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We propose a superconducting circuit comprising a dc-SQUID with mechanically compliant arm
embedded in a coplanar microwave cavity that realizes an optomechanical system with a degen-
erate or non-degenerate parametric interaction generated via the dynamical Casimir effect. For
experimentally feasible parameters, this setup is capable of reaching the single-photon, ultra-strong
coupling regime, while simultaneously possessing a parametric coupling strength approaching the
renormalized cavity frequency. This opens up the possibility of observing the interplay between
these two fundamental nonlinearities at the single-photon level.

I. INTRODUCTION

Recently, the field of optomechanics has undergone a
period of rapid advancement, having achieved ground
state cooling of a mechanical resonator [1, 2], coherent
state transfer between cavity and mechanical oscillators
[3, 4], optomechanically induced transparency [5, 6], the
generation of squeezed light [7, 8], position measurement
precision close to the standard quantum limit [9–11], pho-
ton back-action evasion [12], and squeezing of the me-
chanical resonator [13–15]. However, in all of these ex-
periments a large optomechanical coupling is achieved
by the introduction of a strong classical drive that ef-
fectively linearizes the optomechanical coupling [16]. In
contrast, taking advantage of the intrinsic optomechan-
ical nonlinearity requires a single-photon optomechani-
cal coupling strength g0 that is larger than, or on the
order of, the optical cavity decay rate κ. If in addi-
tion g0 is an appreciable fraction of the mechanical reso-
nance frequency ωm, such that the combined nonlinear-
ity parameter g20/κωm & 1, then the system is in the
single-photon ultra-strong coupling regime characterized
by cavity photon blockade [17, 18]. This regime holds
promise for achieving the long-standing goal of observ-
ing a macroscopic mechanical oscillator in a non-classical
state of motion; mechanical steady-states in this regime
can exhibit sub-Poissonian phonon statistics and negative
Wigner functions [19–21]. These effects can persist even
in the presence of thermal fluctuations at experimentally
accessible temperatures [22]. Recent circuit-QED real-
izations of the optomechanical interaction based on ca-
pacitive [23–25] or magnetic coupling [26] suggest that it
may be possible to reach this ultra-strong coupling limit
in the near future.

In a parallel set of investigations, the interplay between
the radiation pressure nonlinearity and that of a degen-
erate parametric amplifier (DPA) has been of interest,
where the inherent squeezing of the cavity mode gives rise
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to a change in cavity photon spectrum to which the op-
tomechanical interaction is sensitive. This squeezing has
be shown to aid in reaching the strong-coupling regime
by enhancing the effect of a single-photon in the optical
cavity [27], and can assist in the cooling [28] and displace-
ment sensitivity [29] of the mechanical resonator, as well
as in the generation of tripartite entangled states [30].
As in other studies, these results focus only on the weak
coupling regime, and explore the resulting linearized op-
tomechanical Hamiltonian. To date, this approximation
has not been a limitation, as the only optomechanical
devices with both intrinsic nonlinear susceptibility and
radiation pressure coupling are whispering gallery res-
onators (WGR) [30–32], where the optomechanical inter-
action is weak (g0/κ ∼ 10−4); these systems operate well
outside the single-photon coupling limit. Note that it
is also possible to generate an effective DPA term from
the linearized optomechanical Hamiltonian in terms of
the normal (polariton) modes of the system when using
a drive detuned to the red-sideband [33–35]. However,
this transformation necessarily removes the optomechan-
ical interaction. Finding a system that is capable of
reaching the single-photon, ultra-strong coupling regime
while simultaneously possessing a degenerate, or non-
degenerate, parametric interaction would allow for in-
vestigating the combined effect of these nonlinearities at
the single-photon level. Such a device has applications
in the areas of quantum-limited sensing [29], quantum
computing and information processing [36, 37], and the
generation of complex nonclassical states of mechanical
motion.

Motivated by the desire to realize experimentally fea-
sible systems permitting both single-photon ultra-strong
optomechanical coupling and DPA interactions, here
we describe an optomechanical scheme involving a dc-
SQUID with mechanically compliant arm embedded in
a coplanar microwave cavity that can in principle real-
ize the single-photon ultra-strong coupling limit, while
the cavity mode is simultaneously coupled to a DPA.
This scheme was originally examined in the context of
optomechanical displacement detection [38, 39], and in
related subsequent experiments (but without the cavity
mode) [40, 41]. However, to date, this setup has not
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been evaluated in the context of ultra-strong coupling
or time-dependent external flux driving. Here, we take
advantage of the recent demonstration of the dynamical
Casimir effect (DCE) in related circuit devices using flux-
modulated SQUIDs [42–44], and the well-known connec-
tion between the DCE in a single-mode high-Q cavity
and a DPA [45]. In modulating an external flux applied
to the SQUID loop around a fixed dc-bias, the sinusoidal
variation of the SQUID effective inductance in turn mod-
ulates the frequency of the cavity mode non-adiabatically,
leading to photon production from the quantum vacuum
that can be viewed as a χ(2) nonlinear susceptibility. An
effective nonlinear medium is generated by amplifying
quantum vacuum fluctuations in the cavity mode through
modulating its electrical length. Provided that the mod-
ulation frequency is much higher than the mechanical fre-
quency, the resulting separation of timescales allows the
optomechanical and parametric interactions to decouple,
and an analysis of experimentally feasible parameters
suggests that this system is in the single-photon ultra-
strong optomechanical coupling regime g20/κωm ∼ 1,
with an intrinsic DPA coupling strength that is on the
order of the renormalized cavity frequency (∼ GHz).

II. HAMILTONIAN

The device, depicted in Fig. 1, consists of a coplanar
microwave cavity of length l and frequency ωc, charac-
terized by its inductance and capacitance per unit length
Lc and Cc, respectively, bisected by a dc-SQUID. The
SQUID comprises two Josephson junctions with criti-
cal current Ic and capacitance CJ . One arm of the
SQUID loop is mechanically compliant, forming a dou-
bly clamped resonator of length losc. We consider only
the fundamental mechanical mode displacements in the
plane of the SQUID loop and assume that the mechanical

Φext(t)

−l/2

+l/2

0+

0−

FIG. 1. (color online) Layout of a dc-SQUID with a me-
chanically compliant segment (red) embedded in a coplanar
microwave cavity of length l, and driven by a time-dependent
external flux bias Φext(t) (orange). The SQUID, here greatly
enlarged with respect to the cavity for visibility, is assumed to
be a lumped element at x = 0, with two identical Josephson
junctions (blue) characterized by their critical current Ic and
capacitance CJ .

resonator can be modeled as a harmonic oscillator with
the y coordinate giving the center-of-mass displacement.
The magnetic flux threading the SQUID loop is given by
Φext(y) = Φext(0) + λBextloscy, where Φext(0) ≡ Φext is
the flux with the mechanical oscillator fixed at y = 0,
Bext is the local magnetic field in the vicinity of the me-
chanical resonator, and λ is a dimensionless geometrical
factor that accounts for the nonuniform displacement of
the resonator along its extension.

To model the SQUID, we take the sum and difference of
the gauge-invariant phases, φ1 and φ2, across the Joseph-
son junctions, γ± = (φ1 ± φ2)/2, and use the phase-field
coordinate φ(x, t) for the microwave cavity. The current
and voltage along the cavity are given by the telegraph
relations,

I(x, t) = −
Φ0

2πLc

∂φ(x, t)

∂x
, (1)

V (x, t) =
Φ0

2π

∂φ(x, t)

∂t
, (2)

where Φ0 = h/(2e) is the flux quantum. Assuming that
the SQUID can be modeled as a lumped circuit element
at the center x = 0 of the cavity, the closed system equa-
tions of motion for the cavity, SQUID, and mechanical
oscillator are given by [38]

∂2φ

∂t2
=

1

LcCc

∂2φ

∂x2
, (3)

ω−2
J γ̈− + cos (γ+) sin (γ−) (4)

+ 2β−1
L

[

γ− − π

(

n+
Φext + λBextloscy

Φ0

)]

= 0,

ω−2
J γ̈+ + sin (γ+) cos (γ−) +

Φ0

4πLcIc

∂φ(0, t)

∂x
= 0, (5)

and

mÿ +mω2
my −

Φ0

πL
λBextloscγ− = 0, (6)

where ωJ =
√

2πIc/(CJΦ0) is the Josephson junction
plasma frequency, βL ≡ 2πLIc/Φ0 is a dimensionless
parameter characterizing the SQUID self-inductance L,
and the integer n arises from the requirement that the
phase around the SQUID loop must be single valued.
Equation (3) is the wave equation for the microwave cav-
ity, Eq. (4) describes the current circulating through the
SQUID loop, Eq. (5) gives the average current in the
loop, and Eq. (6) is Newton’s equation for the mechan-
ical resonator driven by the Lorentz force. The current
and voltage across the SQUID must also obey the bound-
ary conditions

∂φ(±l/2, t)

∂x
= 0,

∂φ(0−, t)

∂x
=

∂φ(0+, t)

∂x
(7)

and

γ̇+ −
L

4Lc

∂2φ(0, t)

∂t∂x
=

∂φ(0−, t)

∂t
−

∂φ(0+, t)

∂t
, (8)
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respectively.
Using Eqs. (3)-(8), we can derive approximate equa-

tions of motion that govern the interaction between the
cavity and mechanical resonators that are determined
solely by the SQUID parameters and boundary condi-
tions. In what follows, we assume that the SQUID
plasma frequency ωJ satisfies ωJ ≫ ωc ≫ ωm, allow-
ing us to ignore the SQUID inertia terms in Eqs. (4) and
(5). Assuming that βL ≪ 1 (i.e. the self-inductance of
the SQUID loop is negligible), together with dropping the
SQUID inertia terms, allows us to eliminate the SQUID
phase coordinates γ± from the equations of motion. Fur-
thermore, we assume that the cavity current is much less
than the Josephson critical current, |I/Ic| ≪ 1, and that
the change in flux due to the small displacements of the
mechanical resonator is much less than the flux quantum
|λBextloscy/Φ0| ≪ 1. Keeping terms to first order in y,
and to leading second order in I, the equation of motion
(6) for the mechanical oscillator becomes approximately

mÿ +mωmy =
I2

2

λBextlosc
4Ic

sec

(

πΦext

Φ0

)

tan

(

πΦext

Φ0

)

,

(9)
and the voltage boundary condition (8) can be expressed
as

∂

∂t
[L (Φext, y) I] =

Φ0

2π

[

∂φ(0−, t)

∂t
−

∂φ(0+, t)

∂t

]

, (10)

with

L (Φext, y) = LJ (Φext)

[

1 +
λBextloscy

(Φ0/π)
tan

(

πΦext

Φ0

)]

,

(11)
where we have kept only the current independent contri-
bution to the SQUID effective inductance [the next term
being of order (I/Ic)

2]

LJ(Φext) =
Φ0

4πIc
sec

(

πΦext

Φ0

)

. (12)

The validity of the approximations used in the derivation
of the system equations of motion requires not approach-
ing too close to the half-integer flux bias point:

∣

∣

∣

∣

I

Ic
sec

(

πΦext

Φ0

)∣

∣

∣

∣

≪ 1, (13)

∣

∣

∣

∣

βL sec

(

πΦext

Φ0

)∣

∣

∣

∣

≪ 1. (14)

Taking the time integral of both sides of (10), setting
the integration constant to zero, and inserting the cavity
current expression (1), Eq. (10) for the phase across the
SQUID can be written as a Robin-type boundary condi-
tion:

L (Φext, y)

Lc

∂φ(0, t)

∂x
= φ(0+, t)− φ(0−, t). (15)

In the absence of a mechanical oscillator, this bound-
ary condition is of the same form as that used in super-
conducting realizations of the DCE, where the quantity

L (Φext, 0) /Lc can be viewed as a flux-tunable length pa-
rameter [42, 46].

Let us now suppose that the external flux is weakly
modulated around some fixed dc bias Φext = Φdc +
δΦcos(ωdt). To first order in the small oscillation am-
plitude δΦ/Φ0, the effective length parameter becomes

L (Φext, y)

Lc
≈
LJ (Φdc)

Lc

[

1 +
πδΦ

Φ0
tan

(

πΦdc

Φ0

)

cos (ωdt)

(16)

+
λBextloscy

(Φ0/π)
tan

(

πΦdc

Φ0

)]

Restricting ourselves to a single cavity mode (the exten-
sion to multiple cavity modes is straightforward), and
temporarily fixing the position of the mechanical oscilla-
tor at y = 0, then the cavity phase field that satisfies the
current boundary conditions (7) is

φ(x, t) =

{

−φ(t) cos [k0(t) (x+ l/2)] x < 0,

+φ(t) cos [k0(t) (x− l/2)] x > 0,
(17)

with the wavenumber k0(t) determined by the flux
boundary condition (15):

k0l

2
tan

(

k0l

2

)

=
Lcl

LJ(Φdc)

[

1−
πδΦ

Φ0
tan

(

πΦdc

Φ0

)

cos (ωdt)

]

(18)
For Lcl/LJ(Φdc) . 1/2, the left hand side of Eq. (18) is
well approximated by (k0l/2)

2 that, together with ω2
c =

k20/(LcCc) from Eq. (3), allows the cavity mode frequency
to be expressed as

ω2
c(t) =

(

ωdc
c

)2
[

1−
πδΦ

Φ0
tan

(

πΦdc

Φ0

)

cos (ωdt)

]

, (19)

where
(

ωdc
c

)2
= 4/[CclLJ(Φdc)]. This expression is sim-

ilar to that of Ref. [44], where this flux-dependent fre-
quency modulation was used in generating radiation via
the DCE in a dc-SQUID array. The dependence of
ωdc
c on the SQUID inductance (11) evaluated at the

dc-flux bias gives a cavity frequency renormalization
∝ cos (πΦdc/Φ0). The plasma frequency ωJ is also renor-

malized by an amount proportional to
√

cos (πΦdc/Φ0),
and therefore the plasma frequency remains well above
ωdc
c for all flux biases compatible with Eqs. (13) and (14).
Substitution of the phase field (17) into the oscillator

equation of motion (6) gives the cavity force acting on the
resonator when y = 0. Under our assumptions of small
and slow mechanical displacements, the Lorentz force in
(9) is unchanged to good approximation and the equation
of motion for the mechanical oscillator becomes

mÿ +mω2
my =

1

4

(

Φ0

2π

)2

Ccl sin
2

(

k0l

2

)

(20)

×
λBextlosc
(Φ0/2π)

LJ (Φdc)

Lcl

× tan

(

πΦdc

Φ0

)

(

ωdc
c

)2
φ2(t),
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where we have assumed ωd ≫ ωm such that terms pro-
portional to cos(ωdt) average to zero over a single me-
chanical oscillation; modulation of the applied flux does
not significantly affect the coupling between the cavity
and mechanical resonator. Equation (20) allows us to
determine expressions for both the mechanical portion
of the system Lagrangian and that of the interaction
with the cavity. The remaining cavity terms in the La-
grangian follow from the wave equation (3), and the total
Lagrangian for the system can be written as

L
(

φ, y, φ̇, ẏ
)

=
1

2
mẏ2 −

1

2
mω2

my2 (21)

+
1

2
mφφ̇

2 −
1

2
mφω

2
c(t)φ

2

+
1

2

λBextloscy

(Φ0/2π)

LJ (Φdc)

Lcl

× tan

(

πΦdc

Φ0

)

mφ(ω
dc
c )2φ2,

where the effective phase mass is defined to be

mφ ≡
1

2
Ccl

(

Φ0

2π

)2

sin2
(

k0l

2

)

.

Defining the lowering and raising operators for the cav-
ity mode (â, â+) with respect to ωdc

c , as well as those

for the mechanical resonator (b̂, b̂+) satisfying the usual
bosonic commutation relations, the system Hamiltonian
takes the form

Ĥ = ~ωdc
c â+â+ ~ωmb̂+b̂ (22)

−
~α

2

(

e+iωdt + e−iωdt
) (

â+ â+
)2

−
~g0
2

(

â+ â+
)2

(

b̂+ b̂+
)

+ ~E
(

âe+iωpt + â+e−iωpt
)

,

where, for completeness, we have included a term corre-
sponding to the pumping of the cavity by a classical mi-
crowave field at frequency ωp with amplitude E. Here,
the coupling strengths are expressed as

α ≡
ωdc
c

4

πδΦ

Φ0
tan

(

πΦdc

Φ0

)

, (23)

and

g0 ≡ ωdc
c

λBextloscyzp
(Φ0/π)

LJ (Φdc)

Lcl
tan

(

πΦdc

Φ0

)

, (24)

where yzp =
√

~/(2mωm) is the zero-point displace-
ment of the mechanical resonator. The coupling α is the
product of both the flux-modulation amplitude [e.g. see
Eq. (19)] and the intrinsic parametric coupling χ. Fac-
toring out the former, allows us to define the effective
parametric coupling strength resulting from the DCE to
be χ ≡ ωdc

c /4.

Moving to a frame rotating at ωd/2 and dropping off-
resonant terms we obtain

Ĥ = −~∆â+â+ ~ωmb̂+b̂−
~α

2

[

â2 +
(

â+
)2
]

(25)

− ~g0â
+â

(

b̂+ b̂+
)

+ ~E
(

âe−iδt + â+e+iδt
)

,

with detunings ∆ = ωd/2−ωdc
c and δ = ωd/2−ωp. Equa-

tion (25) describes the radiation-pressure interaction be-
tween mechanical and microwave oscillators driven by an
effective DPA term arising from the DCE, as well as by a
classical linear pumping term. In addition to providing a
resource for cavity mode squeezing, the DPA can also be
utilized to control the mechanical resonator. By detun-
ing the driving frequency by an amount proportional to
half the mechanical resonance frequency, ∆ = ±ωm/2, it
becomes energetically favorable for a pair of photons gen-
erated by the DCE to enter the cavity by emitting (ab-
sorbing) a phonon into (from) the resonator, thus heat-
ing (cooling) the mechanical mode. Similarly, detuning
by ∆ = ±ωm makes this emission or absorption a two
phonon process.

Although we have restricted ourselves to a single cavity
mode, the extension to multiple modes is straightforward.
In the case of two cavity modes, modulating the cavity
resonance frequency at the sum of the two dc-biased fre-
quencies gives rise to a resonant non-degenerate para-
metric coupling (âĉ+ â+ĉ+), where the operators (ĉ, ĉ+)
correspond to a cavity mode with non-vanishing current
at the location of the SQUID, i.e. the cavity mode phase
must satisfy ∂φ/∂x 6= 0 at x = 0. In addition, driv-
ing at the difference of the mode frequencies results in
a beam-splitter interaction (âĉ+ + â+ĉ), which has also
been investigated for membrane in the middle configura-
tions [36, 47]. With the mechanical resonator coupled to
both modes via radiation pressure coupling, possibly in
the single-photon strong-coupling limit, such a configu-
ration provides a rich testbed for investigating tripartite
entanglement in strongly nonlinear systems [48, 49].

III. ULTRA-STRONG COUPLING REGIME

Given that the optomechanical coupling is dependent
on the external magnetic field, it is advantageous to con-
sider a device fabricated using niobium, with critical field
Bc ∼ 198 mT, rather than aluminum (Bc ∼ 10 mT).
A set of experimentally feasible parameters compatible
with this choice is: Φdc = 0.35Φ0, ω

dc
c (0) = 2π×10 GHz,

ωm = 2π × 10 MHz, m = 10−16 kg, losc = 10 µm, λ =
2/π, Bext = 40 mT, Ic = 100 nA and Lcl = 1 nH. At this
dc-bias, the SQUID renormalizes the cavity frequency to
nearly half of its original value ωdc

c ≃ 2π × 4.5 GHz.
In addition, we assume quality factors for the dc-biased
cavity and mechanical resonator to be Qdc

c = 5 × 104

and Qm = 104, respectively. The former value has al-
ready been achieved in flux-tunable Al resonators [50],
although the addition of a flux bias degrades the qual-
ity factor in these oscillators. In contrast, the quality
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System
g0
κ

g0
ωm

g20
κωm

χ

2π

Microwave LC-drum [4] 6 · 10−4 2 · 10−5 10−8 n/a

Si zipper cavity [7] 2 · 10−4 3 · 10−2 6 · 10−6 n/a

Circuit-QED qubit [25] 4 · 10−2 2 · 10−2 8 · 10−4 n/a

cCPT - resonator [23] 10 1 10 n/a

Stripline - cantilever [26] 20 a – – n/a

Si3N4 WGR [30] 2 · 10−4 2 · 10−5 4 · 10−9 110 Hz

SQUID - resonator 13 0.1 1.3 1 GHz

a Ref. [26] assumes a cavity quality factor of 106 taken from 3D

superconducting cavity geometries rather than the stripline
configuration considered in that work. As such, the realizable
values for g0 are likely to be lower.

TABLE I. Ratio of the optomechanical coupling strength
to that of the cavity decay rate, g0/κ and mechanical fre-
quency g0/ωm, combined quantum nonlinearity parameter
g20/κωm, and intrinsic parametric coupling strength χ for a
selection of recent experimental (above dashed-line) and the-
oretical (below dashed-line) optomechanical systems incorpo-
rating macroscopic mechanical resonators.

factor for Nb cavities is marginally affected by an ex-
ternal bias provided that the renormalized frequency is
large enough for thermal effects to be ignored [51]. For
the frequencies considered here, the thermal occupation
of the cavity mode is ∼ 10−10 at 10 mK, and thus we
expect a negligible change in the quality factor. Substi-
tution of these parameters into Eq. (24) gives g0/κ ≈ 13
and g20/κωm ≈ 1.3, indicating that this setup lies within
the single-photon ultra-strong coupling regime. In addi-
tion, the intrinsic parametric coupling strength at this
dc-bias is χ = 2π × 1 GHz. The total parametric cou-
pling strength α (23) will be much lower due to the weak
modulation amplitude δΦ/Φ0 ≪ 1 and the stability re-
quirements [28, 52] of the system. A comparison of these
figures of merit with recent experimental and theoretical
optomechanical systems incorporating macroscopic me-
chanical resonators is presented in Table I.

Although we have tacitly assumed that our optome-
chanical system involves only a single mode of the me-
chanical oscillator, in practice all odd harmonics that are
symmetric about the midpoint of the resonator will cou-
ple to the SQUID through the modulation of the exter-
nal flux. Our single-mode approximation rests on the as-
sumption that higher-order modes are spectrally well sep-
arated from the fundamental. However, given the large
single-photon coupling strength in this device, it is of in-
terest to ask whether additional higher-modes are also
strongly coupled to the cavity. The tripartite interac-
tion between a cavity and two mechanical modes has al-
ready been explored for generating entanglement [53, 54],
two-mode squeezing [55], and EPR states [56], while as
an ensemble of mechanical modes has been proposed for
quantum information processing [57]. Assuming that the
higher modes are harmonics of the fundamental, the ra-

diation pressure coupling (24) is reduced by a factor of
1/n3/2, where n labels the harmonic, arising from a re-
duction in both the geometrical factor accounting for the
net change in SQUID loop area and a decrease in the
zero-point amplitude at higher frequencies (assuming the
mass of each mode is approximately the same). For the
parameters detailed here, this estimation suggests that
up to the first six odd-harmonics of the resonator can be
simultaneously strongly (but not ultra-strongly) coupled
to the microwave cavity.

IV. CONCLUSION

We have shown that a dc-SQUID with mechanically
compliant segment embedded in a coplanar microwave
cavity modulated by a time-dependent external flux gives
rise to an optomechanical interaction where the cavity
mode is coupled to a degenerate or non-degenerate para-
metric amplifier. Using experimentally feasible device
parameters indicates that this setup is capable of op-
erating in the single-photon ultra-strong optomechani-
cal coupling regime, while simultaneously possessing a
degenerate parametric coupling strength on the order
of the dc-bias renormalized cavity frequency. Addi-
tional higher-modes of the mechanical resonator can be
strongly-coupled simultaneously in this setup. In con-
trast to previous proposals for strongly-coupled optome-
chanics, where the frequency of the mechanical resonator
is intrinsically low [26], or is renormalized downward
[23, 24] such that thermal effects conspire to degrade the
quantum signatures in these setups, the present scheme
lies within the parameter space where quantum signa-
tures such as negative Wigner functions are predicted
to persist at standard dilution refrigerator temperatures
[22], and thus is well-suited for investigating macroscopic
quantum states of the mechanical resonator. Compared
to current WGR systems, the device presented here gives
a four and nine order of magnitude increase in g0/κ and
g20/κωm, respectively. These benchmarks can further be
improved upon when using the degenerate parametric in-
teraction to enhance the bare optomechanical coupling
strength [27]. Combined with the strong intrinsic para-
metric coupling χ, this setup opens the door to exploring
the expected rich physics arising from the interaction be-
tween these two principle nonlinearities, in a single or
multi-mode configuration, at the individual photon level.
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