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We present a concept of non-Gaussian measurement composed of a non-Gaussian ancillary state,
linear optics and adaptive heterodyne measurement, and on the basis of this we also propose a
simple scheme of implementing a quantum cubic gate on a traveling light beam. In analysis of the
cubic gate in the Heisenberg representation, we find that nonlinearity of the gate is independent
from nonclassicality; the nonlinearity is generated solely by a classical nonlinear adaptive control in
a measurement-and-feedforward process while the nonclassicality is attached by the non-Gaussian
ancilla that suppresses excess noise in the output. By exploiting the noise term as a figure of merit, we
consider the optimum non-Gaussian ancilla that can be prepared within reach of current technologies
and discuss performance of the gate. It is a crucial step towards experimental implementation of
the quantum cubic gate.

PACS numbers: 03.67.Lx, 42.50.Dv, 42.50.Ex, 42.65.-k

I. INTRODUCTION

Development and application of quantum physics cru-
cially rely on progress in quantum operations with var-
ious physical systems. For discrete-variable systems, a
basic controlled-NOT nonlinear gate [1] has been already
demonstrated with many systems [2–5] and the current
problem is scalability of their implementations. On the
other hand, for more complex continuous-variable (CV)
systems [6], a full set of basic operations has not been
closed yet. It was proven that in order to synthesize an
arbitrary unitary operation, it is enough to add a cu-
bic nonlinear operation to the already existing Gaussian
operations [7]. Any nonlinearity can be principally ob-
tained from a chain of the Gaussian operations, the cubic
nonlinearity and feedforward corrections [7, 8]. The cu-
bic nonlinearity is therefore a bottleneck of CV quantum
physics.

Already a decade ago, Gottesman, Kitaev and Preskill
(GKP) suggested a way how to implement a cubic non-
linear gate based on Gaussian operations, Gaussian mea-
surement, quadratic feedforward correction and an ancil-
lary cubic state produced by the cubic nonlinearity [9].
Various approaches towards the cubic gate have followed
[10–13]. Particularly in the field of quantum optics, most
of the components of the cubic gate have been experi-
mentally demonstrated, mainly because of the high qual-
ity of generating squeezed states and efficient homodyne
detection. The Gaussian operations have been already
mastered [14–16], utilizing a concept of measurement-
induced operations [17]. Furthermore, they have been
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tested on non-Gaussian states of light [18], to prove their
general applicability. Recently, the quadratic electroop-
tical feedforward control has been demonstrated [19]. In
addition, to independently obtain the cubic state, a finite
dimensional approximation of the cubic state has been
suggested [20] and its performance in the GKP scheme
has been discussed. The cubic state has been experimen-
tally generated as a superposition of photons and verified
[21]. Potentially, such a superposition state can be stored
in and retrieved from recently-developed optical quan-
tum memories [22, 23]. In order to make resource non-
classical states compatible with the measurement-based
scheme, real-time quadrature measurement of a single-
photon state has been demonstrated [24].

A drawback of the original GKP idea is that requires to
implement the quantum nondemolition gate, i.e., the CV
controlled-NOT gate [17], and a squeezing feedforward
that depends on the measurement result. While each of
them has been already demonstrated [15, 19], the total
implementation to build a unitary cubic operation de-
mands three squeezed states as well as one non-Gaussian
ancilla, and is probably not the simplest arrangement.
In contrast, we here use adaptability of linear optical
schemes and propose a better and simpler topology with
linear optics and suitable ancillary states.

Our approach is to tuck all the non-Gaussian aspects
into the measurement process. The topology will be
then similar to the simple one used for a measurement-
induced squeezing gate [14, 17–19, 25]. Non-Gaussian
operations can be realized by simply substituting a mea-
surement of nonlinear combination of quadrature ampli-
tudes for the Gaussian homodyne measurement [26, 27].
We construct such a measurement in a form of a gener-
alized non-Gaussian measurement by combining ordinary
Gaussian measurement tools with non-Gaussian ancillary
states that can be prepared with photon detection. In
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fact, we can exploit arbitrary superpositions of photon-
number states up to certain photon level within reach of
current technologies [21, 28, 29].

In this paper, we first provide an idea of non-Gaussian
measurement comprising a non-Gaussian ancillary state,
linear optics and adaptive heterodyne measurement. Us-
ing the non-Gaussian measurement, we next propose
a simple schematic of a quantum cubic gate based on
the measurement-induced operation scheme, whose re-
source states are only one squeezed vacuum and one
non-Gaussian state. While in previous work the input-
output relation of the cubic gate has been investigated
in the Schrödinger picture, here we analyze the gate in
the Heisenberg picture to include imperfections in the
scheme. We then find that nonlinearity of the gate is
independent from nonclassicality. Specifically, the non-
linearity is generated solely by a classical nonlinear adap-
tive control in a measurement-and-feedforward process re-
gardless of the non-Gaussian ancilla. On the other hand,
the nonclassicality is attached by the ancilla that compen-
sates residual noise in the output. Finally, we discuss an
overall performance of the cubic gate in such a topology
and consider non-Gaussian ancillary superposition states
up to certain photon level to investigate how well the un-
wanted noise can be suppressed in the gate.

II. MINIMAL IMPLEMENTATION OF
MEASUREMENT-INDUCED QUANTUM

OPERATIONS

Measurement-induced quantum operation scheme [17]
decomposes various quadratic operations into linear op-
tics, displacement operation, homodyne detection and off-
line squeezed light beams, which are readily available in
actual optical experiments. One of the realizations of
the scheme is the basic squeezing gate. Firstly we com-
bine an input state |ψ〉 and an eigenstate |x = 0〉 of the
position quadrature x̂ at a beam splitter whose trans-
mittance is represented by

√
T . We then measure the

momentum quadrature p̂ of one of the optical modes
and obtain a value y. Finally we apply displacement
to the p quadrature of the remaining mode with the
value pdisp =

√
(1− T )/Ty and obtain a squeezed output

state. Ideally the output is a pure state Ŝ |ψ〉 where Ŝ

is an x-squeezing operator defined as Ŝ†x̂Ŝ =
√
T x̂ and

Ŝ†p̂Ŝ = p̂/
√
T . In the case of implementing p squeezing,

it is enough to replace the ancillary x eigenstate with
the p eigenstate |p = 0〉 and exchange the roles of x and p
quadratures. This type of operation has been successfully
demonstrated in [14, 18], where the position eigenstate is
replaced with the squeezed vacuum.

On the basis of one-way CV cluster computation
[26, 27], we can generalize the basic squeezing gate to
minimal single-mode implementation of arbitrary-order
quantum operations as shown in Fig. 1. The homodyne
detector in the squeezing gate is now replaced with a de-
tector that measures a general quadrature Û†n(x̂)p̂Ûn(x̂),
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FIG. 1. (Color online) Minimal single-mode implementation
of measurement-induced quantum operation.

where the unitary operator Ûn(x̂) is defined as nth-order

phase gate Ûn(x̂) = exp(iγx̂n) with a real parameter γ.
Hereafter we set ~ = 1 for simplicity. The measured gen-
eral quadrature is thus p̂ + nγx̂n−1. In the ideal case,
the output state is expressed as ŜÛn(

√
1− T x̂) |ψ〉. This

gate deterministically applies the phase gate to the input
state with the additional constant squeezing that can be
compensated by another squeezer.

It is known that, arbitrary single-mode unitary can be
decomposed into the set of gates Ûn(x̂) for n = 1, 2, 3
for all γ ∈ R, together with the π/2 phase shift [8, 27].
This also holds when we exploit the minimal implementa-
tion in Fig. 1. Û1(x̂) is the trivial displacement operation,

and Û2(x̂) has been experimentally demonstrated [19, 25].

The remained task is thus to realize a cubic gate Û3(x̂).
We now consider how to construct measurement of the
nonlinear quadrature p̂ + 3γx̂2 with affordable appara-
tuses, as explained in the following sections.

III. NON-GAUSSIAN MEASUREMENT BY
GENERALIZED HETERODYNE DETECTION

A. Projecting on pure states

In quantum physics, measurements are represented by
operators. In the simplest case of von Neumann mea-
surements, these operators are simply projectors on par-
ticular quantum states. In the case of the keystone mea-
surement of CV quantum optics, the homodyne detection,
each measurement result indicates the measured state was
projected on an eigenstate of the measured quadrature
operator. Analogously, the heterodyne detection, which
can be modeled by a pair of homodyne detectors simulta-
neously measuring conjugate quadratures of a mode split
by a balanced beam splitter [30], implements a projection
onto a coherent state. Both of these kinds of measure-
ments are Gaussian—the measured quadrature distribu-
tion is Gaussian if the measured state is Gaussian.

One way to achieve a non-Gaussian measurement is
to take advantage of non-Gaussian states in combination
with the standard heterodyne detection schemes. The
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basic idea of the measurement is best explained in the x
representation. Consider we have a standard heterodyne
detection configuration, where the idle port of the beam
splitter is not injected by a vacuum but by a specifically
prepared ancillary state |ψA〉 =

∫
ψA(x) |x〉 dx. For a

particular pair of measurement results q and y, the pro-
cedure implements projection onto a state

D̂(
√

2q + i
√

2y)T̂ |ψA〉 . (1)

Here D̂(α) = exp{i
√

2x̂ Im[α]−i
√

2p̂Re[α]} stands for the

displacement operator and T̂ is the time-reversal antiuni-
tary operator represented by T̂ †x̂T̂ = x̂ and T̂ †p̂T̂ = −p̂.
To derive the expression (1), we can start with the pro-
jection states of the pair of homodyne detectors

〈x1 = q| 〈p2 = y| . (2)

If we take into account the unitary balanced beam split-
ter, the projection state becomes∫

dx2

〈
q + x2√

2

∣∣∣∣ 〈−q + x2√
2

∣∣∣∣ e−iyx2 . (3)

During the measurement, this state will be jointly pro-
jected onto the measured and the ancillary state. The
measured state is unknown, but we can already apply
the ancilla in the second mode. This reduces the state to∫

dx

〈
q + x√

2

∣∣∣∣ψA

(
−q + x√

2

)
e−iyx, (4)

where the subscript was dropped because it was no longer
needed. After a straightforward substitution we can ex-
press the projection state as∫

dxψ∗A(x)ei
√
2xy |x+

√
2q〉 . (5)

Since the time-reversal operator corresponds to complex
conjugate in the x representation, the expression (5) is
the same as Eq. (1). For q = y = 0, we obtain simple
projection onto the given ancillary state

∫
ψ∗(x) |x〉 dx.

We can see that if the ancillary mode is in the vacuum
or a coherent state, the measurement remains the simple
heterodyne detection, as is expected. However, if the
ancilla is non-Gaussian, we obtain a truly non-Gaussian
measurement.

B. Projecting on impure states

In a realistic scenario, the ancillary state will be gener-
ally not pure. To take this into account, it is best to aban-
don the x representation and employ the formalism of
Wigner functions. The basic premise, however, remains.
The measurement still implements projection onto a spe-
cific state, only this time the state will be represented by a
Wigner function. Specifically, for a signal two mode state
represented by a Wigner function WS(x0, p0, x1, p1), the

outcome of a measurement performed on mode 1 yielding
a pair of values q and y results in the Wigner function

Wout(x0, p0|q, y)

∝
∫
dx1dp1WS(x0, p0, x1, p1)WM(x1, p1|q, y),

(6)

where the function WM(x1, p1|q, y) represents the projec-
tor on the particular state. In our scenario, in which the
pair of homodyne detectors are supplied with an ancillary
state corresponding to a Wigner function WA(x, p), the
projector function can be found as

WM(x, p|q, y) = 2WA(x−
√

2q,−p+
√

2y). (7)

We can see that this form agrees with Eq. (1) if we realize

that the time-reversal operator T̂ transforms the Wigner
function variables as (x, p) 7→ (x,−p). The relation (7)
can be derived in the same way as relation (1). We
start with the homodyne measurement projector func-
tions, here represented by the pair of delta functions
δ(x1 − q)δ(p2 − y), which we then propagate through the
beam splitter and apply to the ancillary state, resulting
in

WM(x1, p1|q, y) =∫
dx2dp2WA(x2, p2)δ

(
x1 − x2√

2
− q
)
δ

(
p1 + p2√

2
− y
)
.

(8)

C. Arbitrary Gaussian operations within the
measurement

One may desire to apply Gaussian operation to the
non-Gaussian ancilla because some Gaussian operations
(such as squeezing) enhance certain features of the state.
Here we show that, instead of projecting on a raw non-
Gaussian state, we can alter the measurement so it
projects on a non-Gaussian state altered by an arbitrary
Gaussian operation. This can be enormously useful be-
cause we do not need to implement an additional Hamil-
tonian that often makes the state impure in actual ex-
periments. Note that we are disregarding displacement
because that can be achieved simply by displacing the
measurement results. For a pair of quadrature variables
x and p, an arbitrary Gaussian operation is represented
by a real two-by-two symplectic matrix S whose elements
satisfy s11s22−s12s21 = 1. If we consider that phase shift
can be implemented “for free,” the arbitrary Gaussian
unitary transformation reduces to

x′ = z1x, p′ =
1

z1
p+ z2x, (9)

where z1 and z2 are arbitrary real parameters. To achieve
this transformation, we must modify the measurement
setup in two ways. First, the balanced beam splitter in
Eq. (3) will be removed and replaced by a beam splitter
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with transmittance T and reflectance R = 1−T . Second,
instead of measuring quadrature p2 we measure quadra-
ture p2(θ) = p2 cos θ + x2 sin θ. The projection functions
of the measurements itself in Eq. (8) are then

δ(x1 − q)δ(p2 cos θ + x2 sin θ − y). (10)

Using the same steps we used to arrive at Eq. (7) we can
now obtain the generalized projection function

WM(x, p|q, y) =
1

|
√
RT cos θ|

×

WA

(√
T

R
x− q√

R
,−
√
R

T
p− tan θ√

RT
x+

q tan θ√
R

+
y√

T cos θ

)
.

(11)

We can immediately see that after the time-reversal op-
erations, we have z1 =

√
T/R and z2 = tan θ/

√
RT and

these two parameters can attain arbitrary real values. As
a consequence, after addition of a phase shift the func-
tion (11) implements projection onto the ancillary state
altered by an arbitrary Gaussian operation.

It is worth pointing out that the two homodyne mea-
surements need not to be independent. One of the mea-
surements can have parameters changing based on the
results of the other one, thus creating a sort of adap-
tive measurement scheme. For example, the measurement
phase θ can depend on the measurement result q. This
can be used to induce a nonlinear behavior, as we will see
in Sec. IV B.

IV. IMPLEMENTATION OF A CUBIC GATE

A. With nonadaptive non-Gaussian measurement

In this section we apply the non-Gaussian measurement
to a particular task—the implementation of a nonlinear

cubic gate Û = eiγx̂
3

to an arbitrary quantum state. In
terms of quadrature operators, the gate performs trans-
formation

x̂′ = x̂, p̂′ = p̂+ 3γx̂2. (12)

Before proceeding to a scheme with the adaptive hetero-
dyne measurement, we firstly consider implementation
with nonadaptive measurement expressed by Eq. (1).

The basic principle of the operation can be quickly ex-
plained in the x representation. The unknown input state
|ψ〉 is mixed with a squeezed state on a balanced beam
splitter. If we for ease of explanation consider the infinite
squeezing, the resulting two mode state can be expressed
as ∫

dxψ(x)

∣∣∣∣ x√2

〉 ∣∣∣∣ x√2

〉
. (13)

After applying non-Gaussian measurement (4) on one of
the modes, we obtain the projected state in the form∫

dxψA

(
x√
2
−
√

2q

)
ψ(x)e−ixy

∣∣∣∣ x√2

〉
, (14)

where q and y are again the homodyne measurement re-
sults, and ψA(x) is the wave function of the ancillary
state. For implementing the cubic gate, ψA(x) has to be
cubically dependent on x, and is ideally in a state

|ψA〉 =

∫
dx exp(iγx3) |x〉 (15)

and the whole operation would lead to

exp(−i3
√

2γqx̂2) exp[i(6γq2 −
√

2y)x̂]

× exp(iγx̂3)

∫
dxψ(x)

∣∣∣∣ x√2

〉
.

(16)

This is almost exactly the desired output state. The only
difference is a constant squeezing and two unitary oper-
ations depending on the measured values. The constant
squeezing can be fully compensated either before or af-
ter the operation and the measurement dependent uni-
tary operations can be removed by a proper feedforward.
This is exactly the same principle as employed by the
CV teleportation and CV measurement-induced opera-
tions. While each particular measurement result projects
on a different quantum state, these states belong to the
same family and the proper operation can smear the dif-
ferences and produce a quantum state independent of the
measurement result. This allows the whole procedure to
operate deterministically.

B. With adaptive non-Gaussian measurement

In Eq. (16) we need quadratic feedforward in the form
of adjustable squeezing. Thus the topology here is not as
simple as the minimal implementation depicted in Fig. 1.
To realize measurement of the nonlinear quadrature p̂ +
3γx̂2, we exploit the adaptive non-Gaussian heterodyne
measurement. According to the results in Sec. III C, by
altering the phase of the second measurement, we can
project onto a transformed ancillary state

D̂

[
√

2q + i

(√
2y

cos θ
−
√

2q tan θ

)]
T̂ eix̂

2 tan θ |ψA〉 . (17)

Again, q and y are the measured values in the heterodyne
detection, and |ψA〉 is the cubic state (15). We then sub-

stitute 3
√

2γq for tan θ. After simple algebras we find the
projection state

exp(−iγx̂3)

∣∣∣∣∣p =

√
2y

cos θ

〉
, (18)

which means an eigenstate of the nonlinear quadrature
p̂+3γx̂2 with the eigenvalue

√
2y/ cos θ. This scheme can

be illustrated as Fig. 2. Here the quadrature basis of the
second homodyne detection is determined by the result of
the first homodyne detection. As a result, the heterodyne
detection and the classical calculation compose a mod-
ule of non-Gaussian measurement, and the feedforward
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Non-Gaussian measurement
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FIG. 2. (Color online) Schematic of a cubic gate. BBS, bal-
anced beam splitter; HOM, homodyne measurement; LO, lo-
cal oscillator; PS, phase shift; NL, nonlinear classical calcula-
tion. While all the optics are linear, the classical circuit in-
volves nonlinear calculations that makes the feedforward non-
linear. The nonlinear classical circuits have been already de-
vised in the experiment of dynamic squeezing [19].

is now the simple displacement operation. After all, the
required optical operations are displacement and beam
splitters together with homodyne measurements, all of
which are ubiquitous in quantum-optical experiments.

To explicitly show how this scheme works, it is in-
structive to employ the Heisenberg representation, which
would have the added benefit of incorporating the im-
perfections arising from the realistic experimental imple-
mentation, e.g. finite squeezing. May the unknown signal
mode be labeled by ‘0’ and described by quadrature oper-
ators x̂0 and p̂0. After combining the initial state in mode
‘0’ with the squeezed state in mode ‘1’ and with the non-
Gaussian ancilla in mode ‘2’, the respective quadrature
operators read

x̂′0 =
1√
2
x̂0 −

1√
2
x̂1, (19a)

p̂′0 =
1√
2
p̂0 −

1√
2
p̂1, (19b)

x̂′1 =
1

2
x̂0 +

1

2
x̂1 −

1√
2
x̂2, (20a)

p̂′1 =
1

2
p̂0 +

1

2
p̂1 −

1√
2
p̂2, (20b)

x̂′2 =
1

2
x̂0 +

1

2
x̂1 +

1√
2
x̂2, (21a)

p̂′2 =
1

2
p̂0 +

1

2
p̂1 +

1√
2
p̂2. (21b)

In the next step we measure the x quadrature of mode 1′

and obtain value q. We can now use the value to adjust
the measured phase of the second homodyne detector.
In effect we end up measuring the value y of quadrature
operator x̂′2 sin θ + p̂′2 cos θ, where θ = arctan(3

√
2γq).

Note that, since θ nonlinearly depends on q, which carries
information of x̂1 quadrature, we can interpret this type
of measurement as the origin of nonlinearity of the gate.
The quadrature operators of the output mode can be now
expressed in terms of the measured values as

x̂′0 =
1√
2
x̂0 −

1√
2
x̂1, (22a)

p̂′0 =
√

2p̂0 + p2 +
3γ

2
[(x̂0 + x̂1)2 − 2x̂22]−

√
2y

cos θ
(22b)

The last term of the p quadrature, which is the only term
explicitly depending on the measured values q and y, can
be removed by a suitable displacement and we are then
left with the final form of the operators:

x̂′′0 =
1√
2
x̂0 −

1√
2
x̂1, (23a)

p̂′′0 =
√

2

(
p̂0 +

3γ

2
√

2
x̂20

)
+ (p̂2 − 3γx̂22) + 3γ

(
x̂0x̂1 +

1

2
x̂21

)
.

(23b)

Both of the first terms in Eq. (23) represent the ideal
cubic operation, i.e. combination of the cubic gate

eiγ(x̂0/
√
2)3 and the constant squeezing mentioned in

Sec. II. Those terms does not depend on the quadra-
tures of the other ancillary states. Differently from the
output (16) in Sec. IV A, in the Heisenberg representa-
tion we can say that the cubic nonlinearity comes from
the adaptive non-Gaussian measurement and feedforward
process regardless of the ancillary states.

Naturally, the ancillary states are still required to com-
plete the operation since the outputs have residual terms.
It is straightforward to find the ideal ancillary state in the
mode ‘1’ the quadrature eigenstate |x = 0〉1 because the
state affects only on the last terms of Eq. (23) and they
vanish when x̂1 → 0. In experimental implementation,
we approach the ideal state by using squeezed vacuum
states.

On the other hand, the middle term of Eq. (23b),
p̂NLQ = p̂2 − 3γx̂22, depends solely on the ancilla in the
mode ‘2’. This term vanishes when the ancilla is the ideal
cubic state (15). This state is best approached by consid-
ering physical states that squeeze the nonlinear quadra-
ture p̂NLQ, as discussed in the next section.

V. OPTIMAL ANCILLARY STATE

To find suitable states in the mode ‘2’, we can use
the expectation value and the variance of the nonlinear
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quadrature p̂NLQ as figures of merit, both of which should
be approaching zero. Here we consider preparing the an-
cillary state that can be generated within reach of cur-
rent technologies. On one hand, arbitrary superpositions
of photon-number states up to three photon level |ψN=3〉
can be prepared [21, 29], and the photon-number limit can
be in principle incremented. On the other hand, we can
perform universal Gaussian operation ÛG onto any input
state [14–16]. Then the ancilla best suited for our pur-

poses can be found in a form ÛG |ψN 〉 by optimizing over
all superposition states up to N -photon level |ψN 〉 and all

Gaussian operations ÛG that can be applied on the state
afterwards. In this way, we are using the expensive non-
Gaussian resources only for the key non-Gaussian features
of the state [31].

Our goal is to find a state ÛG |ψN 〉 that minimizes the
expectation value 〈p̂NLQ〉 and the variance V (p̂NLQ) =
〈(p̂NLQ − 〈p̂NLQ〉)2〉. The operator is symmetric with re-
spect to space inversion, x̂2 → −x̂2, and has a linear term
of p̂2. Accordingly the relevant Gaussian operations are
the p displacement represented by p̂2 → p̂2 + p0, and the
x squeezing represented by x̂2 → x̂2/λ and p̂2 → λp̂2,
where p0 and λ are arbitrary real parameters. Thus the
nonlinear quadrature after suitable Gaussian operations
is represented as

Û†Gp̂NLQÛG = γ1/3

[
λ′p̂2 − 3

(
x̂2
λ′

)2
]

+ p0, (24)

where λ′ = λ/γ1/3. From this point of view, we can
see that the expectation value 〈p̂NLQ〉 vanishes when we
apply suitable displacement p0. On the other hand, the
variance V (p̂NLQ) can be minimized by optimizing the
state |ψN 〉 and the parameter λ′. Furthermore, since λ′

can be any real number, we can say that the optimum
state does not depend on γ. We therefore use the variance
of λ′p̂2 − 3(x̂2/λ

′)2 as the actual figure of merit to derive
the optimum state |ψN 〉 and the corresponding parameter
λ′.

Let V opt
N the minimum value of the variance V (p̂NLQ)

with the optimum state |ψopt
N 〉 and the optimal parameter

λ′opt. Note that V opt
0 represents the Gaussian limit—

the minimum variances when the state is optimized over
all Gaussian states. Then the relative noise V opt

N /V opt
0 ,

as shown in Fig. 3, represents the ratio of the minimum
noise to the Gaussian limit, and is independent from γ.
We can see that the variance decreases approaching zero
with N , and that even a state obtained as a superposition
of zero and one photon gives a substantial benefit over
the Gaussian limit. To present the optimized states, we
represent the optimal approximate state up to N -photon

level by |ψopt
N 〉 =

∑N
n=0 c

opt
n |n〉 and plot absolute values

of the coefficients in Fig. 4. The superposition of vacuum
and single-photon states is readily available today, and
generation of arbitrary superposition up to three photons
has been demonstrated [21, 29]. In the case of optimizing
the superposition state up to three photons, the optimal
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FIG. 3. (Color online) Variances of the nonlinear quadrature
with the optimized photon-number-state superpositions up to
N photons, normalized by the Gaussian limit V opt

0 . The pa-
rameter λ′ is optimized over to find the minimum of the vari-
ance.
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FIG. 4. (Color online) Absolute values of the coefficients of
the optimal finite approximation of ancillary states for various
upper bounds of photon number N . Note that the coefficients
of even-number photons are real and odd-number photons
imaginary, due to the symmetry of the nonlinear quadrature
p̂− 3γx̂2 with respect to x̂→ −x̂.

approximate state looks as

|ψopt
N=3〉 ∝ 0.17 |0〉 − 0.56i |1〉 − 0.73 |2〉+ 0.35i |3〉 . (25)

The state is different from the cubic state from [20] be-
cause of the different derivation of the states. In [20],
the state was determined as if it was produced by ap-
plying the cubic gate to the vacuum without considering
optimization over squeezing and displacement. On the
other hand, the present state (25) is derived so that its
overall suitability as the ancilla is maximized with suit-
able Gaussian operations. In either case, the state can
be prepared by the same experimental method [21, 29].
Note that, although the method can be adopted to gen-
erate the optimum superpositions up to arbitrary photon
level, it is difficult to generate large-photon-number su-
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perposition states because the generation rate exponen-
tially decays as the maximum photon number increases.
This difficulty is expected to be remedied by exploiting a
recently-devised all-optical memory [22], which enables us
to improve the generation rate and consequently to pre-
pare superpositions up to four- or larger-photon-number
states. Another way in the future could be to exploit
quantum optomechanics with nanoparticles, which has a
clear potential to produce the cubic states of mechanical
oscillators in optical potential [32–34]. These mechanical
states can be efficiently read out to another light mode
[35] and then used as the optical cubic states.

The cubic nature of the states is also nicely visible from
their Wigner functions as depicted in Fig. 5. For compar-
ison, we check the Wigner function of the ideal cubic state
[11]

W (x, p) = 2πN
∣∣∣∣ 4

3γ

∣∣∣∣1/3 Ai

([
4

3γ

]1/3
[3γx2 − p]

)
, (26)

where Ai(x) is the Airy function and N a temporary nor-
malization factor. Since the ideal cubic state has infinite
energy, it is unnormalizable. The Wigner function (26) is
expediently normalized over the displayed area in Fig. 5
(a). We can see that, the Wigner function is symmetric
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FIG. 5. (Color online) Wigner functions of the optimal ancil-
lary states. (a) The ideal cubic state for γ = 0.1 (expediently
normalized over the displayed area), (b) N = 1, (c) N = 3,
(d) N = 5, (e) N = 9. Note that the approximate states
have offsets in the p direction, which can be compensated by
p displacement.

with respect to the p axis and has a oscillating parabolic
shape. These characteristics also appear in the approx-
imate cubic states shown in Fig. 5 (b)–(e). We should
point out that it is impossible to define meaningful fi-
delities between the ideal cubic state (a) and its approx-
imate states (b)–(e). The cubic state has infinite energy,
and its Wigner function (26) has constant values along
the parabolic lines on the phase space to the points at
infinity. Therefore the overlap between the ideal infinite-
energy state and any finite-energy state should be zero.
We can see that, however, as the upper limit of photon
number becomes larger, the number of fringes along the
p direction increases approaching the ideal one. Those
Wigner functions of the approximate states can be con-
sidered to show core non-Gaussianity that then spreads
out on the phase space by the following optimized squeez-
ing.

So far we have not considered how to implement the
optimized squeezing onto the core non-Gaussian state.
Actually, instead of adding another squeezing gate, the
squeezing operation can be embedded into the adap-
tive non-Gaussian measurement by using the results in
Sec. III C. We discuss the details on it in Appendix A.

Finally, we comment on determining requirements for
the fidelity of the cubic gate and quality of the ancil-
lae. In general, requirements for quantum gates and
resources crucially depend on their applications whose
studies are still in rapid progress. One example of the
requirements for resources is squeezing level of ancillary
squeezed states. In CV quantum teleportation [36] of
coherent states, one can confirm that squeezing level of
20 dB in the entangled resource states results in 10−2

infidelity between the input and the output. While the
CV regime has advantages in unconditional and deter-
ministic quantum operations in actual experiments, this
infidelity is not so good as we expect in exchange for the
required energy compared to its discrete-variable (DV)
counterparts. This drawback could be, however, reduced
in hybrid quantum information processing where infor-
mation is encoded in DV states and processed by CV
operations [6]. In the case of the GKP encoding [9], it
has been shown that no more than 20.5-dB squeezing
level in resource states of CV one-way quantum com-
puting is enough to achieve a fault-tolerance threshold
of 10−6 for a (conservative) qubit error-correction code
[37, 38]. Realization of the code has been approached
by 12.7-dB quantum-optical squeezing [39, 40] and even
17.6-dB spin squeezing [41]. Furthermore, a recent study
has shown that the fault-tolerance threshold of local de-
polarizing noise per qubit can be given by 13.6% [42],
which is less strict. The above suggests that the same
resources can result in achieving different error rates that
differ by orders of magnitude depending on the applica-
tions, and more tractable requirements can be found by
furthering the studies of quantum protocols. Similarly,
requirements for the cubic gate are also expected to be
settled in a practical way, but it is still an open question.
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VI. CONCLUSION

We have introduced the concept of an adaptive non-
Gaussian measurement—a CV measurement with a set
of possible values, each of which is associated with a pro-
jection onto a non-Gaussian state. The measurement is
realized by a pair of homodyne detectors and a supply
of suitable non-Gaussian ancillary states. One particu-
lar advantage of this measurement is that an arbitrary
Gaussian operation can be implemented on the soon to
be measured quantum system simply by tools of passive
linear optics. In addition, some non-Gaussian operations
can be implemented in a same way by making some of the
measurement parameters dependent on already measured
values.

To demonstrate this design feature, we have proposed a
new method of realizing the cubic gate [20]. The current
proposal does not require active operations to be per-
formed on the transformed quantum system, all of them
being part of the non-Gaussian measurement, which sig-
nificantly improves the feasibility of the setup. Specifi-
cally in the Heisenberg representation, it turns out that
nonlinearity of the gate is created classically while the
nonclassicality is given by the non-Gaussian ancilla in
terms of reducing residual noise. By exploiting the noise
term as a figure of merit, we have found a new class of
ancillary states that promise better performance than the
states of [21]. The final implementation of the complete
cubic gate can be therefore expected soon.
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Appendix A: Cubic gate with unbalanced adaptive
non-Gaussian measurement

By replacing BBS2 in Fig. 2 with an unbalanced beam
splitter, we have another degree of freedom to effectively
apply arbitrary squeezing operation onto the ancillary
non-Gaussian state, as shown in Sec. III C. Thus the
Gaussian optimization discussed in Sec. V can be embed-
ded in the cubic-gate schematic.

We explain here an input-output relationship of the cu-
bic gate with unbalanced beam splitters. Transmittance
and reflectance of the first beam splitter are represented
as T1 and R1 = 1 − T1, respectively. T2 and R2 are also
defined in the same way for the second beam splitter. Af-
ter the beam splitter transformations, the quadratures of

the output modes are

x̂′0 =
√
T1x̂0 −

√
R2x̂1, (A1a)

p̂′0 =
√
T1p̂0 −

√
R2p̂1, (A1b)

x̂′1 =
√
R1T2x̂0 +

√
T1T2x̂1 −

√
R2x̂2, (A2a)

p̂′1 =
√
R1T2p̂0 +

√
T1T2p̂1 −

√
R2p̂2, (A2b)

x̂′2 =
√
R1R2x̂0 +

√
T1R2x̂1 +

√
T2x̂2, (A3a)

p̂′2 =
√
R1R2p̂0 +

√
T1R2p̂1 +

√
T2p̂2. (A3b)

After measuring the x quadrature of mode 1′ and obtain
value q, we set the phase factor

θ = arctan

(
6T2γ√
R2

q

)
. (A4)

Then we measure the quadrature x̂′2 sin θ+p̂′2 cos θ and ob-
tain value y. The p quadrature of the unmeasured mode
0′ can be expressed with the measured values q and y as

p̂′0 =
1√
T1
p̂0 −

√
R1√

T1R2 cos θ
y

+

√
R1T2
T1R2

p̂2 − 6γ

√
R1

T1

(
T2
R2

)3/2

q2

+

(
6R1T2γ
√
T1R

3/2
2

x̂0 +
6
√
R1T2γ

R
3/2
2

x̂1

)
q.

(A5)

We apply p displacement to this quadrature with value

pdisp =

√
R1√

T1R2 cos θ
y +

3γ
√
R1T2(T2 −R2)
√
T1R

3/2
2

q2 (A6)

and obtain the output quadratures

x̂′′0 =
√
T1

(
x̂0 −

√
R1

T1
x̂1

)
, (A7a)

p̂′′0 =
1√
T1

{[
p̂0 + 3γ

(
R1T2
R2

)3/2

x̂20

]

+

√
R1T2
R2

(p̂2 − 3γx̂22)

+ 6γR1

√
T1

(
T2
R2

)3/2
(
x̂0x̂1 +

1

2

√
T1
R1

x̂21

)}
.

(A7b)

We can see that the outputs are equal to Eq. (23) if we set
T1 = R1 = T2 = R2 = 1/2. Note that, if we use unbal-
anced beam splitters, the displacement has a quadratic
term as shown in Eq. (A6).

To explicitly see how the transmittances of the beam
splitters affect on the quadratures of the ancillary non-
Gaussian state, we scale the strength of cubic nonlinearity



9

γ to (R2/R1T2)3/2γ. The output p quadrature (A7b) is
then expressed as

p̂′′0 =
1√
T1

{
(p̂0 + 3γx̂20)

+

√R1T2
R2

p̂2 − 3γ

(√
R2

R1T2
x̂2

)2


+ 6γ

√
T1
R1

(
x̂0x̂1 +

1

2

√
T1
R1

x̂21

)}
.

(A8)

The second term represents the nonlinear noise deter-
mined by the non-Gaussian measurement. We can see
that the ancilla is effectively squeezed by the squeez-
ing factor

√
R1T2/R2, which can be fully controlled

by choosing transmittance of the second beam splitter.
While universal squeezing operation in actual experi-
ments [14, 18, 19] adds nonnegligible noise to the input
state because of finite squeezing in its resource state, the
effective squeezing in the heterodyne measurement does
not require additional resource states, which helps prepa-
ration of the approximate cubic state with high purity.

Appendix B: Numerical method of approximating
photon-number superposition to the cubic state

In Sec. V, we considered the variance V (p̂NLQ) as a fig-
ure of merit to approximate the cubic state with photon-
number-superposition states up to certain photon level
and squeezing. Intuitively, the approximation can be
done by numerically optimizing all of the coefficients of
a superposition state and the squeezing level, but it of-
ten leads to locally optimum solutions, especially when
increasing the upper limit of photon numbers. Here we
reduce the problem into optimization with two variables,
regardless of the size of the Hilbert space. With each set
of the two variables, an optimized superposition state can
be derived as an eigenstate of the minimum eigenvalue of
a certain positive-semidefinite operator. By numerically
creating a minimum-search map with the two variables,
we can make sure that the solution is almost certainly
the true optimum one. The method is a variation of the
classical variance-minimization problem [43].

Suppose HN is a (N + 1)-dimensional Hilbert space up
to N -photon level, and |ψ〉 is a state in HN . Our purpose
is to find a set of the optimum state |ψ〉 and the optimum
parameter λ′ that minimizes the variance of the nonlinear
quadrature ŷ(λ′) = λ′p̂− 3(x̂/λ′)2. This problem can be
written as

min
|ψ〉∈HN

λ′∈R

V (|ψ〉 , λ′), (B1a)

V (|ψ〉 , λ′) = 〈ψ|[ŷ(λ′)− 〈ŷ(λ′)〉]2|ψ〉 , (B1b)

where 〈ŷ(λ′)〉 is the expectation value 〈ψ|ŷ(λ′)|ψ〉.
To make this problem digestible, we alternatively con-

sider another minimization problem. Let d be a real num-

ber. We then replace the expectation value in Eq. (B1b)
with d and set a new evaluation function

Z(|ψ〉 , λ′, d) = 〈ψ|[ŷ(λ′)− d]2|ψ〉 . (B2)

Next, we introduce another evaluation function W (d) de-
fined as minimum of Z(|ψ〉 , λ′, d) with respect to |ψ〉 ∈
HN and λ′ ∈ R. This can be expressed as

W (d) = min
|ψ〉∈HN

λ′∈R

Z(|ψ〉 , λ′, d). (B3)

Suppose W (d) is minimum when d = d?. In addition,
suppose Z(|ψ〉 , λ′, d?) is minimum when |ψ〉 = |ψ?〉 and
λ′ = λ′?. Then we can say that the set (|ψ?〉 , λ′?) is
the true optimum set that minimizes V (|ψ〉 , λ′). This is
verified as follows. Let 〈ŷ(λ′)〉? be the expectation value
〈ψ?|ŷ(λ′)|ψ?〉. Then

Z(|ψ?〉 , λ′?, d?) ≤W (〈ŷ(λ′?)〉?)
≤ Z(|ψ?〉 , λ′?, 〈ŷ(λ′?)〉?)

(B4)

and consequently (〈ŷ(λ′?)〉? − d?)2 ≤ 0, which means
d? = 〈ŷ(λ′?)〉?. Therefore for any |ψ〉 ∈ HN , any
λ′ ∈ R and the corresponding expectation value 〈ŷ(λ′)〉 =
〈ψ|ŷ(λ′)|ψ〉, it holds that

V (|ψ?〉 , λ′?) = W (d?)

≤W (〈ŷ(λ′)〉) ≤ Z(|ψ〉 , λ′, 〈ŷ(λ′)〉) = V (|ψ〉 , λ′),
(B5)

which means V (|ψ?〉 , λ′?) is minimum. As a result, the
problem can be solved by searching for a state that min-
imizes Z(|ψ〉 , λ′, d) with every λ′ and d.

The point is that Z(|ψ〉 , λ′, d) is a quadratic form, and
therefore each optimum state is determined as an eigen-
state of the minimum eigenvalue of [ŷ(λ′)−d]2 represented
by the limited Hilbert space. In the case that we look for
the optimum state up to N -photon level, the matrix rep-
resentation of [ŷ(λ′)− d]2 reads

Y (λ′, d) =

N∑
m,n=0

Ymn(λ′, d) |m〉 〈n| , (B6)

Ymn(λ′, d) = 〈m|[ŷ(λ′)− d]2|n〉 , (B7)

and the optimum state in terms of (λ′, d) is found as
the eigenstate of the minimum eigenvalue of the ma-
trix Y (λ′, d), which can be deterministically obtained
by numerical calculation. This implies that the prob-
lem is now broken down into a two-variable optimiza-
tion problem. We can create a minimum-search map
min|ψ〉∈HN

Z(|ψ〉 , λ′, d) with respect to λ′ and d, which
makes it easy to look for the true optimum solution.

Figure 6 shows some examples of the map used to de-
rive the optimized superposition states in Fig. 5. We can
see that the number of local minima increases as the up-
per limit of photon numbers becomes larger. By choosing
suitable ranges and resolutions of (λ′, d), we almost cer-
tainly find the true minimum and consequently the true
optimized state.
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http://dx.doi.org/10.1038/nature02054
http://dx.doi.org/10.1038/nature01494
http://dx.doi.org/10.1038/nature05896
http://dx.doi.org/10.1038/nature13729
http://dx.doi.org/10.1103/PhysRevLett.82.1784
http://dx.doi.org/10.1103/PhysRevLett.82.1784
http://dx.doi.org/10.1103/PhysRevLett.107.170501
http://dx.doi.org/10.1103/PhysRevLett.107.170501
http://dx.doi.org/10.1103/PhysRevA.64.012310
http://dx.doi.org/10.1103/PhysRevA.64.012310
http://dx.doi.org/10.1103/PhysRevA.65.042304
http://dx.doi.org/10.1103/PhysRevA.65.042304
http://dx.doi.org/10.1080/09500340601101575
http://dx.doi.org/10.1080/09500340601101575
http://dx.doi.org/10.1103/PhysRevA.91.032321
http://dx.doi.org/10.1103/PhysRevA.76.060301
http://dx.doi.org/10.1103/PhysRevA.76.060301
http://dx.doi.org/10.1103/PhysRevLett.101.250501
http://dx.doi.org/10.1103/PhysRevLett.101.250501
http://dx.doi.org/10.1103/PhysRevA.83.052307
http://dx.doi.org/10.1103/PhysRevA.83.052307
http://dx.doi.org/10.1103/PhysRevA.71.042308
http://dx.doi.org/10.1103/PhysRevA.71.042308
http://dx.doi.org/10.1103/PhysRevLett.113.013601
http://dx.doi.org/10.1103/PhysRevLett.113.013601
http://dx.doi.org/10.1103/PhysRevA.90.060302
http://dx.doi.org/10.1103/PhysRevA.90.060302
http://dx.doi.org/10.1103/PhysRevA.84.053802
http://dx.doi.org/10.1103/PhysRevA.84.053802
http://dx.doi.org/10.1103/PhysRevA.88.053816
http://link.aps.org/doi/10.1103/PhysRevX.3.041028
http://link.aps.org/doi/10.1103/PhysRevLett.112.033601
http://arxiv.org/abs/1507.06172
http://link.aps.org/doi/10.1103/PhysRevA.80.050303
http://link.aps.org/doi/10.1103/PhysRevLett.97.110501
http://link.aps.org/doi/10.1103/PhysRevLett.97.110501
http://link.aps.org/doi/10.1103/PhysRevA.79.062318
http://dx.doi.org/10.1038/nphoton.2010.6
http://dx.doi.org/10.1364/OE.21.005529
http://dx.doi.org/10.1364/OE.21.005529


11

Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Rev.
Mod. Phys. 84, 621 (2012).

[31] D. Menzies and R. Filip, Phys. Rev. A 79, 012313 (2009).
[32] S. Singh, G. A. Phelps, D. S. Goldbaum, E. M. Wright,

and P. Meystre, Phys. Rev. Lett. 105, 213602 (2010).
[33] O. Romero-Isart, M. L. Juan, R. Quidant, and J. I. Cirac,

New Journal of Physics 12, 033015 (2010).
[34] O. Romero-Isart, A. C. Pflanzer, M. L. Juan, R. Quidant,

N. Kiesel, M. Aspelmeyer, and J. I. Cirac, Phys. Rev. A
83, 013803 (2011).

[35] R. Filip and A. A. Rakhubovsky, Phys. Rev. A 92, 053804
(2015).

[36] S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and
S. L. Braunstein, Nature Photon. 9, 641 (2015).

[37] N. C. Menicucci, Phys. Rev. Lett. 112, 120504 (2014).
[38] J. Preskill, Proc. R. Soc. Lond. A 454, 385 (1998).
[39] T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen,
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