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Nonlinear variants of quantum mechanics can solve tasks that are impossible in standard quantum theory,
such as perfectly distinguishing nonorthogonal states. Here we derive the optimal protocol for distinguishing
two states of a qubit using the Gross-Pitaevskii equation, a model of nonlinear quantum mechanics that arises as
an effective description of Bose-Einstein condensates. Using this protocol, we present an algorithm for unstruc-
tured search in the Gross-Pitaevskii model, obtaining an exponential improvement over a previous algorithm of
Meyer and Wong. This result establishes a limitation on the effectiveness of the Gross-Pitaevskii approxima-
tion. More generally, we demonstrate similar behavior under a family of related nonlinearities, giving evidence
that the ability to quickly discriminate nonorthogonal states and thereby solve unstructured search is a generic
feature of nonlinear quantum mechanics.

I. INTRODUCTION

Linearity is an essential feature of quantum mechanics
whose violation can have dramatic operational consequences.
In particular, Abrams and Lloyd [1] showed that in a model of
nonlinear quantum mechanics due to Weinberg [2], one can
exponentially increase the angle between quantum states, dis-
tinguishing states separated by an angle ε in time O(log 1

ε ).
This ability has strong computational implications, includ-

ing a fast algorithm for unstructured search (and thus a fast
algorithm for any problem in NP). In the unstructured search
problem, one aims to find a marked item using a black box that
determines whether any given item (out of N possible items) is
marked. Using the ability to distinguish nonorthogonal states
in the Weinberg theory, Abrams and Lloyd gave an algorithm
for unstructured search that uses time O(logN) and only a sin-
gle query.

More recent work of Meyer and Wong [3] considered the
computational power of the Gross-Pitaevskii equation, a non-
linear Schrödinger equation that provides an effective descrip-
tion of Bose-Einstein condensates. Specifically, they consid-
ered a discrete version of the Gross-Pitaevskii equation,

i
d
dt
〈x|ψ〉= g|〈x|ψ〉|2〈x|ψ〉 (1)

for a unit vector |ψ〉 ∈ span{|x〉}, where the coefficient g
quantifies the strength of the nonlinearity. They presented an
algorithm for unstructured search that simultaneously applies
an oracle Hamiltonian, an input-independent driving Hamil-
tonian, and the Gross-Pitaevskii nonlinearity. Their algorithm
uses time O(min{

√
N/g,

√
N}), so it can (unsurprisingly)

solve the search problem arbitrarily fast using an arbitrarily
strong nonlinearity. However, by considering the resources
needed to measure the system at a precisely chosen time, they
argued that a reasonable implementation would have com-
plexity O(N1/4), giving only a modest improvement over the
O(
√

N) complexity of Grover’s algorithm [4].
In this paper, we apply the original approach of Abrams

and Lloyd to the Gross-Pitaevskii nonlinearity. In Section II,
we find the optimal protocol for distinguishing two states of

a qubit by adding a carefully-chosen driving term. The opti-
mal procedure distinguishes states with overlap 1− ε in time
O( 1

g log 1
ε ), recovering essentially the same behavior as the

Weinberg model. In Section III, we apply this result to the
unstructured search problem. We present an algorithm with
complexity O(min{ 1

g log(gN),
√

N}), exponentially improv-
ing the upper bound of Meyer and Wong. Furthermore, we
give a lower bound of Ω(min{ 1

g ,
√

N}), showing that our al-
gorithm is optimal up to a logarithmic factor.

It would be interesting to find a variant of quantum the-
ory that allows a polynomial speedup over quantum com-
putation, but no more (see [5] for some recent progress in
this direction). However, our results suggest that the Gross-
Pitaevskii model does not provide such an example. We also
consider a broad class of nonlinearities that generalize the
Gross-Pitaevskii model and show that all such models lead
to essentially the same behavior. This supports the view that
the ability to exponentially increase the angle between states
is a generic feature of nonlinear quantum mechanics, as previ-
ously suggested by Abrams and Lloyd [1] and Aaronson [6].

In light of the dramatic consequences for information pro-
cessing, it seems unlikely that quantum mechanics is funda-
mentally nonlinear. However, information-processing proto-
cols using the Gross-Pitaevskii model can be used to place
limitations on the validity of the underlying approximation
[3]. We discuss this point further in Section IV, where we
use our state discrimination protocol to show that for an N -
atom Bose-Einstein condensate, the Gross-Pitaevskii approx-
imation can only hold up to time O( 1

g logN ).
Finally, we conclude with an open problem regarding

higher-dimensional nonlinear state discrimination in Sec-
tion V.

II. STATE DISCRIMINATION

In nonlinear quantum mechanics, states that are initially
nonorthogonal can evolve to become perfectly distinguish-
able. In this section, we analyze the optimal protocol for dis-
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tinguishing two states of a qubit under the Gross-Pitaevskii
and related nonlinearities.

Specifically, we consider nonlinear dynamics governed by
an equation

i
d
dt
|ψ〉= H(t)|ψ〉+K|ψ〉 (2)

where H(t) is a (time-dependent) Hermitian operator and K is
a nonlinearity of the form

〈x|(K|ψ〉) = κ(|〈x|ψ〉|)〈x|ψ〉 (3)

where κ : [0,1]→ R is a function characterizing the nonlin-
earity. For example, the Gross-Pitaevskii nonlinearity corre-
sponds to κ(x) = gx2, where the coefficient g quantifies the
strength of the nonlinearity.

Suppose we are given one of two possible states of a qubit
and our goal is to distinguish them as quickly as possible. Us-
ing the ability to choose the Hermitian driving term H(t), we
can orient the states however we like, provided we preserve
their inner product. Thus, to optimally distinguish the given
states, we should determine how to orient them on the Bloch
sphere so their inner product decreases as quickly as possible.

Consider the pure state with Bloch sphere coordinates
(x,y,z), i.e., with density matrix

ρ =
1
2

(
1+ z x− iy
x+ iy 1− z

)
. (4)

Since |〈0|ψ〉|2 = 1+z
2 and |〈1|ψ〉|2 = 1−z

2 , the nonlinear term
alone is equivalent to the state-dependent Hamiltonian

(
κ
(
( 1+z

2 )1/2
)

0
0 κ

(
( 1−z

2 )1/2
)
)
. (5)

In other words, the state evolves according to the equation

dρ
dt

=
i
2

[(
1+ z x− iy
x+ iy 1− z

)
,

(
κ
(
( 1+z

2 )1/2
)

0
0 κ

(
( 1−z

2 )1/2
)
)]

(6)

=
κ̄(z)

2

(
0 −ix− y

ix− y 0

)
(7)

where the odd function κ̄(z) : [−1,1]→ R is defined by

κ̄(z) := κ
(
( 1+z

2 )1/2)−κ
(
( 1−z

2 )1/2). (8)

Thus we find
d
dt
(x,y,z) = κ̄(z)(−y,x,0). (9)

Under these dynamics, states rotate around lines of latitude on
the Bloch sphere at a rate depending on their latitude.

Now consider how to optimally orient two states on the
Bloch sphere. The rate of change of the inner product of Bloch
vectors (x+,y+,z+) and (x−,y−,z−) is

d
dt
(x+x−+ y+y−+ z+z−) (10)

= (x+y−− y+x−)
(
κ̄(z+)− κ̄(z−)

)
.

Suppose the states are separated by a fixed angle α on the
Bloch sphere (i.e., angle α/2 in Hilbert space) and we aim
to rotate them to maximize the rate of decrease of their inner
product. Rotations about the z axis do not affect this rate.
Thus, without loss of generality, we can choose the midpoint
between the two states to lie in the xz plane. We orient the
states as shown in Figure 1(a), where φ is the polar angle from
the positive z axis to the midpoint and θ is the angle of rotation
about the midpoint, with θ = 0 corresponding to the states
lying along the line of longitude that passes through the x axis.
In terms of these parameters, the states have the form

x± = cos α
2 sinφ ± sin α

2 cosφ cosθ (11)
y± =±sin α

2 sinθ (12)
z± = cos α

2 cosφ ∓ sin α
2 sinφ cosθ . (13)

Thus the rate of change of the inner product on the Bloch
sphere is

d
dt

cosα = (x+y−− y+x−)
(
κ̄(z+)− κ̄(z−)

)
(14)

= sinα sinφ sinθ
(
κ̄(z−)− κ̄(z+)

)
. (15)

Given a specific nonlinearity κ , our goal is to choose φ and
θ to minimize (15). Next we perform this calculation for sev-
eral examples.

A. Gross-Pitaevskii nonlinearity

For the Gross-Pitaevskii nonlinearity, we have κ(x) = gx2,
so κ̄(z) = gz and the states evolve as

d
dt
(x,y,z) = gz(−y,x,0). (16)

As depicted in Figure 1(b), we can view this as a flow on the
Bloch sphere that pushes states along lines of latitude. The
rate of rotation varies as a function of latitude, with no rotation
at the equator or poles and opposite directions of rotation in
the northern and southern hemispheres.

Given a fixed angle between states, we aim to place those
states somewhere on the Bloch sphere to maximize the rate
at which they separate. Equation (15) shows that the rate of
change of the inner product on the Bloch sphere is

d
dt

cosα = gsinα sin α
2 sin2 φ sin2θ . (17)

Clearly the rate of decrease of cosα is maximized by choosing
φ = π/2 and θ = 3π/4, giving

d
dt

cosα =−gsinα sin α
2 . (18)

Equivalently, the rate of change of the overlap cos α
2 (i.e., the

magnitude of the inner product in Hilbert space) is

d
dt

cos α
2 =

1
4cos α

2

d
dt

cosα (19)

=−g
2

sin2 α
2 (20)

=−g
2
(1− cos2 α

2 ), (21)
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FIG. 1: (a) Orientation of states on the Bloch sphere with overlap cos α
2 . (b) The flow on the Bloch sphere induced by the Gross-Pitaevskii

nonlinearity.

which has the solution

cos α
2 =

cos α0
2 cosh gt

2 − sinh gt
2

cosh gt
2 − cos α0

2 sinh gt
2

(22)

where α0 is the value of α at t = 0. The states become orthog-
onal in a time t⊥ such that tanh gt⊥

2 = cos α0
2 , i.e.,

t⊥ =
2
g

tanh−1(cos α0
2 ) =

2
g

log(cot α0
4 ). (23)

In particular, if the initial overlap is cos α0
2 = 1− ε , the time

to distinguish the states is Θ(log 1
ε ).

In their optimal orientation, the states have Bloch vectors

x± = cos α
2 (24)

y± =± 1√
2

sin α
2 (25)

z± =± 1√
2

sin α
2 . (26)

To keep the states in this orientation, we must apply a ro-
tation about the x axis that keeps the y and z components
equal. An x rotation (generated by the Hamiltonian ω

2 σx)
gives d

dt (x,y,z) = ω(0,−z,y). Combining this with the effect
of the nonlinearity in (16), we have

d
dt
(x,y,z) = (−gyz,gxz−ωz,ωy). (27)

The states remain optimally oriented when

0 =
d
dt
(y− z) (28)

= gxz−ω(y+ z), (29)

so we must choose

ω
g
=

xz
y+ z

(30)

= 1
2 cos α

2 (31)

(which is given as an explicit function of t by (22)). One can
easily verify that, with this choice of ω , equation (27) is satis-
fied.

The performance of the optimal procedure using the Gross-
Pitaevskii nonlinearity is illustrated in Figure 2. As shown
in Figure 2(a), if the states are initially close, they separate
gradually at first, with an accelerating rate of separation, until
they become orthogonal. The time for the states to become
orthogonal (as a function of their initial separation) is plotted
in Figure 2(b).

B. Logarithmic nonlinearity

Motivated by a connection to Bose liquids, reference [7]
considers the nonlinearity κ(x) = g log(x2). With this nonlin-
earity, we have κ̄(z) = g log 1+z

1−z , so by (15), the inner product
on the Bloch sphere evolves as

d
dt

cosα = gsinα sinφ sinθ log
(1+ z−)(1− z+)
(1− z−)(1+ z+)

. (32)

Consider the initial states that are optimal for the Gross-
Pitaevskii nonlinearity, with φ = π/2 and θ = 3π/4. While
this choice is suboptimal for the logarithmic nonlinearity, it
serves to place an upper bound on the time required to dis-
tinguish the states. (In fact, numerical calculation shows that
the optimal states have φ = π/2 and θ ≈ 3π/4.) Using these
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FIG. 2: Optimally distinguishing two states of a qubit using the Gross-Pitaevskii nonlinearity κ(x) = gx2. (a) Inner product between states as
a function of time, as given by equation (22), for initial states with α0 = 0.1. (b) Time to distinguish states separated by an angle α0 on the

Bloch sphere, as given by equation (23).
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FIG. 3: Rate of change of the overlap for the Gross-Pitaevskii and
logarithmic nonlinearities. The solid curve is (33) with g = 1; the

dashed curve is (21) with g = 2.

states, we have

d
dt

cos α
2 = g

1√
2

log
(√

2− sin α
2√

2+ sin α
2

)
sin α

2 . (33)

As shown in Figure 3, this is at most a constant times the cor-
responding quantity under the Gross-Pitaevskii nonlinearity,
so the performance of the logarithmic nonlinearity is qualita-
tively similar. In particular, for cos α0

2 = 1− ε we again find
that the time to distinguish the states is Θ(log 1

ε ).

C. General nonlinearities

So far, we have considered the performance of two specific
nonlinearities. However, similar considerations apply for a
wide class of nonlinearities of the form (3).

Since the evolution of states under a nonlinearity κ depends
only on the function κ̄ defined in (8), let us evaluate state dis-

crimination in terms of the latter function. Note that we can
achieve any odd function κ̄ for some κ . In particular, if we let

κ(x) =

{
µ(x) x ∈ [0, 1√

2
]

ν(
√

1− x2) x ∈ ( 1√
2
,1]

(34)

for some µ,ν : [0, 1√
2
]→ R, then we find

κ̄(z) =





ν
(√ 1−z

2

)
−µ

(√ 1−z
2

)
z ∈ (0,1]

0 z = 0
−κ̄(−z) z ∈ [−1,0).

(35)

Now suppose κ̄(z) is approximately linear for small z.
Specifically, suppose there are constants g,δ > 0 such that
κ̄(z) ≥ gz for all z ∈ [0,δ ]. For such a nonlinearity, the
complexity of distinguishing states with overlap 1 − ε is
O( 1

g log 1
ε ), just as with the Gross-Pitaevskii and logarithmic

nonlinearities.
To see this, a straightforward calculation shows that the

states separated by an angle α with φ = π/2 and θ = 3π/4
have

d
dt

cos α
2 =− 1√

2
κ̄
( 1√

2
sin α

2

)
sin α

2 . (36)

Under the given conditions on κ̄(z), we find

d
dt

cos α
2 ≤−

g
2

sin2 α
2 (37)

provided sin α
2 ≤
√

2δ . Comparing with (21), we see that the
states separate at least as quickly as with the Gross-Pitaevskii
nonlinearity provided the overlap is at least

√
1−2δ 2. Sim-

ilarly to (23), a straightforward calculation shows that the
time to achieve overlap cos α

2 ≥
√

1−2δ 2 under the Gross-
Pitaevskii nonlinearity is at most

2
g

log
(

cot α0
4

cot α
4

)
, (38)
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so the states become distinguishable with constant advantage
in time O( 1

g log 1
ε ).

In fact, it is not essential for κ̄(z) to be linear about z = 0;
similar performance can be achieved provided the function
grows linearly about any fixed z0 ∈ [0,1) (which holds for any
function that is differentiable and non-constant over some in-
terval). Specifically, suppose there are constants g,∆ > 0 such
that |κ̄(z0)− κ̄(z0 + δ )| ≥ g|δ | for all |δ | < ∆. Then, taking
cosφ = z0 and either θ = 3π/4 or θ = π/4 (making the choice
so that κ̄(z+)> κ̄(z−)), we find

|z+− z−|=
√

2(1− z2
0)sin α

2 (39)

≥

√
1− z2

0
2

α. (40)

Thus by (15), we have

d
dt

cosα ≤−g

√
1− z2

0
2

α sinα (41)

provided α is at most some constant (depending on z0 and
∆). Integrating this inequality, we have α(t) ≥ ectα0 where

c := g
√

(1− z2
0)/2. Since the angle between the states in-

creases exponentially until it reaches at least some constant,
states with overlap 1− ε become distinguishable with con-
stant advantage in time O( 1

g log 1
ε ).

Conversely, provided only that κ̄(z) is Lipschitz continu-
ous, this behavior is asymptotically optimal. To see this, sup-
pose that κ̄(z) has Lipschitz constant g, i.e., |κ̄(z)− κ̄(z +
δ )| ≤ gδ . Since

|z+− z−|2 ≤ ‖(x+,y+,z+)− (x−,y−,x−)‖2 (42)
= 2(1− cosα) (43)

≤ α2, (44)

we have |κ̄(z−)− κ̄(z+)| ≤ 2gα in (15). Therefore

d
dt

cosα ≥−2gα sinα. (45)

Integrating this inequality gives α(t) ≤ e2gtα0. Since the an-
gle increases at most exponentially with gt, we require time
Ω( 1

g log 1
ε ) to distinguish states with overlap 1− ε .

Note that it is possible to violate this lower bound if the Lip-
schitz condition does not hold. For example, suppose κ̄(z) =
sgn(z)

√
|z| (which is achieved, for example, with κ(x)= 0 for

x ∈ [0,1/
√

2] and κ(x) =
√

2x2−1 for x ∈ (1/
√

2,1]). Then,
taking states with φ = π/2 and θ = 3π/4, equation (36) gives

d
dt

cos α
2 =−

(
1√
2

sin α
2

)3/2

. (46)

While this differential equation does not have a simple closed-
form solution, we have the bound

d
dt

cos α
2 ≤−r

√
α sin α

2 (47)

for all α ∈ [0,π], where r := (23/4√π)−1. Integrating this
inequality, we find α(t) ≥ (

√
α0 + rt)2. Therefore any two

distinct states become distinguishable in constant time, inde-
pendent of how close they are initially.

III. UNSTRUCTURED SEARCH

We now turn our attention to algorithms for unstructured
search in nonlinear quantum mechanics. In the unstruc-
tured search problem, our goal is to search the set [N] :=
{1,2, . . . ,N} for a member of the marked set M ⊆ [N],
given the ability to determine whether a given element is
marked. Equivalently, we can consider the problem of de-
ciding whether there is no marked item (i.e., M is empty) or a
unique marked item (M = {m} for some unknown m ∈ [N]).
Using standard techniques, an algorithm for this decision
problem can be used to find a marked item with only loga-
rithmic overhead.

In the conventional quantum query model, access to the in-
put is provided by a black box that determines whether a given
element of [N] is marked (and that can be queried on a super-
position of elements). Here we work in a continuous-time
model [8] where access to the input is provided by an ora-
cle Hamiltonian. This Hamiltonian is |m〉〈m| if M = {m} and
is zero if there is no marked item. We consider algorithms
that use such an oracle Hamiltonian together with an arbitrary
M-independent driving Hamiltonian H(t) and a given nonlin-
earity K. The dynamics of such an algorithm are governed by
the equation

i
d
dt
|ψ〉=

(
|m〉〈m|+H(t)

)
|ψ〉+K|ψ〉 (48)

if M = {m}, or

i
d
dt
|ψ〉= H(t)|ψ〉+K|ψ〉 (49)

if there is no marked item.
We quantify the complexity of such an algorithm by the

time required to find the solution. As in the standard
continuous-time query model, we place no constraints on the
norm of H(t). However, we consider a fixed-strength nonlin-
earity K, since an arbitrarily strong nonlinearity could solve
the search problem arbitrarily fast. Thus our complexities will
be expressed as a function of both N, the number of items, and
g, a parameter characterizing the strength of the nonlinearity.
In contrast, in the absence of a nonlinearity, the search prob-
lem requires Ω(

√
N) queries even when H(t) can be arbitrar-

ily large [8].

A. Algorithm

To give an algorithm for unstructured search, we reduce the
problem of deciding whether there are zero or one marked
items to the task of discriminating two possible states of a
qubit. We do this using the Hadamard test shown in Figure 4.
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|0〉 H • H

|s〉 U

FIG. 4: The Hadamard test. The first register stores a qubit. The
Hadamard gate H acts as H|0〉= 1√

2
(|0〉+ |1〉) and

H|1〉= 1√
2
(|0〉− |1〉)).

(This approach is similar to that of Abrams and Lloyd [1], al-
though we work with the continuous-time query model so we
can consider algorithms that query the oracle for only a short
time.) A straightforward calculation shows that the output of
the Hadamard test circuit is

1
2
[|0〉(|s〉+U |s〉)+ |1〉(|s〉−U |s〉)]. (50)

To produce a single-qubit state, we postselect the second reg-
ister on the state |s〉. This postselection succeeds with proba-
bility

1
4
[
|1+ 〈s|U |s〉|2 + |1−〈s|U |s〉|2

]
=

1+ |〈s|U |s〉|2
2

(51)

and results in a state

(1+ 〈s|U |s〉)|0〉+(1−〈s|U |s〉)|1〉√
2(1+ |〈s|U |s〉|2)

. (52)

We apply this procedure to the evolution under the oracle
Hamiltonian for time t1, namely U = e−it1|s〉〈s| if element m is
marked, or U = I if no item is marked. We choose the uniform
superposition |s〉 := 1√

N ∑x∈[N]|x〉 as the initial state.
If no item is marked, then clearly 〈s|U |s〉 = 1 for any evo-

lution time t1. Thus the postselection on |s〉 always succeeds,
and the postselected state of the first qubit is |0〉.

On the other hand, if some item m is marked, then we have

U |s〉= 1√
N
(e−it1 |m〉+ ∑

x 6=m
|x〉). (53)

Therefore 〈s|U |s〉= 1− 1
N (1−e−it1), so the success probabil-

ity (51) is

1+ |〈s|U |s〉|2
2

= 1− N−1
N2 (1− cos t1) = 1−O(t2

1/N) (54)

(i.e., for t1�
√

N, the postselection almost always succeeds).
The overlap of the postselected state (52) with |0〉 is

|1+ 〈s|U |s〉|√
2(1+ |〈s|U |s〉|2)

=
|2N−1+ e−it1 |

2
√

N2− (N−1)(1− cos t1)
(55)

= 1− t2
1

8N2 +O(t4
1/N2). (56)

It remains to distinguish the two possible states. Using
the protocol described in Section II, states with overlap 1− ε
can be distinguished in time t2 = O( 1

g log 1
ε ), where g is the

strength of the nonlinearity. (We saw in Section II C that such
a bound holds not only for the Gross-Pitaevskii and logarith-
mic nonlinearities, but for any nonlinearity of the form (3)
where κ̄ changes at least linearly over some constant-size in-
terval.) From (56), we have ε = Θ(t2

1/N2). Thus we find an
algorithm that solves the search problem in total time

t1 + t2 = O(t1 + 1
g log N

t1
). (57)

Taking t1 = Θ( 1
g log(Ng)), the total time is O( 1

g log(Ng)).

Of course, if g is very small (in particular, if g� logN√
N

) then
it may be preferable to eschew the nonlinearity and instead use
Grover’s algorithm alone. Taking that possibility into account,
we find an algorithm with complexity

O(min{ 1
g log(gN),

√
N}) = O

( √
N

g
√

N
log(gN) +1

)
. (58)

This improves the previous upper bound of O
(√ N

g+1

)
=

O(min{
√

N/g,
√

N}) [3]. For example, with g = Θ(1), we
improve the complexity from O(

√
N) to O(logN).

B. Lower bound

We now show that the algorithm described above is nearly
optimal. We follow the same strategy as in the lower bound
for the linear case [8].

Let |ψ〉 be the state of the algorithm when there is no
marked item and let |ψm〉 be the state when the marked item is
m. Consider how the inner product 〈ψ|ψm〉 evolves under the
dynamics (48) and (49) for an arbitrary driving Hamiltonian
H(t). We find

d
dt
〈ψ|ψm〉=−i〈ψ|m〉〈m|ψm〉 (59)

+ i(K|ψ〉)†|ψm〉− i〈ψ|(K|ψm〉)
=−i〈ψ|m〉〈m|ψm〉 (60)

+ i∑
x

(
κ(|〈x|ψ〉|)−κ(|〈x|ψm〉|)

)

〈ψ|x〉〈x|ψm〉.

(In particular, observe that the driving Hamiltonian H(t) does
not appear, just as in the linear case.) Provided |κ(x)| ≤ g, we
have

∣∣∣∣∑
x

(
κ(|〈x|ψ〉|)−κ(|〈x|ψm〉|)

)
〈ψ|x〉〈x|ψm〉

∣∣∣∣ (61)

≤ 2g∑
x
|〈ψ|x〉〈x|ψm〉| ≤ 2g

by the Cauchy-Schwarz inequality, so

∣∣∣ d
dt
〈ψ|ψm〉

∣∣∣≤ |〈m|ψ〉|+2g. (62)



7

Summing over the N possible marked items, we find

d
dt ∑

m∈[N]

|〈ψ|ψm〉| ≤
(

∑
m∈[N]

|〈m|ψ〉|
)
+2gN (63)

≤
√

N +2gN (64)

where we again used the Cauchy-Schwarz inequality. Inte-
grating for time t using the initial condition ∑m∈[N] |〈ψ|ψm〉|=
N, we find that

∑
m∈[N]

|〈ψ|ψm〉| ≥ N− t
√

N(1+2g
√

N). (65)

For the algorithm to succeed with constant probability, the
unmarked state must be distinguishable from each marked
state with constant probability, so the final states must satisfy
|〈ψ|ψm〉| ≤ 1−δ for some constant δ > 0. Therefore

∑
m∈[N]

|〈ψ|ψm〉| ≤ N(1−δ ). (66)

Comparing with (65), we find

t ≥ δ
√

N
1+2g

√
N
. (67)

Thus a bounded-error algorithm must have complexity
Ω
( √

N
g
√

N+1

)
= Ω(min{ 1

g ,
√

N}). This shows that the algorithm
described in Section III A is optimal up to a logarithmic factor.

IV. VALIDITY OF THE GROSS-PITAEVSKII
APPROXIMATION

Since the Gross-Pitaevskii model is an approximate de-
scription of a fundamentally quantum system, upper bounds
on search in this model can be interpreted as establishing lim-
itations on the effectiveness of the approximation. Using lim-
its on the parallelizability of unstructured search, Meyer and
Wong argued that this perspective gives a lower bound on how
large a Bose-Einstein condensate should be for the Gross-
Pitaeveskii approximation to hold [3]. They suggested that
the N -particle Bose-Einstein condensate makes N queries
in parallel per unit time, so the bound N T 2 = Ω(N) for a
parallel quantum search algorithm with query depth T [9], to-
gether with their search upper bound T = O(

√
N/g), implies

N = Ω(g).
While the search algorithm presented in Section III has

lower complexity, the above argument does not apply to that
case. In our approach, we query the black box for a short time
using only linear quantum mechanics and then distinguish the
resulting states using the nonlinearity. Since the nonlinear
portion of the computation makes no access to the oracle, the
hardness of parallelizing quantum search does not restrict the
validity of the Gross-Pitaevskii approximation.

However, we can use state discrimination to obtain a limi-
tation on the time for which the Gross-Pitaevskii approxima-
tion remains valid. In this approximation, |ψ〉 is not literally

the quantum state of the system; rather, it parameterizes the
mean-field bosonic state

|MF(ψ)〉 :=
1√
N !

(
∑
x
〈x|ψ〉a†

x

)N

|0〉 (68)

where |0〉 is the vacuum state, a†
x is a creation operator for

mode x, and N is the number of particles in the system. It
is straightforward to understand the distinguishability of these
mean-field states in terms of their parameterizing vectors: a
simple calculation shows that 〈MF(ψ)|MF(φ)〉= (〈ψ|φ〉)N ,
so the distinguishability of states of the form |MF(ψ)〉 is the
same as that of |ψ〉⊗N . In our protocol, |ψ〉 is a qubit, so we
can represent it using a two-mode condensate and implement
the driving term H(t) by driving transitions between these two
modes. By the Helstrom bound [10], N = Θ(1/ε) copies
are necessary and sufficient to distinguish states with over-
lap 1− ε with constant advantage (in fact, this bound can be
achieved even with unentangled measurements [11]). Since
the Gross-Pitaevskii nonlinearity of strength g can distinguish
states with overlap 1− ε in time t = O( 1

g log 1
ε ), we find that

the Gross-Pitaevskii approximation can only hold up to time
O( 1

g logN ). For a homogeneous condensate, g = UN for
some constant interaction strength U , so the approximation
only holds up to time O( logN

N ).
While it is appealing to obtain such a limitation from

information-theoretic considerations, it appears that one can
derive a stronger bound by direct analysis of the condensate
dynamics [12]. This analysis suggests that in fact the approx-
imation is only valid for Ut � 1/N , so that for a homoge-
neous condensate, it only holds up to time O(1/N ).

V. CONCLUSION

We have studied the power of nonlinear quantum dynamics
to distinguish nonorthogonal states and to perform unstruc-
tured search. We showed that the Gross-Pitaevskii nonlinear-
ity of strength g can be used to distinguish states with overlap
1− ε in time O( 1

g log 1
ε ). We applied this result to give an al-

gorithm for unstructured search in this model with complexity
O(min{ 1

g log(gN),
√

N}), an exponential improvement over
previous work. We also showed that many other nonlinear-
ities of a related form have similar behavior. Finally, we
used our state discrimination protocol to argue that for an N -
atom Bose-Einstein condensate, the Gross-Pitaevskii approx-
imation can only hold up to time O( 1

g logN ).
We conclude with an open problem regarding nonlinear

state discrimination. Our state discrimination analysis was re-
stricted to the case of a single qubit. It is unclear whether
states could be discriminated more quickly using higher-
dimensional systems. Numerical evidence suggests that our
optimal protocol for distinguishing two states of a qubit with
the Gross-Pitaevskii nonlinearity remains optimal if the states
are allowed to lie in a higher-dimensional space. Furthermore,
numerical evidence also suggests that for many other nonlin-
earities of the form (3), the optimal protocol for qubit states
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cannot be improved by embedding those states in a higher-
dimensional space. However, we do not have a proof that op-
timality can be achieved using only two dimensions.

A notable example where higher dimensions do offer an ad-
vantage is provided by the nonlinearity with κ(x) = x2−x4 (as
considered in [7]). This nonlinearity has κ̄(z) = 0, so it cannot
make two states of a qubit more distinguishable. However, by
embedding the states in three or more dimensions, it becomes
possible to decrease their inner product. In this case, numeri-
cal evidence suggests that there is no advantage to using more
than four dimensions.
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