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In many applications a source of the black-body radiation (BBR) can be highly anisotropic. This
leads to the BBR shift that depends on tensor polarizability and on the projection of the total
angular momentum of ions and atoms in a trap. We derived formula for the anisotropic BBR shift
and performed numerical calculations of this effect for Ca+ and Yb+ transitions of experimental
interest. These ions used for a design of high-precision atomic clocks, fundamental physics tests
such as search for the Lorentz invariance violation and space-time variation of the fundamental
constants, and quantum information. Anisotropic BBR shift may be one of the major systematic
effect in these experiments.
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I. INTRODUCTION

The past five years brought remarkable improvements
in both accuracy and stability of atomic clocks [1–5].
Development of ultra-precise clocks is important for a
wide range of applications, including design of abso-
lute gravimeters and gravity gradiometers for geophys-
ical monitoring and research, gravity aided navigation,
improved timekeeping and synchronization capabilities,
tests of fundamental physics such as Einsteins theory of
relativity, search for variation of fundamental constants
through time, space, or coupling to gravitational fields,
and exploration of strongly correlated quantum many-
body systems [6].

Performing fundamental tests with the atomic clocks
and other precision atomic, molecular and optical (AMO)
technologies leads to ever increasing requirements for
the understanding and control of the systematic errors.
Moreover, a number of novel fundamental physics AMO
experiments including searches for ultralight (sub-eV) ax-
ion, axion-like pseudoscalar and scalar dark matter [7–9]
and topological defect dark matter [10] have been car-
ried out or proposed, requiring improved understanding
of systematic effects in AMO systems.

One of the major experimental and theoretical prob-
lems in improving the atomic clock accuracy is a preci-
sion determination of atomic clock frequency shift due
to black-body radiation (BBR). In recent experimental
works [1, 3] with 87Sr optical lattice clocks, the black-
body radiation was identified as the primary source of
clock’s uncertainties. A number of measurements and
thorough analysis of all systematic effects led to reduction
of the Sr clock total uncertainty to the level of 2.1×10−18

in fractional frequency units. However, 65% of the clock
uncertainty budget was still due to the BBR shift [1].

A number of other experiments with trapped ions and
atoms are sensitive to the BBR effects, including recent
tests of local Lorentz invariance (LLI) violation in the
electron-photon sector with trapped Ca+ [11] ions. Theo-
ries aimed at unifying gravity with quantum physics sug-

gest that Nature violates Lorentz symmetry at the Planck
scale while suppressing its violation at experimentally
achievable energy scales [12]. The minimal O(1) sup-
pression may lead to Lorentz-violating effects appearing
beyond 10−17 sensitivity level, determined by the ratio
of electroweak and Planck scales. Thus, high-precision
experiments with atomic systems [11, 13] provide an im-
portant route to search for Lorentz violation at low en-
ergies. The LLI experiments with trapped ions may be
particulary sensitive to anisotropic BBR shift since they
are based on monitoring the energy difference between
different Zeeman substates as described below. In these
experiments, anisotropic BBR shift may become a lim-
iting factor for the ultimate accuracy of the Lorentz vi-
olation tests in the electron-photon sector [14] and this
work is strongly motivated by these fundamental stud-
ies. BBR effects may also become a source of deco-
herence in larger-scale quantum information experiments
with trapped ions due to a change in the environmental
temperature or temperature gradients during the com-
putation.

Calculations of black-body radiation shifts are usually
done assuming that the BBR radiation is isotropic.

A detailed consideration of the isotropic BBR effect
in conventional electric-dipole approximation was carried
out in [15]. Multipolar theory of isotropic BBR shift
of atomic energy levels (as well as its implications for
optical lattice clocks) was developed in [16]. However,
in practice the source of BBR can be highly anisotropic
and even may have a small angular size. As a result, a lot
of experimental efforts is required to make the BBR field
uniform and with a known temperature [1, 3, 17]. For this
reason a proper calculation of the anisotropic BBR shift
is necessary. Also, this effect can be of interest by itself
as a physical phenomenon. We note that the problem
of anisotropic BBR effect, discussed in the present work,
does not arise in experiments with alkaline-earth atoms
aiming to create atomic clock in the 1S0− 3P o0 transition
because the states with total angular momenta J = 0 are
involved.
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II. GENERAL FORMALISM

The isotropic BBR shift of an energy level is propor-
tional to scalar static polarizability of this level [15, 16].
In the case of anisotropic black-body radiation, addi-
tional contribution that depends on the projection of a
thermal photon wave vector k to z axis arises. We show
below that it is determined by the tensor polarizability
of the level. This contribution is particularly important
when we consider BBR frequency shift of a |JM〉−|JM ′〉
transition, where M and M ′ are the projections of the
total angular momentum J to the z axis, and we as-
sume J and M to be good quantum numbers for the
atomic states. The scalar polarizabilities of the Zeeman
substates |JM〉 and |JM ′〉 are practically identical dif-
fering only due to a very small difference in the energy
denominators. As a result, the isotropic BBR frequency
shift is completely negligible in this case. In contrast,
the anisotropic BBR shift of the energy level depends on
M2 and can be noticeably different for the different M
substates. The same issue arises for the hyperfine states
with different MF .

Such systematic effect arose in a recent record-high
precision experiment aimed at the search for local
Lorentz invariance violation in the electron-photon sec-
tors using a superposition of two Ca+ ions [11]. In the
experiment, the energy difference between the M = 1/2
and M = 5/2 substates of the 3d 2D5/2 multiplet, moni-
tored over 23 hours served as a probe of Lorentz-violating
effects.

The anisotropic BBR shift produces a differential
shift between M = 1/2 and M = 5/2 states mim-
icking the Lorentz-violating effects. Thus, anisotropic
BBR is an important systematic effect. It was demon-
strated in [14] that factor of 105 higher sensitivity to
Lorentz violation may be achieved with similar experi-
mental scheme with Yb+ by monitoring the (4f13 6s2)
2F7/2,M=7/2 − 2F7/2,M=1/2 frequency difference. Since
this experiment will probe LLI at much higher sensitiv-
ity, study of anisotropic BBR is needed as it can be a
major systematic effect for such experiment.

We note that singly ionized ytterbium 171Yb+ with
ultranarrow optical 2S1/2− 2D3/2 and 2S1/2− 2F7/2 tran-
sitions is also being pursued for a realization of optical
atomic clock and search for the temporal variation of the
fine-structure constant α and the proton-to-electron mass
ratio mp/me [4, 5].

The problem of anisotropic BBR shift of energy levels
is practically unexplored so far, but may cause systematic
effects in a variety of experiments. In this work, we de-
rived general formula for the BBR shift of an energy level
produced by a point-like source. A generalization to a fi-
nite source is obtained by integration over angles of emit-
ted thermal photons. The result is expressed in terms
of the scalar and tensor polarizabilities of the atomic
level. We also performed numeric calculation of the BBR
frequency shifts for the Ca+ 2D5/2,M=5/2 − 2D5/2,M=1/2

transition and Yb+ 2F7/2,M=7/2− 2F7/2,M=1/2 transitions

due to their relevance to searches for Lorentz violation.
An interaction of an atom in the state |0〉 with electric

field of a thermal photon emitted to a solid angle dΩ
leads to a black-body radiation shift of an energy level.
After integration over photon frequency, the BBR shift
of the energy level |0〉 can be written as

dE

dΩ
= A

∑
ε

3∑
i,k=1

αikεiε
∗
k. (1)

Here, we use three-dimensional transverse gauge for pho-
ton polarization εµ = (0, ε) with polarization ε normal-
ized to unit. Since photons are transverse, in this gauge
kε = 0. The elements of the symmetric tensor αik are
defined as

αik = 2
∑
m

〈0|di|m〉〈m|dk|0〉
ωm0

, (2)

where d = −r is the electric dipole moment operator and
ωm0 ≡ Em − E0 is the difference between energy levels
of the intermediate and |0〉 states. We use atomic units,
i.e., |e| = h̄ = me = 1. An explicit form of the factor A
is not important for the following derivation and we will
restore it later.

In the following we discuss only BBR effect caused by
the electric field. The BBR caused by a magnetic field
was considered in Ref. [18] for a number of monovalent
ions and proved to be negligible. Using the multipolar
theory of black-body radiation, developed in [16], one
can show that for the transitions in the Ca+ and Yb+

ions, which will be discussed below, this effect can also
be neglected.

The electric-dipole static polarizability of an atom in
the state |0〉 is defined as

αpol ≡ αzz = 2
∑
m

|〈0|dz|m〉|2

ωm0
. (3)

It can be conveniently decomposed into scalar and tensor
parts: αpol = αs + αt with the scalar polarizability αs
given by

αs =
1

3

∑
i

αii =
2

3

∑
m

|〈0|d|m〉|2

ωm0
. (4)

The summation over photon polarizations in Eq. (13)
is carried out using∑

ε

εiε
∗
k = δik − nink,

where n ≡ k/k. Then, Eq. (13) is reduced to

dE

dΩ
= A

∑
i

αii −
∑
i,k

αiknink

 .
= A

3αs −
∑
i,k

αiknink

 .
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The BBR shift in our case depends on the angle θ
between the direction of the photon momentum k and
the quantization axis z, defined by the direction of the
magnetic field. It is convenient to choose the vector k
in xz plane, i.e. ky = 0. Taking into account Eq. (4)
and noting that the product of the matrix elements
〈0|dx|n〉〈n|dz|0〉 = 0 and, respectively, αzx = αxz = 0,
we obtain

dE

dΩ
= A

[
3αs − αxxn2

x − αzzn2
z

]
= A

[
3αs − αxx sin2 θ − αzz cos2 θ

]
.

Accounting for that αxx = αyy and, hence,

αxx =
3αs − αzz

2
, (5)

we express dE/dΩ through αs, αt, and cos2θ. After sim-
ple transformations we arrive at

dE

dΩ
= A′

[
αs +

1− 3 cos2θ

4
αt

]
, (6)

where A′ = 2A. The factor A′ can be easily determined,
if we note that after integrating over dΩ = sinθ dθ dφ
the second term in Eq. (6) disappears and we obtain
∆E = 4πA′αs. On the other hand, we have to arrive
at the standard formula for isotropic BBR shift which,
neglecting dynamic corrections, is given by [16]

∆E = − 2

15
(απ)3T 4αs,

where the temperature T is given in a.u.. Finally, we
obtain

dE = − 2

15
(απ)3T 4

×
[
αs +

1− 3 cos2θ

4

3M2 − J(J + 1)

J(2J − 1)
α2

]
dΩ

4π
. (7)

Here we represent the tensor part αt by

αt =
3M2 − J(J + 1)

J(2J − 1)
α2, (8)

where α2 is the tensor polarizability of the state |0〉.
It may be instructive to present a different derivation

of Eq.(6), starting again from Eq. (13). Assuming the
polarization vectors ε1,2 to be real we can write

dE

dΩ
= A

2∑
i=1

(
αxxε

2
ix + αyyε

2
iy + αzzε

2
iz

)
. (9)

Taking into account that αxx = αyy and using the nor-
malization condition ε2ix + ε2iy + ε2iz = 1 and Eq. (5), after
simple transformations, we obtain

dE

dΩ
= A

2∑
i=1

(
αs +

3 cos2θi − 1

2
αt

)
, (10)

where θi is the angle between the photon polarization
vector εi and the z axis.

Summing up over index i in Eq. (10), and using con-
dition

cos2θ1 + cos2θ2 + cos2θ = 1, (11)

which is valid because the vectors ε1, ε2, and k are mu-
tually orthogonal, we arrive at Eq.(6).

III. ANISOTROPIC BBR SHIFT FOR
2S+1LJ,M − 2S+1LJ,M′ TRANSITIONS

We now apply equation Eq. (7) to the case of a
|JM〉−|JM ′〉 transition between the ionic or atomic Zee-
man sublevels. As we discussed above, the isotropic BBR
shift, proportional to the scalar part of the polarizability,
is very small for such a transition because it results only
from a small difference between |JM〉 and |JM ′〉 energy
levels. The main effect comes from tensor part of the
polarizability.

Using Eqs. (7) and (8) we write the |JM〉 − |JM ′〉
transition frequency BBR shift dEt as

dEt ≡ dEJM − dEJM ′

≈ (απ)3T 4

10
(3 cos2θ − 1)

M2 −M ′2

J(2J − 1)
α2

dΩ

4π
.(12)

Integration of Eq. (12) over fixed solid angle Ω1 leads
to the BBR shift, corresponding to a maximal anisotropy
100%, when the BBR is emitted to this solid angle and
there is no BBR from the remainder.

Let us consider a more realistic case when a certain
portion of photons is emitted to the solid angle Ω1 at
the temperature T1 and another portion of photons is
emitted to the solid angle Ω2 at the temperature T2, so
that Ω1 + Ω2 = 4π. The corresponding differential BBR

shifts, which we designate as dE
(k)
t (k = 1, 2), are given

by Eq. (12) with T = Tk.
Then, the total BBR shift can be found as

∆Et =

[∫ Ω1

0

dE
(1)
t

dΩ
+

∫ 4π

Ω1

dE
(2)
t

dΩ

]
dΩ

=

∫ Ω1

0

[
dE

(1)
t

dΩ
− dE

(2)
t

dΩ

]
dΩ. (13)

Performing integration in Eq. (13) over azimuthal an-
gle ϕ from 0 to 2π and over θ from 0 to a fixed value θ1,
we obtain

∆Et ≈
(απ)3(T 4

1 − T 4
2 )

20

M2 −M ′2

J(2J − 1)
α2

× cos θ1(1− cos2θ1). (14)

As seen from Eq. (14), ∆Et turns to zero if T1 = T2, as
it should be because it corresponds to the isotropic BBR
case.
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It follows from Eq. (14) that the BBR shift is ∼ θ2
1

when θ1 is small. Thus, this shift is greatly reduced with
decrease in the solid angle the thermal photons are emit-
ted to. On the other hand, the anisotropic BBR shift is
equal to 0 when θ1 = 90◦. When θ1 changes from 30◦ to
60◦, cos θ1(1− cos2θ1) changes from 0.22 to 0.38.

Below we consider the anisotropic BBR shifts for the
2D5/2,M=5/2− 2D5/2,M=1/2 transition in Ca+ and for the
2F7/2,M=7/2 − 2F7/2,M=1/2 transition in Yb+.

A. Anisotropic BBR shift for the
2D5/2,M=5/2 − 2D5/2,M=1/2 transition in Ca+.

In a recent paper [11], the 2D5/2,M=5/2 − 2D5/2,M=1/2

transition in Ca+ was used to search for Lorentz invari-
ance violation at a level comparable to the ratio between
the electroweak and Planck energy scales.

Using Eq. (14), we estimate the anisotropic BBR shift
for this transition. The most accurate value of the ten-
sor polarizability for the 2D5/2 state was obtained in
Ref. [19], α2 = −24.51(29) a.u.. To illustrate dependence
of the BBR shift from the temperatures T1 and T2, we
find ∆Et for three values of T1 (500, 420, and 350 K)
and T2 = 300 K. Substituting these values in Eq. (14),
taking into account that for the room temperature 300 K
(απ)3T 4/20 ≈ 4.9069 × 10−19 a.u., and expressing final
results in Hz, we obtain

∆Et ≈ cos θ1(1− cos2θ1)

×

 −0.319 (Hz), T1 = 500 K,
−0.135 (Hz), T1 = 420 K,
−0.040 (Hz), T1 = 350 K.

(15)

FIG. 1: (Color online) Dependence of ∆Et from the angle θ1
for Ca+ (see Eq. (15)) is represented by (blue) dash-dot-dot
line for T1 = 500 K, by dash line for T1 = 420 K, and by
dot-dash line for T1 = 350 K. Dependence of ∆Et from θ1 for
Yb+ (see Eq. (20)) is represented by (red) solid line for T1 =
450 K. The temperature T2 = 300 K in all cases.

These dependences of ∆Et from the angle θ1 in Ca+

2D5/2,M=5/2 − 2D5/2,M=1/2 transition are illustrated in
Fig. 1 by three (blue) lines. As expected, ∆Et is equal
to zero at θ1 = 0◦ and 180◦. The angle θ1 = 180◦ cor-
responds to isotropic radiation. ∆Et also crosses 0 when
θ1 is 90◦. This case corresponds to isotropic radiation in
the upper hemisphere. The energy shifts due to the BBR
effect are largest for θ1 ≈ 55◦.

B. Anisotropic BBR shift for the
2F7/2,M=7/2 − 2F7/2,M=1/2 transition in Yb+.

Recent work [14] identified several factors affecting
the precision of the local Lorentz invariance tests with
trapped ions. Two most important factors are the life-
time of the excited atomic state used in Lorentz invari-
ance probe and sensitivity of this state to the Lorentz
invariance violation effect, i.e., the size of the matrix el-
ement of the corresponding operator. Both features are
supplied by the metastable 4f136s2 2F7/2 state of Yb+

ion, and the 2F7/2,M=7/2 − 2F7/2,M=1/2 transition was
proposed as the probe of Lorentz-violating effects. To
estimate this BBR shift we need to evaluate the value of
the tensor polarizability α2(2F7/2). We carried out calcu-
lations in the framework of 15-electron configuration in-
teraction (CI) method, following the approach described
in Ref. [20].

The main features of this approach are briefly de-
scribed below. All electrons are divided into the core
and valence electrons. In our case [1s2,...,5p6] are the
core electrons while 15 outer electrons belong to the va-
lence subspace.

In the framework of the CI method we solve the eigen-
value problem

HCIΦ = ECIΦ, (16)

where the many-electron wave functions Φ belong to the
valence subspace and are presented as a linear combina-
tion of Slater determinants,

Φ =
∑
detI

CI |detI〉. (17)

The CI Hamiltonian can be written as

HCI = Ecore +
∑

i>Ncore

hCI
i +

∑
j>i>Ncore

Vij , (18)

where Ncore is the number of core electrons, Ecore is the
energy of the core which includes kinetic energy of the
core electrons, Coulomb energy of their interaction with
the nucleus and potential energy of the core-core electro-
static interaction. The core-valence interaction, kinetic
energy of the valence electrons and their interaction with
the nucleus are included in the one-electron operators
hCI
i . The last term in Eq. (18) accounts for the interac-

tion between valence electrons.
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We start from solving the Dirac-Fock equations for the
[1s2,...,4f136s2] configuration. Then the 6pj and 5dj or-
bitals are constructed for the 4f136s6p and 4f136p5d con-
figurations, correspondingly. The basis set used in the
CI calculations included also virtual orbitals up to 8s,
8p, 7d, 7f , and 5g. We form configuration space by al-
lowing single and double excitations for the odd-parity
states from the 4f146p, 4f136s2 and 4f135d6s configu-
rations and for the even-parity states from the 4f146s,
4f136s6p and 4f136p5d configurations to the orbitals of
the basis set listed above.

Solving the relativistic multiparticle Schrödinger equa-
tion, Eq. (16) gives the eigenvector of the 4f136s2 2F7/2

state which we use to determine the tensor polarizability
of this state.

Using formalism of the reduced matrix elements we can
write the expression for the tensor polarizability of the
state Φ0 with total angular momentum J as [21]

α2 = 4

(
5J(2J − 1)

6(2J + 3)(2J + 1)(J + 1)

)1/2

×
∑
n

(−1)J+Jn

{
J 1 Jn
1 J 2

}
|〈Φ0||d||Φn〉|2

En − Ea
, (19)

where Jn is the total angular momentum of the interme-
diate state Φn.

A direct summation over all intermediate states
in Eq. (19) requires a knowledge of the complete set of
eigenstates of the Hamiltonian (16). Practically, this is
impossible when dimension of a CI space exceeds few
thousand determinants, as in our case. To find the
electric-dipole tensor polarizability of the 4f136s2 2F7/2

state we use the method of solution of inhomogeneous
equation, described very detailed in [21]. The random-
phase approximation corrections are also included.

The result of our computation of the tensor polariz-

ability is α2(2F7/2) ≈ −2 a.u.. Using this value and T1 =
450 K and T2 = 300 K, we obtain from Eq. (14)

∆Et ≈ −0.015 cos θ1(1− cos2θ1) Hz. (20)

The dependence of ∆Et on the angle θ1 is shown
in Fig. 1 by a (red) solid line. While the general be-
havior of ∆Et for Yb+ is the same at θ1 = 0◦, 90◦,
and 180◦ as in Ca+, the ∆Et is much smaller in con-
sidered here Yb+ transition than in Ca+ one. Sup-
pression of the anisotropic black-body radiation in the
2F7/2,M=7/2− 2F7/2,M=1/2 Yb+ transition is due to com-

pactness of the Yb+ 4f orbital, resulting in the value
of tensor polarizability, which is an order of magnitude
smaller than that for the 2D5/2 state of Ca+. Therefore,
the anisotropic BBR shift is strongly suppressed for tran-
sition between substates of Yb+ 2F7/2 multiplet, and for
T1 = 450 and T2 = 300 K its maximal (absolute) value
at θ1 ≈ 55◦ is equal to 5.8 mHz.

To conclude, we derived the formula for the anisotropic
BBR shift of an energy level and performed numerical
calculations of this effect for Ca+ and Yb+ transitions of
interest for study of Lorentz violation. We demonstrated
that this effect strongly depends on the magnitude of
the tensor polarizability of the level. In high precision
experiments, the anisotropic BBR can be a major
systematic effect that should be specifically addressed in
determining experimental uncertainties.
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