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In the theory of Bethe-ansatz integrable quantum systems, rapidities play an important role
as they are used to specify many-body states, apart from phases. The physical interpretation of
rapidities going back to Sutherland is that they are the asymptotic momenta after letting a quantum
gas expand into a larger volume making it dilute and noninteracting. We exploit this picture to
make a direct connection to quantities that are accessible in sudden-expansion experiments with
ultracold quantum gases. By a direct comparison of Bethe-ansatz and time-dependent density matrix
renormalization group results, we demonstrate that the expansion velocity of a one-dimensional
Fermi-Hubbard model can be predicted from knowing the distribution of occupied rapidities defined
by the initial state. Curiously, an approximate Bethe-ansatz solution works well also for the Bose-
Hubbard model.

Introduction. Some often emphasized aspects of ex-
periments with ultracold quantum gases as compared to
condensed matter systems are the high degree of tun-
ability of dimensionality and interaction strengths and
the possibility to obtain clean realizations of standard
many-body Hamiltonians such as the Fermi- and Bose-
Hubbard model [1–4], albeit usually with inhomogeneous
density profiles [5]. Moreover, ultracold quantum gases
are complementary to condensed-matter systems with re-
spect to the typically accessible observables. Primarily,
these are in-situ density profiles or density profiles after
time-of-flight experiments (possibly combined with other
perturbations of the system or quenches of parameters).
A time-of-flight measurement, achieved by turning off all
potentials, gives access to either the in-situ momentum
distribution function or, if the system was initially in
a lattice and the removal of the lattice occurred suffi-
ciently adiabatically, the quasi-momentum distribution.
This relies on various assumptions [6, 7], including that
the atoms do not experience interactions during the time-
of-flight measurement.

This latter assumption may either not always be valid
or one may actually deliberately be interested in eluci-
dating the very effect of interactions, which thus has a
very different purpose from a time-of-flight experiment.
Here, we address two questions, namely, first, whether
the density profiles during the expansion contain any in-
formation about the initial state and, second, what is
the form of the asymptotic momentum distribution func-
tion. Theoretically, in higher dimensions, the analysis is
mostly based on time-dependent mean-field schemes [8]
(see [9, 10] for more recent methodological developments,
though). In one dimension, for situations that either
permit a scaling solution (see, e.g., [11, 12]) or are de-
scribed by integrable Hamiltonians such as the Lieb-
Liniger model of interacting bosons in the continuum,
these questions can in principle be answered exactly [13–
19]. We are particularly interested in an integrable lat-
tice model with repulsive onsite interactions, the Fermi-

Hubbard model (FHM) [20]

H = −J
L−1∑
i=1

∑
σ∈{↓,↑}

(c†i+1σciσ + h.c.) +U

L∑
i=1

ni↑ni↓ , (1)

where L is the number of lattice sites, ciσ is a fermion

annihilation operator, and niσ = c†iσciσ. In the context of
bosons, the simplest, completely understood example are
hard-core bosons (HCBs, the lattice version of the Tonks-
Girardeau gas [21, 22]), which can be obtained from the
Bose-Hubbard model (BHM)

H = −J
L−1∑
i=1

(a†i+1ai + h.c.) +
U

2

L∑
i=1

ni(ni − 1) (2)

by sending U/J → ∞ or requiring (a†i )
2 = 0. Here,

ai is a boson annihilation operator and ni = a†iai. For
HCBs, the physical quasimomentum distribution func-
tion (quasi-MDF) nk (defined as the Fourier transform

of one-particle correlations 〈a†iaj〉) after a long expan-

sion time becomes identical to the conserved set nfk of
the spinless, noninteracting fermions that HCBs can be
mapped to [23]. This process goes under the name of
dynamical fermionization [18, 24] and generalizations ap-
ply to the (integrable) repulsive Lieb-Liniger gas [17, 19]
and even to the (nonintegrable) BHM with U/J < ∞
[25]. Density profiles 〈ni(t)〉 undergo a ballistic expan-
sion for HCBs in a 1D lattice, which was observed in
experiments [26]. The ballistic expansion manifests itself
in a linear increase R(t) = vrt of the radius defined as

R2(t) =
1

N

∑
i

(i− i0)2〈ni(t)〉 . (3)

The expansion velocity vr of HCBs is related to the con-

served nfk and thus also to the asymptotic form of the

physical nk(t =∞) = nfk via [25–27]

v2r =
1

N

∑
k

(vk)2nfk (4)
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where vk = dεk/dk are the group velocities of nonin-
teracting particles with a tight-binding dispersion εk =
−2J cos(k) (the lattice spacing is set to unity).

In this work, we aim at the generalization of these ob-
servations to Bethe-ansatz (BA) integrable lattice mod-
els with repulsive interactions that do not map onto
noninteracting particles. Following Sutherland [28], for
such systems, quasimomenta are replaced by so-called
rapidities, which have the interpretation that they be-
come physical momenta in the asymptotic regime of an
expansion. This happens once particles have spatially
rearranged themselves according to increasing momenta
and thus stop crossing each other as they continue to ex-
pand. If we then define a distribution nκ of rapidities
κ defined by the initial condition, then our hypothesis
is that the asymptotic physical momentum distribution
function nk(t → ∞) becomes equal to the conserved nκ
(assuming, for simplicity, real κ)

nk(t→∞) = nκ . (5)

As a consequence, since in the asymptotic regime the
expansion is expected to be ballistic because diluteness
suppresses any scattering, we expect that the asymptotic
expansion velocity can be written as

v2r (t =∞) =
1

N

∑
κ

(vκ)2nκ. (6)

The main result of our work is that Eq. (6) indeed holds
for the FHM with repulsive interactions and initial densi-
ties smaller or equal than one, expanding from the corre-
lated ground state within a box of size L0 (the regime of
initial filling larger than one was studied numerically in
Refs. [29, 30]). Our results are based on a comparison of a
BA calculation of nκ with numerical results for the den-
sity profiles obtained from time-dependent density ma-
trix renormalization group (tDMRG) calculations [31–
33]. This implies that a measurement of density profiles,
accessible in quantum-gas experiments, gives access to
the very abstract concept of rapidities of an integrable
quantum model, which are very important for actually
carrying out calculations, but which are usually hidden.
Of course, vr is just a single number and contains only
partial information about the full rapidity distribution.

A possible obstacle could be that the times needed to
reach the asymptotic regime are not accessible to either
experiments or tDMRG. This is true for the quasi-MDF
[34, 35], which, using tDMRG, we are only able to ob-
tain for N = 2, 4 particles in the long-time limit. The
expansion, however, turns out to be ballistic to a good
approximation (i.e., R ∝ t [36]) for the FHM under the
aforementioned conditions [27]. Such a behavior implies
that vr becomes time independent very rapidly and it
can thus be extracted already from short-time dynamics,
long before nk has converged to its asymptotic regime.
Thus, experiments do not need to reach the asymptotic
regime.

FIG. 1. (Color online) Sudden expansion in the FHM. (a1)-
(a3) Density distribution 〈ni(t)〉 and (b1)-(b3) renormalized
quasi-MDF nk(t) at (a1), (b1) t = 0, (a2), (b2) tJ = 2, and
(a3), (b3) tJ = 20 [U = 8J , N = 4, L0 = N , we set ~ = 1].
(b4) Results for the BHM and the same model parameters.
Solid lines are tDMRG results, dashed lines in (b3) and (b4)
show the corresponding Fermi-Dirac function, Eq. (8). In the
figures, all quantities are expressed in dimensionless units.

An example, in which nk nevertheless becomes station-
ary very fast, is the spin-imbalanced FHM with attrac-
tive interactions [35, 37], where a quantum-distillation
process [29, 38, 39] ensures a fast separation of pairs and
excess fermions [35]. In that case, the generalization of
Eq. (5) to both real and complex rapidities (the latter
present because of the bound states in the ground state
of the attractive FHM) seems to hold, based on a compar-
ison of tDMRG and BA calculations [35]. Interestingly,
we will show here that even for the nonintegrable BHM,
one can exploit a BA approach along the lines of [40] to
define nκ, which via Eq. (6) leads to a good agreement
with tDMRG data from [25].

Asymptotic form of the quasi-MDF at half filling. We
begin by describing the overall time evolution of densi-
ties and the quasi-MDF, and for the latter, we propose
a simple expression for its asymptotic form for the ex-
ample of initial states with half filling. Figure 1 shows
typical results for the FHM at U/J = 8 obtained with
tDMRG for the density profiles 〈ni(t)〉 and the quasi-
MDF nk(t). We calculated the observables in the initial
state [Figs. 1(a1) and 1(b1)], in the transient regime of
the expansion [Figs. 1(a2) and 1(b2)] and in the asymp-
totic regime, where nk approaches its stationary form
[Figs. 1(a3) and 1(b3)]. The transient regime is charac-
terized by peaks in the quasi-MDF at k = ±π/2 [34].
Similar transient phenomena for bosons were studied in
[7, 25, 41, 42].

In the long-time limit, the quasi-MDF of a gas that has
expanded from a Mott insulator approaches a particle-
hole symmetric form, both for fermions and bosons [25].
For the BHM, this can be viewed as a generalized dy-
namical fermionization [25], similar to integrable bosonic
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models [18, 19, 24, 43]. The density profile at the longest
times reached in the simulations is practically flat, except
for the propagating wavefronts. Therefore, the gas can
be well approximated by assuming both diluteness and a
homogeneous density. We find that the final quasi-MDF
approaches a simple Fermi-Dirac distribution

fk =
1

eβ(εk−µ) + 1
, (7)

where temperature T = 1/β and chemical potential µ are
determined to match the energy E, which is conserved
during the expansion, and the particle number N of the
strongly correlated system [27]. This effective noninter-
acting gas, containing the same number of particles, can
be viewed as having originated from the same box.

For large U/J , the total energy corresponds to rela-
tively high temperatures of the free fermions and, in ad-
dition, µ = 0 at half filling. This simplifies the expression
of Eq. (7) since the only parameter that determines the
quasi-MDF of the free particles fk is the energy density
ε = |Etot|/N . Expressing the quasi-MDF up to O(ε3),
we get

fk =
N

L

(
1 + ε cos k − 1

3
ε3
(

cos2 k − 3

4

)
cos k

)
. (8)

Note that the first two terms are similar to the results
of [10]. We use Eq. (8) to compare to the tDMRG re-
sult at N = 4 for the FHM (ε = −0.279J) and the BHM
(ε = −0.364J) in Figs. 1(b3) and 1(b4), respectively. The
numerical data away from k = ±π/2 agree very well with
the free-fermion reference system. The deviation between
the two curves can be quantified by looking at the differ-

ence in average velocities, ∆vav(t) = vav(t)− v(0)av , where

v
(0)
av =

√
2J is the equilibrium average velocity of the

free-fermion system and vav(t)2 = (1/N)
∑
k(vk)2nk(t).

We find that ∆vav(t) goes to zero at asymptotic times
with a power-law dependence.

While the interpretation of the asymptotic properties
in terms of a thermal state is very intuitive, it is not
based on rigorous arguments, unlike the BA approach
that we will detail next. Nevertheless, the measurement
of the MDF in an experiment would be very interesting
and would obtain the entire rapidity distribution. Using
few particles (as was studied in a recent quantum-walk
experiment of bosons [44]) leads to a faster convergence
towards the stationary form.

Bethe-ansatz based approach. We turn now to the
problem of determining the asymptotic expansion veloc-
ity from Eq. (6). Generally speaking, we are attempting
to predict the asymptotic form of observables from in-
tegrability in a specific quantum quench problem, which
is a question that is currently being studied for many
other quenches, driving methodological advances in the
framework of the Bethe ansatz (see, e.g., [19, 45, 46]).
We first need to determine the distribution nκ, which is
conserved for t > 0. The main technical complication
is that the wavefunction needs to be expanded in the

postquench eigenstates (after quenching the trapping po-
tential to zero) of the integrable homogeneous FHM in
an infinitely large lattice. This problem is notoriously
difficult, and we therefore compute the discrete set of
prequench rapidities with respect to the initial box (i.e.,
for t < 0, what we denote as ”rawBA”) and then use
single-particle projection techniques to approximate nκ
for t > 0 (”projBA”). The calculation of the discrete set
of rapidities for particles in a box is well defined and can
be done exactly, albeit numerically (see [36, 47] for de-
tails). Next, as the trapping potential is suddenly turned
off, the initial distribution nκ(t = 0−) is projected into a
modified one nκ(t = 0+) that is consistent with the new
size and boundary conditions [48] (or lack thereof [49])
of the system. Thus, in principle, one needs to compute
the overlaps between the initial state of the system and
a complete basis of Bethe states for the system without
trap. Each of these Bethe states is in one-to-one corre-
spondence with a rapidity distribution and the overlaps
give the probability amplitudes for combining those into
the resultant nκ ≡ nκ(t = 0+).

If one can identify the largest overlaps, those will give
the dominant contributions, while small overlaps will give
small corrections that can be left out in an approximate
calculation. On the one hand, for the repulsive models
we focus on in here, the initial ground states are char-
acterized by having only real-valued charge (and, for the
FHM, spin) rapidities. On the other hand, both real and
complex rapidities (strings) are present in the full spec-
trum of these models, but the overlaps in the case of the
latter are comparatively smaller and can be ignored in
a first approximation. Complex rapidities are associated
with different types of bound states and will most often
expand more slowly, so by neglecting their contribution
we overestimate the expansion velocity of the cloud [50].
For an initial density approaching the value of one par-
ticle per lattice site, the system gets closer to a Mott-
insulating state for which double occupancy is relatively
suppressed (though still non-zero) and thus the projec-
tion onto bound states is also expected to be relatively
suppressed. The approximation of ignoring the bound-
state contributions should thus become better the closer
the trapped system is to n0 = 1; consistent with our
numerical comparisons to be shown below. To further
simplify the calculation, we consider the discrete set of
initial rapidities treated individually as one-particle dis-
tributions and then combine the resulting post-quench
distributions to get the final result (this was already seen
to correctly capture the leading contributions and give
good results in other situations [35, 43]). Finally, differ-
ent moments of the distribution nκ are combined accord-
ing to Eq. (6) to yield the asymptotic vr.

Comparison with tDMRG. The numerical calculation
using tDMRG proceeds in a very different way. It per-
forms a unitary time evolution of the many-body wave-
function (approximated via matrix-product states [51]),
obviously without explicitly connecting to any nontriv-
ial integrals of motion. The expansion velocity of the
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FIG. 2. (Color online) Expansion velocity vr for the Fermi-
Hubbard model at U/J = 8 with L0 = 20 and the initial
density n0 = 0.5, as a function of the reciprocal time, ob-
tained by tDMRG simulations (solid line). In all tDMRG
simulations, we used the time step ∆tJ = 0.01 and the maxi-
mal discarded weight 10−9 (different time steps were used to
check convergence). The black dashed line is a linear fit in
the time range 1/(tJ) < 0.15.

atom cloud converges rapidly to its asymptotic form such
that only relatively short times need to be reached in
the simulations [25, 27]. From the tDMRG simulations,
one can extract the time-dependent expansion velocity
by calculating vr(t) = [R(t+dt/2)−R(t−dt/2)]/dt. For
the systems considered here, vr(t) does not change con-
siderably in time since the largest difference may be of
the order of a few percent. A typical time evolution of
vr(t) is shown in Fig. 2 for the Fermi-Hubbard model at
U/J = 8, n0 = 0.5 and L0 = 20. After a few tunneling
times ∝ 1/J , we observe that vr(t) approaches its asymp-
totic value as ∼ 1/(tJ). We then obtain the asymptotic
value of vr by applying a linear fit vr(t) = vr + a/(tJ) in
the time interval 1/(tJ)� 1.

Figure 3(a) shows the results for the FHM for two dif-
ferent values of the interaction U/J = 2, 8 and L0 = 20.
The agreement between the tDMRG and BA calculations
is generally very good. Both approaches consistently
show that the maximum values of vr/J for strong inter-
actions are found at initial in-trap densities 0.5 < n0 < 1
(at n0 = 1 one has vr/J =

√
2 regardless of the interac-

tion strength [27]). For guidance, we also show the exact
results for vr for the noninteracting and the U/J → ∞
limits, computed by taking L0 →∞ [27],

vr/J =

√
2

[
1− sin (kF) cos (kF)

kF

]
. (9)

Here, the Fermi momentum kF is set by the initial
density n0. For a noninteracting two-component gas,
kF = n0π/2, while for the single-component gas that de-
scribes the charge dynamics in the limit of infinite onsite
repulsion, kF = n0π.

In Fig. 3(b), we compare the BA results obtained with
or without the rapidity projection techniques [36], with
the tDMRG results. Remarkably, the finite-size scaling
with respect to the initial box size L0 shows that all data
sets approach the same value as L0 increases (see also
[36] for the BHM case). Thus, the approximations used
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FIG. 3. (Color online) Expansion velocity vr for the FHM.
Comparison between BA (filled symbols) and tDMRG (open
symbols). The BA results are obtained with (projBA) or
without (rawBA) the rapidity projection techniques. (a) vr
versus initial density n0 [L0 = 20; U/J = 2, 8]. The dot-
dashed and the dashed lines are the exact expressions for U =
0 and U/J = ∞, respectively [see Eq. (9)]. (b) vr versus the
initial box size L0 [U/J = 8; n0 = 0.5]. Lines are fits to the
rawBA and the tDMRG data in the range 1/L0 < 0.1.

in the BA-based approach become increasingly unimpor-
tant. That the asymptotic and the scaling limits of the
expansion velocities coincide is one of the main nonintu-
itive findings of our work.

The case of the BHM is more delicate and already
within the tDMRG framework, one needs to make a (con-
trolled) approximation by truncating the size of the local
Hilbert space by introducing a maximum allowed number
of bosons per site Ncut. This, as expected, works better
the stronger the repulsive interaction is (we set Ncut = 5
for U/J = 8). From the point of view of BA, the system
is known to be nonintegrable. Curiously, a system of BA
equations exists [52] that yield an approximate solution
which gets also more and more accurate as the interaction
strength increases, and eventually becomes exact in the
hard-core limit [40]. Coincidentally, our scheme based on
the BA rapidities works also the best for strong interac-
tions. We can thus proceed in a similar way as for the
FHM and compute the expansion velocity vr as a func-
tion of the initial in-trap density n0 of the gas. Those
results are shown in Fig. 4 for a moderately large value
of U/J = 8 showing good agreement, in particular, for
larger initial densities. In addition, the results are quan-
titatively comparable to those for the fermionic case in
Fig. 3(a) (this is obvious for U/J = ∞, see the dashed
line in Fig. 4, where the density dynamics of fermions
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FIG. 4. (Color online) Expansion velocity vr for the BHM.
Comparison of data for vr versus n0 between BA (filled sym-
bols) using rapidity projection (projBA), and tDMRG (open
symbols) [U/J = 8, L0 = 10]. The dashed line is the exact
expression for U/J = ∞, see Eq. (9). The dot-dashed line is

the result in the dilute limit vr/J = 2
√

E/(JN).

and bosons is identical [23]).

The approximate BA equations for the BHM are also
reliable in the dilute limit, as they tend to the corre-
sponding equations for the Lieb-Liniger model, where in-
tegrability is restored. In this limit (see the dot-dashed
line in Fig. 4), it follows from Eq. (6) and the stan-
dard BA expression for the energy of the system that
vr/J = 2

√
E/(JN), where E is the energy of the system

(as calculated in its prequench state and measured with
respect to the bottom of the tight-binding band); in pre-
cise agreement with the exact result for the Lieb-Liniger
model [17]. The reason for the recovery of the exact re-
sult is two-fold: (i) there are no bound states (and thus
no complex rapidities) in the continuum limit as that
is a lattice effect, and the single-rapidity approximation
becomes more accurate in the dilute limit. In addition,
(ii) E is constant after the quench. These considerations
also apply to the dilute limit of the FHM, so the same
relation is expected to hold for a Gaudin-Yang gas. In
all cases studied here, because of the repulsive interac-
tions, the asymptotic free Hamiltonian is fermionic [25];
even for bosons, in the Lieb-Liniger case, the underlying
time dependence is captured by knowing that of an an-
tisymmetric free-fermion-like wavefunction characterized
by the values of the rapidities [15, 53].

Discussion. We showed how sudden expansion experi-
ments, already at short times, give access to information
about integrals of motion that are usually hidden in the
structure of the wavefunction. Actual experiments of this
type using cold-atom setups have already been carried
out for fermions [54] and bosons [7, 21, 26, 39, 55, 56]
and more accurate ones for both bosons and fermions
could be within reach exploiting single-site resolution
techniques [57, 58] (see [44, 59, 60] for work in this di-
rection). The fact that most experiments use a harmonic
trap does not change the picture qualitatively, it leads
to a different rapidity distribution in the initial state
but after removal of the trap, the system is again in-
tegrable. While we have substantiated the validity of the
approximations in the BA calculation by a comparison
to tDMRG for few particles, one can push the BA cal-
culation of asymptotic quantities to much larger initial
system sizes or particle numbers [36].

We speculate that systems close to an integrable point
are constrained at short times by the integrals of motion
of that point and reach asymptotic expansion states that
reflect them since the gas becomes increasingly more di-
lute as it expands [19, 25]. Therefore, perturbations from
integrability have no time to generate deviations, similar
to but more robustly so than within the prethermalization
scenarios realizable on the same type of systems under
different experimental conditions [61–65]. This conclu-
sion is corroborated by our results for the nonintegrable
BHM. The identification and study of asymptotic expan-
sion states seems to be a very fertile ground to explore
the physics of nonequilibrium systems as they constitute
a very special case of asymptotic states of effectively non-
interacting systems that nevertheless contain much of the
information about the character and correlations on the
parent equilibrium states of the actual interacting sys-
tems.
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