potential well of inner radius r ~ 5.8 a.u. and thickness of A ~ 1.89 a.u., and
correlation energies are studied as a function of the depth of the confining potential (0 < Up < 1 a.u.)
to give some idea as to how the correlation energy behaves in different endohedral environments.
In general, we have found that, as a function of well depth, starting from the free atom, valence
electrons diffuse outward, in the presence of the confining potential, which causes the electrons to
be further apart, thereby decreasing the correlation energy; however, with further increase of well
depth, the valence electrons become trapped in the confining well and, as a result of their being

closer together, the correlation energy increases.

PACS numbers: 31.15.xr, 31.15.ve, 37.30.4+1

I. INTRODUCTION

Endohedral atoms are of increasing interest in physics
and other fields because the confined atoms exhibit a va-
riety of new and unique features which are relevant to a
broad range of possible applications [1-4]. In addition,
the study of the properties of endohedral atoms offers
a "laboratory” to investigate the effects of confinement
on atomic structure and transitions, and a large number
of studies of these properties are extant [5, 6]. Correla-
tion in various forms have been found to be important,
or even determinative, in many cases. A useful mea-
sure of correlation, at least in bound states, is the cor-
relation energy which is defined as the difference of the
exact energy of the state and the independent particle,
Hartree-Fock (HF) [7], energy. The exact energy can be
well-approximated by a multiconfiguration Hartree-Fock
(MCHF) [8] approach in which case, the correlation en-
ergy of an atomic system is defined approximately as

EcorT — EMB _ EHF

where E'F" is the Hartree-Fock energy, the energy cal-
culated within a single-configuration description of the
atom and, EMB the MCHF energy, is obtained includ-
ing many-body correlations.

In the present investigation, we focus on the ground
state of the alkali earth atoms Be, Mg and Ca and calcu-
late the correlation energy for the free atoms compared to
the confined atom in an attractive spherically-symmetric
potential with various well-depths of the confining po-
tential to simulate a variety of confining environments.
These atoms were chosen for a number of reasons. They
are closed-shell atoms, which simplifies the calculation.
In addition, the closed-shell nature of these atoms means
that the interaction with the inner wall of the confining
shell will be only through a van der Waals interaction,
i.e, very weak [9]. Furthermore, previous work has shown
that neutral Li, Mg and Rb are in stable equilibrium at
the center of the Cg0 shell, so it seems reasonable that Ca

might be as well [9]; this is not true of alkali earth posi-
tive ions, which were found to be in equilibrium off-center
[9]. And, in fact, this work shows that an a neutral alkali
earth atom which is off-center would be pushed back to
the center where the energy is a minimum. In any case
case, for atoms residing in the canter of the cage, treat-
ing the interaction as a central potential seems to be a
reasonable approximation. Lastly, the binding energies
of the valence ns subshell is much less than the (n-1)p
inner subshell, so that we can learn about the effects of
confinement on correlation for both diffuse and compact
wave functions. The calculation does not include Rb or
Ba because they are heavy enough that relativistic effects
would be at least as important as correlation and we are
performing explicitly non-relativistic calculations.

II. THEORY

In our studies, the endohedral environment is approx-
imated with a short range spherical potential, Ve, (r),

=Up re<r<rc+A

Veat(r) = { 0 otherwise

where the inner radius of the potential r.= 5.8 a.u., the
thickness of the well is A = 1.89 a.u. Uy = 0.302 a.u.,
which corresponds to confinement by Cgo [10]. To
make the results more general, we have investigated the
response of atom to the depth of the confining potential
as a crude way to model a variety of confining situations.

In atomic units, the Hamiltonian of an N-electron
atomic system, confined by the above potential, is given
by

N
H=3 (57 2Vt ) + o

s
i=1 i<j Y



The energy of atomic system is obtained from the ex-
pectation value of the Hamiltonian, < W|H|¥ >, where
|¥ > represents either the single configuration HF wave
function or MCHF wave function. For the case where
Vezt(r) = 0, the details and procedures for obtaining
these wave functions are dealt with extensively in the
literature, e.g., see Chap. 4 of Ref. [8] and references
therein. To perform this study with the addition of the
confining potential we have modified Froese Fischer’s lat-
est MCHF atomic structure codes [7] by adding Ve (r)
potential to the direct atomic potential. These codes
were originally designed to work with the free atomic sys-
tems in a logarithmic radial mesh points, where the densi-
ties of radial mesh points are decreasing in the large-r re-
gion. In general, outer-shell orbitals become more diffuse
in confined atoms [11, 12], therefore we further needed to
modify the code to use a finer radial mesh to represent the
diffuse orbitals better and account for the effect of the ex-
ternal well potential more precisely. All one-electron or-
bitals are then calculated within a self-consistent method
in the same way the free-atomic orbitals are obtained [8].
Note that the methodology and codes that were used in
this study are specifically aimed at a spherically sym-
metric potential, a potential that does not depend upon
angle. In other words, the methods are applicable only
if the atom is situated in the center if the Cgg shell.

In order to avoid any numerical difficulties that may
arise from including a step-like potential with sharp
edges, the edges of V.:(r), the external potential, are
smoothed by using a Wood-Saxon potential [13] to ap-
proximate our model potential. The form of Wood-Saxon
potential is

V()= - (1)

Tt eap(SE)

where ~ is known as the surface thickness parameter
and is a measure of diffuseness of the edge region of
the potential. In this work, the edges of the V,:(r) are
smoothed with a surface thickness parameter v = 0.1.
The smoothed V.. (r) potentials are shown at the mod-
ified radial mesh points for four different well depths in
Fig. 1. The diffuse, rather than sharp edge regions of the
potentials abnegate any possibility of unphysical effects
owing to a discontinuity in the potential. However, it
has been found in a previous study of photionization of
confined atoms [14] that such effects are minuscule. In
addition, in the present study, we have found only tiny
effects of the changing the diffuseness of the potential.

III. RESULTS AND DISCUSSION
A. Correlation in Beryllium

The MCHF energy of the 1s22s? state is calculated
using 17-LS terms obtained by considering all pos-
sible double-promotions (and couplings) from 1s and
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FIG. 1: (Color online) Vez¢(r) potentials with various Uy

(a.u.) values smoothed using v = 0.1 thickness parameter.

2s subshells into 2p, 3s, 3p, and 3d correlation or-
bitals; specifically 152252, 1522p?, 152352, 1523p?, 1523d2,
1522p3p, 2s22p2, 252352, 2s23p?, 2s23d%, 2s22p3p,
15252p?, 1525352, 152s83p?, 152s53d?, (152s)1S2p3p and
(1525)3S2p3p. For free Be, the result of the MCHF
calculation is -14.651173 a.u. Note that this energy is
quite close to earlier results; -14.665870 a.u. from a 52-
term configuration interaction (CI) calculation [15], and
-14.667357(8) a.u. from a CI expansion including large
number of configurations [16]. Using the same 17 terms
in the MCHF wave function, the total energies were cal-
culated for the confined atom in confining potentials of
a range of depths; the HF energies were also calculated.
The results of both calculations are shown in Fig. 2 where
the difference between the two energies (the correlation
energy), at each well depth, is evident. It is also appar-
ent from Fig. 2 that the magnitude of the total binding
energy increases with increasing well depth. This is, of
course, expected since a more attractive potential should
result in a greater binding energy. We are, however pri-
marily interested in the correlation energy, and its evolu-
tion as a function of well depth; this is shown in Fig. 3.
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FIG. 2: HF and MCHF total energies of beryllium as a func-
tion of the well depth, Up.

Of particular interest in Fig. 3 is the surprising be-
havior of the correlation energy; starting from the free
atom, the correlation energy gets smaller in magnitude
as the strength of the potential well increases up to a
certain well depth, and then increases as the well depth
increases further. To understand this phenomenology,
we first look at the mixing coefficients among the 17-
LS terms in the MCHF expansion and note that only
the 15%2p?(1S) configuration interacts significantly with
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FIG. 3: Correlation energy of confined beryllium as a function
of the well depth, Up.

the 15%2s%(19) ground state; our calculation shows that
the squares of the mixing coefficients all of the other
terms are 0.001 or less. The mixing, as a function of
well depth, between 1522p*(1S) and 1s%2s2(1S) then is
shown in Fig. 4, where it is seen that this mixing fol-
lows the same pattern as the correlation energy; decreas-
ing from the free atom with increasing well depth, and
later increasing. The explanation for this behavior can
be traced to the 2s and 2p orbitals themselves, and these
are shown in Fig. 5 for a selection of well depths, Uy.
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FIG. 4: Squares of the mixing coefficients for 1s22s% and
1522p? terms in the MCHF expansion for as functions of the
well depth, Up.

Looking at Fig. 5 a number of features emerge. First,
for all well depths studied, from the free atom to Uy =1
a.u., the spectroscopic 2s and correlation 2p one-electron
radial orbitals overlap appreciably. Second, is that both
wave functions are pulled more and more towards the
confining well as the well depth increases. And third,
when Uy reached 1 a.u., virtually all of the amplitude
of each orbital is confined to the region of the confining
well. Thus, starting from the free atom, since the or-
bitals move to larger r with increasing well depth, the
interaction between 2s% and 2p? decreases because the
Coulomb interaction goes as 1/r, i.e, as the well depth
increases, the orbitals spread out over a larger volume,
making them further apart so that the interaction be-
tween the electrons gets smaller. Ironically, at high Uy,
where the orbitals get confined in the well, the effective
value of 7 is no longer increasing. What is shown in Fig. 5
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FIG. 5: 2s and 2p one-electron radial orbitals in Be for a
selection of well depths, Uy (a.u.).

is that as the well depth increases for high Uy, the am-
plitudes of the orbitals confined in the well increase (see
the bottom panel of Fig. 5), i.e., they get closer together,
i.e., they occupy a smaller range of r,so that the interac-
tion between the 2s? and 2p? configurations increases (as
seen in Fig. 4), leading to the increase in the correlation
energy with well depth at high Up.

B. Correlation in Magnesium

The ground-state energy of Mg including many-body
correlation effects is obtained using a slightly different
technique than the Be case owing to the existence of four
subshells in this case. Specifically, we started with the HF
orbitals of the occupied 1s, 2s, 2p, and 3s subshells of the
Mg ground state. Then we added 3p, 4s, 3d, 4p, and 4d
correlation orbitals to the mix and built a wave function
as a 73-LS term expansion formed by considering all pos-
sible single- and double-promotions from 2s, 2p, and 3s
subshells into 3p, 4s, 3d, 4p, and 4d correlation orbitals;
promotions from 1s were omitted because their coeffi-
cients turn out to be so very small. Then a restricted
MCHF calculation was performed on the ground state of
Mg, restricted in the sense that the HF orbitals corre-
sponding to the occupied 1s, 2s, 2p, and 3s were kept
fixed, but all of the correlation orbitals were allowed to
vary. For the ground-state energy of free Mg, our cal-
culations give -199.865661 a.u. which is even lower than
previous,-199.6469 a.u. from a 3-LS configuration [17]
and -199.64830 a.u. from 8-LS configurations [18] full-
MCHF calculations.

We have found that, as a function of well depth, the
correlation energy in Mg, as seen in Fig. 6, is similar
to the behavior of Be, discussed above. Note, however,
that while the total variation of the correlation energy



with well depth is similar to the Be case, the actual val-
ues of the correlation energy is four or five times larger
in Mg that in Be. The simple explanation for this phe-
nomenology is that much of the correlation energy of Mg
comes from the inner 2s and 2p subshells; and since these
subshells are so deeply bound, they are essentially unaf-
fected by the confining well so that their contribution to
the correlation energy does not vary with well depth. In
other words, only the outer 3s subshell really contributes
to the variation of correlation energy with well depth.
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FIG. 6: Correlation energy of ground state of Mg as a function
Of Uo .

In order to understand the variation of the correlation
energy with well depth, we have looked at the mixing
coefficients among 73-LS terms in the wave function of
the ground state of Mg and we found the strongest mixing
occurs between the ground state and the doubly excited
[Ne]4p?(1S) state, analogous to the situation in Be, and
these mixing coeflicients as a function of Uy are shown in

Fig. 7.
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FIG. 7: Dominant mixing coefficient squares in confined Mg
as a function of Up.

As depicted in Fig. 7, the mixing between [Ne]3s? and
[Ne]4p?(1S) behaves qualitatively in the same manner
as in the Be case; a decrease from the free atom to a
minimum as U increases, followed by an increase in the
larger Uy region. To understand this behavior, Fig. 8
shows the 3s and 4p one-electron orbitals at various Uy
values.

The story here is essentially the same as in the Be case;
starting from the free atom, where they are seen to over-
lap quite well, the 3s and 4p orbitals densities move to
larger r so that they are more spread out and the in-
teraction between them decreases. Eventually, however,
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FIG. 8: 3s and 4p one-electron radial orbitals in Mg with
different Uy (a.u.) .

the are drawn more and more into the confining well as
it deepens so that, despite being at a larger r, they get
closer together. Note that the primary mixing in of the
outer ns? subshell in the Mg case is not with np?, as in
the Be case, but with (n+1)p?. However, this arises from
the mathematics of the situation and has no physical sig-
nificance that we can discern. Note also, that the sum of
the squares of the coeflicients of the two major configu-
rations is about 0.98 (it changes somewhat as a function
of well depth), whereas for Be it is almost exactly 1.0.
Thus, for Mg, other configurations have become more
important, as compared to Be.

C. Correlation in Calcium

The calculation for Ca is done almost exactly like the
Mg case; all of the occupied orbilas in the ground state,
1s through 4s, are obtained at the HF level and fixed.
Then, a 73-LS term wave functions formed by consider-
ing all possible single- and double-promotions from 3s,
3p, and 4s orbitals into 3d, 4p, 5s, 5p, and 5d correlation
orbitals was constructed and the correlation orbitals were
determined via a restricted MCHF calculation. The re-
sulting ground state energy obtained is -676.980837 a.u
which is lower than -676.7862 a.u. predicted in a previ-
ous calculations with a simpler Cl-expansion [17]. Fig. 9
presents the correlation energy in Ca as a function of
depth of the well where similar behavior to Be and Mg
cases is found.

We have further investigated the mixing-coefficients
among 73-LS terms and we found the strongest mixing
occurs between the ground state and the doubly excited
[Ar]5p%(1S) state, just like in the Mg case but with the
principal quantum numbers increased by unity. The mix-
ing coefficients as a function of increasing Uy are shown
in Fig. 7 where similar behavior to the previous cases is
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FIG. 9: Correlation energy of ground state of Ca as a function
of Uo.

seen, except that the total of the two major coefficients is
about 0.95 in this case (again, dependent upon the well
depth) which indicates that the lesser terms are becom-
ing still more important.
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FIG. 10: Dominant mixing coefficient squares in confined Ca
as a function of Uy.

Finally, Fig. 8 depicts the 4s and 5p one-electron or-
bitals at various Uy values which illustrates exactly the
same behavior as seen in Be and Mg.
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FIG. 11: 4s and 5p one-electron radial orbitals in Ca with
different Uy (a.u.).

IV. CONCLUSION

This work has shown that correlation effects in endo-
hedrally confined alkali earth atoms, AQCgg, with a con-
fining potential of depth Uy = 0.302 a.u. which is derived
from experiment, is smaller than in free atoms; the rea-
sons for this phenomenon are explained in terms of the
valence orbitals be pulled from their positions in the free
atom into the confining well. To understand a larger class
of physical situations, calculations were performed as a
function of Uy for the correlation energies of confined Be,
Mg, and Ca where unusual behavior was found. Starting
from Uy = 0, the correlation energies decrease with in-
creasing Uy as the outer (ns?) electron wave functions get
more diffuse, an eventually reach a minimum; with the
further increase of Uy, the correlation energies increase
as the valence (ns?) electrons get localized in the confin-
ing well. This effect is more pronounced for Be, because
2s electron is involved with the most of the correlation,
while for Mg and Ca the inner-shell electrons account
for most of the correlation; however, since these inner-
shell electrons are too tightly bound to get pulled into
the confining well, their contribution to the correlation is
not altered by the confinement.

As a result of these calculations, even on only three
atoms, we can make some generalizations for the en-
tire periodic table. Confining wells of the order of the
strength involved in entrapment of atoms by fullerenes
will strongly affect the properties of the valence levels,
but not the static properties of inner atomic shells. Va-
lence orbitals of ground states of atoms will get pulled
towards the confining well and, as the well becomes deep
enough, get "sucked in.” Thus, there are two opposing
effects that the confining well can have on valance or-
bitals, depending upon the strength of the well: moving
the probability densities out to larger r, thereby diffus-
ing them and causing them to interact less strongly with
each other; and trapping them in the confining well itself
which causes them to interact more strongly with each
other. As a result of these two opposing effects, the study
of the static properties of atoms trapped in a variety of
situations should prove most interesting.

Finally, as mentioned earlier, the present study deals
with atoms at the center of the cage. However, in many
cases the equilibrium position of the trapped atom or
ion is off-center [6]. In addition, vibrational and external
fields can also cause the trapped atom or ion to stray from
its equilibrium position. But, even if the trapped particle
strays from the central position, as long as the external
potential is spherically symmetric, it will not be attached
to the shell because a spherically-symmetric charge dis-
tribution exhibits no force in its interior, a simple re-
sult of Gauss’ law. For off-center atoms or ions however,
the calculation becomes very much more complicated be-
cause the interaction with the field of the Cgq is no longer
isotropic and orbital angular momentum of the atom is
no longer a good quantum number. Such studies would
be most interesting; they are, however, beyond the scope



of our present capabilities.
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