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Quantum nonlocality is a counterintuitive phenomenon that lies beyond the purview of causal
influences. Recently, Bell inequalities have been generalized to the case of quantum inputs, leading
to a powerful family of semi-quantum Bell inequalities that are capable of detecting any entangled
state. Here, we focus on a different problem and investigate how the local-indistinguishability of
quantum inputs and postselection may affect the requirements to detect semi-quantum nonlocal-
ity. To this end, we consider a semi-quantum nonlocal game based on locally-indistinguishable qubit
inputs, and derive its postselected local and quantum bounds by using a novel connection to the
local-distinguishability of quantum states. Interestingly, we find that the postselected local bound is
independent of the measurement efficiency, and the achievable postselected Bell violation increases
with decreasing measurement efficiency.

It is known that in quantum physics, there exist ex-
periments in which correlations from measurements on
entangled systems are at odds with our causal world
views. These correlations may be verified by using a
family of statistical tests called Bell inequalities [1, 2],
which are linear constraints on the set of correlations that
are compatible with the principle of local causes [3]. In
other words, if the correlations violate a Bell inequal-
ity, then the underlying physics must be nonlocal in na-
ture. Remarkably, apart from their foundational signifi-
cance, Bell inequalities have also found practical applica-
tions in quantum cryptography and quantum state esti-
mation [4–9]. For these reasons, quantum nonlocality is
one of the most widely studied topics in quantum infor-
mation science.

Recently, a new paradigm called semi-quantum non-
locality has emerged [10], where observers use quantum
inputs—instead of classical inputs—to specify their de-
sired measurement settings. Interestingly, by doing so, all
entangled states are “nonlocal”, in that for any entan-
gled state there is always a semi-quantum Bell inequal-
ity with which violation can be achieved. This feature
suggests that certain semi-quantum Bell inequalities are
strong entanglement witnesses and thus could provide an
unprecedented level of confidence in detecting entangle-
ment using untrusted measurement devices. For instance,
see Ref. [11] for a generic procedure that converts entan-
glement witnesses into measurement-device-independent
entanglement witnesses, and Ref. [12] for the correspond-
ing proof-of-principle experiment.

On a more general level, semi-quantum nonlocal-
ity also admits the possibility of working with locally-
indistinguishable quantum inputs, a notion that is cen-
tral to local quantum state discrimination [13–15] and
quantum data hiding [16, 17]. For our purposes, we de-
fine such quantum inputs as quantum states that are
indistinguishable at the level of local operations and
shared randomness (LOSR) [10], but distinguishable at
the level of local quantum measurements assisted with

shared entanglement (henceforth referred to as quan-
tum strategies). In particular, our theoretical contribu-
tion recognizes that semi-quantum Bell inequalities us-
ing locally-indistinguishable quantum inputs may acquire
the following two interesting properties: (1) the ability to
safely perform postselection and (2) the ability to achieve
higher Bell violations with decreasing measurement effi-
ciencies [18].

The first property is based on the observation that
postselection strategies due to the detection loophole [19–
21] are local filtering processes assisted with shared ran-
domness. Thus by the above definition, this means that
it is impossible for LOSR models to produce postselected
correlations that are semi-quantum nonlocal—even if ar-
bitrarily low measurement efficiencies are allowed. The
second property is due to the fact that the violation of
a semi-quantum Bell inequality is directly related to the
local-distinguishability of the quantum input states. This
connection implies that with a suitable choice of quan-
tum inputs, it is possible to devise a semi-quantum Bell
inequality whose optimal violation is achieved only if
the measurement efficiencies fall below a certain thresh-
old; analogous to the optimal discrimination of non-
orthogonal quantum states whereby inconclusive mea-
surement elements are necessary [22].

To illustrate the above properties, we analyze a
semi-quantum Bell experiment inspired by the Clauser-
Horne-Shimony-Holt (CHSH) Bell experiment [23], and
derive its postselected local bound and postselected
maximum quantum bound for a given measurement
efficiency. To start with, let us first clarify the meaning of
using quantum states to choose the measurements. While
it is clear what it means by classically choosing a mea-
surement setting (e.g., turning a knob), in the case of
quantum inputs, the notion of choosing a measurement
is somewhat less obvious. To sharpen this notion, we
propose to think in terms of programmable quantum
measurement (PQM) devices [24, 25]. More specifically,
a PQM device is a measurement device that accepts
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two quantum inputs, namely a quantum target system
and a quantum program system, and then performs a
measurement (determined by the state of the program
system) on the target system. That is, one uses the state
of the quantum program system to choose the desired
measurement. Thus we may view measurement devices
in the semi-quantum nonlocality framework as untrusted
PQM devices whose measurements are purportedly
determined by trusted quantum input systems, i.e., see
Fig. (1).

Semi-quantum CHSH inequality. We consider a
semi-quantum Bell experiment involving two distant ob-
servers, called Alice and Bob, who each have a trusted
local source of randomness, a trusted qubit prepara-
tion device, and an untrusted PQM device. Note that
the measurement-independence condition [26] is thus as-
sumed. In each run of the experiment, Alice generates
two random bits x̄ = x1x2 and prepares a program
qubit using the following encoding scheme: |x̄〉〈x̄| =
Hx1 |x2〉〈x2|Hx1 , where {|x2〉}x2=0,1 is the computational
basis and H is the Hadamard matrix. Then, she sends the
prepared qubit to her PQM device for measurement and
receives an outcome a ∈ {0, 1,∅}, where all inconclu-
sive outcomes are assigned to ∅. Likewise for Bob, we
write ȳ = y1y2 and b to denote his measurement choice
and measurement outcome, respectively. Furthermore, in
what follows, we will refer to Alice’s and Bob’s qubit in-
put systems as A and B, respectively, and their corre-
sponding quantum target systems as A′ and B′.

In the LOSR framework, the untrusted measurements
are modeled by a classical distribution {Pr[λ]}λ and a
corresponding set of conditional local positive-operator
valued measure (POVM) operators, {Qλa}a, {Rλb }b, act-
ing on systems A and B, respectively. Here, the clas-
sical variable λ is a diagonal quantum state living in
the Hilbert space of A′ ⊗ B′, and thus captures all the
classical randomness that is pre-shared between the two
measurement devices. For a given pair of measurement
choices, ωx̄ := |x̄〉〈x̄| and τȳ := |ȳ〉〈ȳ|, the conditional
probability of observing outcomes a and b is given as

Pr [a, b|x̄, ȳ] =
∑
λ

Pr[λ]Tr
[
Qλaωx̄

]
Tr
[
Rλb τȳ

]
, (1)

which is synonymous to the locality condition assumed
in standard Bell inequalities. Also, we write {Ma,b}a,b
to denote the effective two-qubit measurement acting on
the qubit inputs, i.e., Ma,b =

∑
λ Pr[λ]Qλa ⊗ Rλb . Note

that if Ma,b is not separable for some a, b, then by defi-
nition the joint target state must be entangled, i.e., see
Fig. (1). Accordingly, a violation of Eq. (1) implies that
the local PQM devices must share entanglement.

Following standard arguments [19, 20], we suppose∑
a 6=∅ Pr [a|x̄] = γ,

∑
b6=∅ Pr [b|ȳ] = γ, and

∑
a,b6=∅

Pr [a, b|x̄, ȳ] = γ2 for all measurements choices, where
γ ∈ (0, 1] is the measurement efficiency. With that, our
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FIG. 1. Operational interpretation. Alice’s and Bob’s
measurement choices are encoded into trusted qubit systems
and then sent to their respective untrusted PQM devices. The
PQM devices share a bipartite state (denoted by φA′B′) which
may or may not be entangled. To test for entanglement, Al-
ice and Bob compute Eq. (2): if the inequality is violated,
they conclude φA′B′ is entangled, otherwise, the experiment is
not conclusive. It is useful to mention that like standard Bell
experiments, the PQM devices and the source device are all
part of the test.

postselected inequality reads

S(γ) =
1

4

∑
x̄,ȳ

(−1)f(x̄,ȳ)C(x̄, ȳ)

γ2
≤ β(γ|LOSR), (2)

where f(x̄, ȳ) := x1 ∧ y1 ⊕ x2 ⊕ y2 is a balanced boolean
function, and C(x̄, ȳ) := Pr[a = b|x̄, ȳ]−Pr[a 6= b|x̄, ȳ] for
a, b 6= ∅ is the conditional correlation function. Our goal
is to derive the postselected local bound, β(γ|LOSR), and
to see how it scales with the measurement efficiency, γ.

For pedagogical reasons, we first discuss what happens
when the inputs are classical. In this picture, our inequal-
ity can be seen as a symmetric extension of the CHSH
inequality. To see this connection, we note that the first
bit of each party, x1, y1, determines his or her measure-
ment setting, and the second bit, x2, y2, determines if
he or she should flip the measurement outcome. Indeed,
it can be easily verified that Eq. (2) is an average of
four CHSH inequalities conditioned on x2 and y2, there-
fore the local bound of our inequality assuming classi-
cal inputs is 2. However, despite these similarities, there
is a subtle difference between the CHSH inequality and
Eq. (2) with respect to classical local models. That is, a
classical local model that outputs fixed correlated out-
comes independently of the inputs would give a CHSH
value of 2, whereas with Eq. (2) the Bell value is zero.
This example illustrates that the additional randomness
injected via x2 and y2 plays an interesting role in con-
straining the efficacy of certain classical local models.

Moving on to quantum inputs, the measurement ba-
sis is now determined by the basis in which the pro-
gram qubit is prepared, and the bit flip value is given
by the eigenvector of that basis. Notice that this en-
coding scheme is inspired by the celebrated quantum
conjugate coding scheme used in quantum cryptogra-
phy [27, 28]. The main advantage of this scheme is that
the probability of learning each bit is upper bounded by
(1 + 1/

√
2)/2 ≈ 0.853 [29]. Based on these observations,
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we thus expect correlations generated by LOSR models
to be weakly correlated with Alice’s and Bob’s measure-
ment choices.

Recall that we want to derive the postselected local
bound and the postselected maximum quantum bound
for Eq. (2). As mentioned earlier, the former is denoted
by β(γ|LOSR) and is defined as the maximization of
S(γ) over all LOSR measurements for a fixed measure-
ment efficiency γ. At this point, it is useful to mention
that all postselection strategies conceivable by LOSR
models are automatically accounted for in the maxi-
mization. That is, any postselection strategy employed
by the underlying LOSR model must be captured by
the local filtering POVMs Qλ0 + Qλ1 and Rλ0 + Rλ1 ,
which are also optimized as part of the maximization
together with the distribution {Pr[λ]}λ. Moving on,
the postselected maximum quantum bound is denoted
by β(γ) and is defined as the maximization of S(γ)
over the set of quantum strategies, {φA′B′ , {Qa}a, {Rb}b}.

Connection to quantum state discrimination.
The above maximization problems can be solved by using
a connection to the local-distinguishability of quantum
inputs. To illustrate this connection, we first note that
the proposed semi-quantum CHSH experiment is equiv-
alent to a guessing game in which the untrusted local
measurement devices have to guess the bit value f(x̄, ȳ)
when given quantum inputs ωx̄ ⊗ τȳ. More precisely, the
devices win the game if they output a⊕b = f(x̄, ȳ) when-
ever a, b 6= ∅, i.e., the game is counted only for jointly
conclusive events. The conditional guessing probability
can be written in terms of Eq. (2),

G(γ) :=
Pr [a⊕ b = f(x̄, ȳ)]

γ2
=

1

2
+
S(γ)

8
, (3)

where S(γ)/8 can be seen as the distinguishing advan-
tage. Then, it can be easily verified that

Pr [a⊕ b = f(x̄, ȳ)] =
Tr [ρ0Πa⊕b=0 + ρ1Πa⊕b=1]

2
, (4)

where we used

ρ0 =
1

8

∑
x̄,ȳ

s.t.f(x̄,ȳ)=0

ωx̄ ⊗ τȳ, ρ1 =
1

8

∑
x̄,ȳ

s.t.f(x̄,ȳ)=1

ωx̄ ⊗ τȳ,

and the measurement assignments Πa⊕b=0 = M0,0+M1,1,
Πa⊕b=1 = M0,1 +M0,1 and Π∅ = 1−Πa⊕b=0 −Πa⊕b=1.

We may interpret Eq. (4) as follows. In each run of
the experiment, the measurement devices are given a
product quantum state ωx̄ ⊗ τȳ randomly chosen from
one of the two sets of states, {ωx̄ ⊗ τȳ : f(x̄, ȳ) = 0}
and {ωx̄ ⊗ τȳ : f(x̄, ȳ) = 1}, and the devices have to
guess which set the given state is drawn from. In other
words, the local devices have to collectively guess the
global identity f(x̄, ȳ) of ωx̄⊗τȳ using whatever resources
they are given with. Indeed, the figure of merit in this
case is exactly given by Eq. (3), which is the conditional

guessing probability uniformly averaged over all prod-
uct states. Using the Born’s rule and the linearity of the
trace operator, this guessing game can be simplified to
the local-distinguishability of two non-orthogonal mixed
states ρ0 and ρ1 assuming a fixed conclusive rate of γ2.
Therefore, the maximization Eq. (2) is equivalent to the
maximization of Eq. (4) (up to the constant normaliza-
tion factor of 1/γ2).

The advantage of local-distinguishability games is that
they can be analytically solved through semidefinite pro-
gramming [15], a form of convex optimization that maxi-
mizes a linear function over the intersection of a semidefi-
nite cone and an affine plane [30]. For brevity, we present
only the primal programs and defer the corresponding
dual programs and optimal solutions to the Supplemen-
tary Material. The primal program for computing the
maximum quantum guessing probability assuming a fixed
γ2 ∈ (0, 1] is given by

maximize :
1

2
Tr [ρ0Πa⊕b=0 + ρ1Πa⊕b=1]

subject to : Πa⊕b=0 + Πa⊕b=1 + Π∅ = 1A⊗B,

Tr [(ωx̄ ⊗ τȳΠ∅] = 1− γ2, ∀ x̄, ȳ
Πi � 0, i = 0, 1,∅,

and the optimal values are found to be

maxG(γ) =

{
1
2

(
1 + 1

γ22
√

2

)
if γ > 1√

2
1
2 + 1

2
√

2
if γ ≤ 1√

2

. (5)

Here, an important remark is in order. These optimal val-
ues are obtained over the whole set of two-qubit POVMs
acting on A ⊗ B, which is larger than the set of quan-
tum strategies, i.e., Ma,b = TrA′B′ [φA′B′(Qa ⊗Rb)]. Thus
strictly speaking, Eq. (5) is an upper bound on the maxi-

mum quantum bound, i.e., β(γ) ≤ 2
√

2 for 0 < γ ≤ 1/
√

2

and β(γ) ≤
√

2/γ2 for 1/
√

2 < γ ≤ 1. However, as we
will see later, this upper bound is tight for γ ∈ (0, 1/2].

Similarly, the maximization for LOSR measurements
is based on a circuitous method, which nevertheless
also leads to a tight upper bound on G(γ|LOSR). More
precisely, we optimize over all measurements compat-
ible with the positive partial transpose (PPT) condi-
tion [31] instead of LOSR measurements. The reason is
that PPT measurements admit a much simpler charac-
terization and can be formulated as linear constraints
in the semidefinite programs, i.e., we only need to add
ΠTB
i � 0, for i = 0, 1,∅, where TB means the partial

transpose with respect to Bob’s measurements. More-
over, we use the fact that PPT and separable measure-
ments are equivalent at the level of two-qubit positive op-
erators [31]. Therefore, the optimal bound for PPT mea-
surements is an upper bound on that of LOSR measure-
ments, i.e., β(γ|LOSR) ≤ β(γ|Sep) = β(γ|PPT). The
optimal value for PPT models is found to be indepen-
dent of γ,

maxG(·|PPT) =
1

2
+

1

4
√

2
. (6)
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FIG. 2. Quantum violation vs efficiency. The vertical axis
is the postselected Bell value S(γ) and the horizontal axis is
the measurement efficiency, γ ∈ (0, 1]. The (black) dashed
line is given by the maximum quantum bound, Eq. (5), which
is obtained using general two-qubit measurements. The (red)
solid line is the postselected local bound, Eq. (6). The (blue)
shaded area is due to the pretty good quantum strategy.

Interestingly, it turns out that the optimal measure-
ments are given by LOSR measurements. To show this,
suppose the qubit inputs are given by ω0x2

= (1A +
(−1)x2X)/2, ω1x2

= (1A + (−1)x2Y)/2, and τy1y2 =

(1B + (−1)y2(X+ (−1)y1Y)/
√

2)/2, where X and Y are
Pauli matrices [32]. Then, it can be verified that the joint
input states are jointly diagonal in the standard Bell ba-
sis:

ρ0 =


α+ 0 0 0
0 α− 0 0
0 0 1

4 0
0 0 0 1

4

 , ρ1 =


α− 0 0 0
0 α+ 0 0
0 0 1

4 0
0 0 0 1

4

 , (7)

where the eigenvalues are α± := (1 ± 1/
√

2)/4, and
the corresponding eigenvectors are ordered as: |Ψ+〉,
|Ψ−〉, |Φ+〉 and |Φ−〉 [33]. For example, we have
〈Ψ+|ρ0|Ψ+〉 = 〈Ψ−|ρ1|Ψ−〉 = α+. A simple LOSR
measurement that achieves Eq. (6) is one that uses
only local measurements, i.e., no shared random-
ness is needed. More specifically, the strategy is
Qa = γ(1A + (−1)aX)/2, Rb = γ(1B + (−1)bX)/2 for
a, b = 0, 1, and Q∅ = (1 − γ)1A, R∅ = (1 − γ)1B for
the inconclusive outcomes. That is, each measurement
device with probability γ measures in the X basis, and
with probability 1 − γ outputs ∅ without measure-
ment. Another strategy is to measure in the Y basis
instead of X, or to use a combination of these two
strategies assisted with shared randomness.

A pretty good quantum strategy. As mentioned
above, the optimal solutions to Eq. (5) are given in terms
of two-qubit POVMs and thus do not provide a clear ex-
position on the optimal quantum strategy (i.e., the opti-
mal entangled bipartite state and local PQMs) needed to
achieve the maximum quantum bound. To this end, we

provide an explicit quantum strategy that reaches the
upper bound in the region of 0 < γ < 1/2, i.e., see the
shaded area in Fig. (2). Again, we refer to the aforemen-
tioned encoding scheme, i.e., Eq. (7). The optimal joint
target system is a two-qubit maximally entangled state,
φA′B′ = |Ψ+〉〈Ψ+|, and the optimal PQMs are

Q0 = γ1|Ψ+〉〈Ψ+|+ γ2(|00〉〈00|+ |11〉〈11|)
Q1 = γ1|Ψ−〉〈Ψ−|+ γ2(|00〉〈00|+ |11〉〈11|)
Q∅ = 1A⊗B −Q0 −Q1,

and likewise Ri = Qi for i = 0, 1,∅, where
γ1 = min{2γ, 1} and γ2 = max{γ − 1/2, 0}. Note
that the PQMs are inefficient Bell-state measurements
(BSMs), i.e., they can only discriminate between |Ψ+〉
and |Ψ−〉. The Bell values using these states and

measurements are S(γ) = 2
√

2 for 0 < γ ≤ 1/2 and

S(γ) = 1/(γ2
√

2) for 1/2 < γ < 1/
√

2. We remark
that this quantum strategy is however sub-optimal
when it comes to detecting weakly entangled states. For
instance, in the case of two-qubit Werner states [34],
φA′B′ = F |Ψ−〉〈Ψ−| + (1 − F )1A′⊗B′/4, it can be shown
that violation is obtained only for F > 1/2; note that
these Werner states are separable for F ≤ 1/3. On the
other hand, we have upper bounds on the achievable
Bell violations for F > 1/3, which suggest that Eq. (2)
might be able to detect all entangled two-qubit Werner
states; see Supplementary Material.

Discussion. A way to interpret our result is to exam-
ine the optimality conditions for discriminating ρ0 and
ρ1. To begin with, we remind that these mixed states
share the same support and can be simultaneously diag-
onalized in the Bell basis. The first point implies that un-
ambiguous state discrimination [22] is not possible, thus
the best measurement scheme, for our purpose, is proba-
bilistic minimum-error state discrimination [35, 36]. From
the optimality conditions of this scheme, it can be easily
verified that the maximum success probability for which
ρ0 and ρ1 are optimally discriminated is 1/2, which is
indeed the value given in Eq. (5). This also explains the
trend seen in Fig. (2) wherein higher Bell violations are
achieved with higher inconclusive rates/lower measure-
ment efficiencies.

From the second point, it is clear that the optimal
measurement that discriminates between ρ0 and ρ1 must
consists of entangled POVMs: the positive and negative
eigenspaces of ρ0 − ρ1 are maximally entangled sub-
spaces. This means that no LOSR measurement (or more
generally, separable measurement) can coherently access
these entangled eigenspaces. Crucially, this limitation
also holds in the presence of inconclusive outcomes, i.e.,
entanglement cannot be created using local operations
and classical communication (local filtering with shared
randomness in our case).

Conclusion. In the above, we have provided a semi-
quantum Bell experiment that safely allows for postse-
lection and is defined by a loss-independent local bound
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that is violated only in the region of imperfect mea-
surement efficiencies. On the conceptual level, our re-
sult suggests that semi-quantum nonlocality is much
more powerful than previously recognized. For instance,
Eq. (2) does not require the so-called fair-sampling con-
dition [21, 23], which is typically assumed in standard
Bell experiments involving postselection to ensure that
the conclusive/detected events are representative of the
underlying quantum system. Most interestingly, Fig. (2)
shows that in order to (optimally) violate Eq. (2), it is
necessary to use highly inefficient measurements, which
up to the best of our knowledge, is the first time that
such a trend has been found. Furthermore, the maximal
quantum violation 2

√
2 can be achieved for a continuum

of measurement efficiencies, i.e., γ ∈ (0, 1/2], unlike stan-
dard Bell inequalities which can only reach their maxi-
mum violations in the limit of perfect measurement effi-
ciency.

Finally, we remark that on the practical side, our in-

equality provides a semi-device-independent method for
testing entanglement in detected quantum systems. That
is, as mentioned above, the inequality allows one to
restrict the analysis to detected events without assuming
the fair-sampling condition. For example, this applica-
tion could be useful for entanglement-based experiments
suffering from high detection losses, e.g., those based on
practical entangled photon-pair sources [37].
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Phys. Rev. A. 81, 012109 (2010)

[22] Barnett. S. M. & Croke. S. Adv. Opt. Photon. 1, 238–278
(2009)

[23] Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A.
Phys. Rev. Lett. 23, 880–884 (1969)

[24] Nielsen. M. A. & Chuang. I. L. Phys. Rev. Lett. 79, 321
(1997)

[25] Fiurasek. J., Dusek. M. & Flip. R. Phys. Rev. Lett. 89,
190401 (2002)

[26] Barrett. J. & Gisin. N. Phys. Rev. Lett. 106, 100406
(2011)

[27] Wiesner. S. Conjugate coding. Sigact News 15(1), 7888
(1983)

[28] Bennett, C. H. & Brassard, G. in Proc. IEEE Int. Conf.
on Computers, Systems and Signal Processing 175–179
(IEEE Computer Society, 1984)

[29] Ambainis. A., Nayak. A., Ta-Shma. A & Vazirani. U.
Proceedings of the 31st Annual ACM Symposium on The-
ory of Computing (STOC’ 99), 376–383 (1999)

[30] Vandenberghe. L. & Boyd. SIAM Rev. 38, 49–95 (1996)
[31] Horodecki. M., Horodecki. P. & Horodecki. R. Phys. Lett.

A. 223, 1–2 (1996)
[32] More precisely, the eigenvectors of X are {(|0〉±|1〉)/

√
2}

and the ones of Y are {(|0〉 ± i|1〉)/
√

2}.
[33] The standard Bell basis is defined as |Φ±〉 := (|00〉 ±
|11〉)/

√
2 and |Ψ±〉 := (|01〉 ± |10〉)/

√
2.

[34] Werner. R. F. Phys. Rev. A. 40, 4277 (1989)
[35] Bagan. E., Munoz-Tapia. R., Olivares-Renteria. G. A. &

Bergou. J. A. Phys. Rev. A. 86, 040303(R) (2012)
[36] Herzog. U. Phys. Rev. A. 86, 032314 (2012)
[37] Caprara Vivoli. V et al. Phys. Rev. A. 91, 012107 (2015)


	Optimality of semi-quantum nonlocality in the presence of high inconclusive rates 
	Abstract
	References


