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We show that the Einstein-Laub formulation of electrodynamics is invalid since it yields a stress-
energy-momentum (SEM) tensor that is not frame invariant. Two leading hypotheses for the kinetic
formulation of electrodynamics (Chu and Einstein-Laub) are studied by use of the relativistic prin-
ciple of virtual power, mathematical modeling, Lagrangian methods, and SEM transformations.
The relativistic principle of virtual power is used to demonstrate the field dynamics associated with
energy relations within a relativistic framework. Lorentz transformations of the respective SEM
tensors demonstrate the relativistic frameworks for each studied formulation. Mathematical model-
ing of stationary and moving media is used to illustrate the differences and discrepancies of specific
proposed kinetic formulations, where energy relations and conservation theorems are employed.
Lagrangian methods are utilized to derive the field kinetic Maxwell’s equations, which are stud-
ied with respect to SEM tensor transforms. Within each analysis, the Einstein-Laub formulation
violates special relativity, which invalidates the Einstein-Laub SEM tensor.

PACS numbers: 03.30.+p, 03.50.De, 45.20.df, 42.25.Gy

I. INTRODUCTION

The momentum of light in media remains one of the
most controversial topics in physics [1–6]. The debate has
continued for more than a century since H. Minkowski
and M. Abraham formulated 4 × 4 energy-momentum
tensors in the early 1900’s [7–9]. Attention has focused
on differing forms of the electromagnetic momentum den-
sity in media. Minkowski proposed ḠM = D̄ × B̄ to be
the momentum density, where D̄ is the electric displace-
ment and B̄ is the magnetic induction [7]. Soon after,
Abraham suggested a more symmetric approach, yield-
ing ḠA = Ē × H̄/c2 as the momentum density, where Ē
and H̄ are the electric and magnetic fields, respectively
and c is the speed of light in vacuum [8]. A number of
experiments have been reported seemingly in favor of one
form or the other [10–16].
In 2010, Barnett’s resolution to the photon momen-

tum controversy identified Abraham’s momentum as the
kinetic momentum and Minkowski’s momentum as the
canonical momentum [19]. Consequently, the Abraham
momentum is responsible for the overall center-of-mass
translation of a material, while the Minkowski momen-
tum predicts translations within or with respect to the
medium [4–6]. Equivalence between the two is shown
by determining the total energy-momentum tensor since
division into material and electromagnetic components
is believed arbitrary [2]. It is the misinterpretation of
such arbitrary divisions that can lead to erroneous predic-
tions. Therefore, a complete resolution of the Abraham-
Minkowski debate must include a complete description
of the kinetic subsystem of electromagnetics which pre-
dicts center-of-mass translations due to electromagnetic
fields [6]. However, the Barnett resolution only identified
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the kinetic and canonical momentum densities, whereas
the original debate is in regard to the 4 × 4 energy mo-
mentum tensor.

In light of this, another well-known SEM tensor was
also proposed in the first decade of the last century by
Albert Einstein and Jacob Laub [20]. The Einstein-Laub
tensor, like the Abraham and Minkowski tensors, utilizes
the Minkowski fields, and it shares the Abraham mo-
mentum density. Significant theoretical work has been
presented over the last century pertaining to the electro-
dynamics of moving media, and the focus of the analyses
has clearly been biased toward the relativistically invari-
ant Minkowski, Chu (i.e. EH representation), and Ampe-
rian (i.e. EB representation) formulations [21–24]. The
question of relativistic invariance of the Abraham formu-
lation has only recently been answered [25–27], while the
same question regarding the Einstein-Laub formulation
has yet to be addressed. A cursory review of recent liter-
ature reveals that the Einstein-Laub formulation remains
popular in scientific application [28–32]. This is, in part,
due to the indistinguishability of the various formulations
for computing total force and stress (i.e. material plus
electromagnetic) in the quasi-stationary limit [24].

In this correspondence, we employ the fundamental
tenets of special relativity to study the kinetic subsys-
tem of macroscopic electromagnetics. Using the math-
ematical framework of relativistic principle of virtual
power (RPVP) we uniquely derive and review the as-
sociated stress tensor and momentum density from the
shared energy relations between the Einstein-Laub and
Chu formulations. It is shown that the kinetic momen-
tum density and Chu stress tensor naturally derive from
the energy relations, where the Einstein-Laub does not.
The stress-energy-momentum (SEM) tensors represent-
ing both formulations are analyzed using Lorentz trans-
formation laws while further investigating the invariance
properties with respect to field transformations. Mathe-
matical models for stationary and moving media are de-
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rived, demonstrating the kinetic properties of the Chu,
Einstein-Laub, and Abraham formulations with respect
to energy relations and conservation theorems. Lastly,
Lagrangian methods in conjunction with scalar and vec-
tor potentials allow for the derivation of the field kinetic
subsystem, which is recast into matrix form and stud-
ied relativistically. In each of these demonstrations, it
is shown that the Chu formulations transform relativis-
tically between inertial reference frames.

II. FRAMEWORK

In 1953, Balazs presented a simple Gedankenexper-
iment to determine the kinetic momentum of a pulse
of light by considering center of mass-energy conserva-
tion [33]. This was accomplished by considering an opti-
cal pulse with initial free space momentum pi = E/c inci-

dent upon an impedance matched slab (
√

µ/ǫ =
√

µ0/ǫ0)
of thickness d initially at rest. The optical pulse is slowed
with respect to an alternate vacuum propagation path
by the length L = (n − 1)d due to the reduced velocity
within the slab, having refractive index n = c

√
ǫµ. Con-

servation principles require that the slab acquire some
linear momentum, giving rise to a material momentum
pm = E

c (1 − 1
n ). Here, momentum conservation requires

the momentum of the pulse of the light be the Abraham
momentum p = 1

n
E

c , corresponding to the kinetic mo-

mentum density ḠFk
= ǫ0µ0Ē × H̄ . Consequently, this

result mathematically excludes other forms, such as the
Liven’s momentum, ḠL = ǫ0Ē × B̄, which is commonly
tied to the Amperian formulation [6, 23, 34], and the
Minkowski momentum, ḠM = D̄ × B̄, from being the
kinetic momentum of light [4, 6, 19]. We emphasize that
this assertion is only in regard to the interpretation of
the Amperian and Minkowski SEM tensors and does not
imply a lack of translational invariance.
Of the leading formulations [6], three formulations uti-

lize the prescribed kinetic momentum density model: the
Abraham formulation, the Einstein-Laub formulation,
and the Chu formulation. Table I lists the leading field
kinetic formulation candidates. However, when modeling
the kinetic subsystem, it is unknown which formulation
generates the true physics of the electromagnetic subsys-
tem, thereby satisfying conservation theorems,

f̄Fk
= � · [ ¯̄TFk

,−icḠFk
] (1a)

ϕFk
= � ·

[

− i

c
S̄Fk

,WFk

]

, (1b)

where ¯̄T = − ¯̄T as used in [6, 23], � =
[

∇, ∂
∂ ic t

]

, and sub-
script Fk denotes the field kinetic subsystem, rendering
the field kinetic SEM tensor as

TFk
=

[

¯̄TFk
−icḠFk

−i
S̄Fk

c WFk

]

. (2)

Tensors lacking relativistic invariance cannot be
energy-momentum tensors. This fact is a fundamental

tenet of modern physics. For example, consider a region
of space occupied by ponderable media, which may be
described locally by a mass density and a velocity field.
Regardless of how a system of coordinates is assigned,
the local momentum vector may vary with position and
time. In typical optical manipulation experiments, this
may be due to motion of a submerging fluid and/or the
presence of multiple particles or cells. The inability to
measure relativistic effects in any particular experiment
by our present instrument capabilities, however, does not
preclude the fundamental laws of physics from holding
true. Relative motion within media and the laboratory
frame will generally exist. We demonstrate such relative
motion via mathematical modeling in Sec. IV, and we
maintain that it is essential that the laws governing the
physics of the system remain invariant.

Recent reports have addressed the lack on relativis-
tic invariance while employing the Abraham energy-
momentum tensor [25–27]. This, consequently, is due
to both the Abraham and Minkowski energy-momentum
tensors sharing field expressions for power flux, energy
density, and stress tensor, while the momentum density
definitions differ. Simply stated, this imposes that both
formulations utilize identical electromagnetic energy re-
lations, however each predict independent force expres-
sions within the subsystem. At least one of the two for-
mulations cannot be a valid energy momentum tensor,
and due to previous research, the Abraham formulation
demonstrates inconsistencies within relativistic transfor-
mations [25–27]. Thus, we can dismiss the Abraham for-
mulation as a candidate for the kinetic SEM tensor.

Using the above rational, we present a similar argu-
ment for the Einstein-Laub and Chu formulations, where
both share definitions for the energy density, W , power
flux, S̄, and momentum density, ḠFk

, but differ in the
definition of both the stress tensor and electromagnetic
field definitions. This stems from the interpretation of
Maxwell’s equations where both formulations possess the
following relations,

∇× H̄ − ǫ0
∂Ē

∂t
= J̄e (3a)

∇× Ē + µ0
∂H̄

∂t
= −J̄m (3b)

ǫ0∇ · Ē = ρe (3c)

µ0∇ · H̄ = ρm.. (3d)

The Einstein-Laub interpretation directly divides the
Minkowski formulation, composed of field values D̄M ,
B̄M , ĒM , and H̄M , into field and material components by
field definitions D̄M = ǫ0ĒM + P̄M and B̄M = µ0(H̄M +
M̄M ), where subscript M denotes the Minkowski elec-
tromagnetic field values. As a result, the Einstein-Laub
effective electric and magnetic current and charge densi-
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TABLE I. Table of leading formulations of electrodynamics.

Ḡ(r̄, t) ¯̄T (r̄, t) W (r̄, t) S̄(r̄, t)
Chua ǫ0µ0Ē × H̄ 1

2

(

ǫ0Ē
2 + µ0H̄

2
) ¯̄I − ǫ0ĒĒ − µ0H̄H̄ 1

2

(

ǫ0Ē
2 + µ0H̄

2
)

Ē × H̄

Einstein-Laubb ǫ0µ0Ē × H̄ 1

2

(

ǫ0Ē
2 + µ0H̄

2
) ¯̄I − D̄Ē − B̄H̄ 1

2

(

ǫ0Ē
2 + µ0H̄

2
)

Ē × H̄

Abrahamb ǫ0µ0Ē × H̄ 1

2

(

D̄ · Ē + B̄ · H̄
) ¯̄I − D̄Ē − B̄H̄ 1

2

(

D̄ · Ē + B̄ · H̄
)

Ē × H̄

a Chu field transformations are used to describe moving contributions [21, 22, 36].
b Minkowski field transformations are used to describe moving contributions [21–23].

ties are given as [32, 35]

J̄e =
∂P̄M

∂t
+ J̄f (4a)

J̄m = µ0
∂M̄M

∂t
(4b)

ρe = −∇ · P̄M + ρf (4c)

ρm = −µ0∇ · M̄M , (4d)

where J̄f and ρf representing the free current and charge
density of the system. Thus, the electric and magnetic
field components are represented by the Minkowski ĒM

and H̄M fields, which comprise the Einstein-Laub elec-
tromagnetic formulation.
Alternatively, the Chu formulation, composed of field

values ĒC , H̄C , P̄C , and M̄C , idealizes interrelated elec-
tric (E) and magnetic (H) fields, where material bodies
contribute towards the prescribed electromagnetic fields
by acting as source values [21, 36]. Thus, the Chu effec-
tive electric and magnetic current and charge densities
are given as

J̄e =
∂P̄C

∂t
+∇× (P̄C × v̄) + J̄f (5a)

J̄m = µ0
∂M̄C

∂t
+ µ0∇× (M̄C × v̄) (5b)

ρe = −∇ · P̄C + ρf (5c)

ρm = −µ0∇ · M̄C , (5d)

where subscript C denotes values from the Chu formula-
tions. Comparing the two formulations, it is questioned:

1. which field and material interpretation is the true
physical electromagnetic interpretation

2. which stress tensor and momentum density is tied
to the shared energy relations prescribed by both
formulations.

Consequently, this discrepancy clouds the idea of the true
kinetic representation of light within media. Thus, we
present a number of arguments to distinguish which of
the two leading kinetic formulations, Chu or Einstein-
Laub, is the valid interpretation of the electromagnetic
system.
From here forward, we omit subscript notation for de-

noting the Chu and Minkowski field definitions, and in-
stead state when each field representation is used.

III. RELATIVISTIC ANALYSIS

A. Relativistic principle of virtual power

The relativistic principle of virtual power is derived
from the fundamental tenets of the principle of virtual
work, where the force of a system is derived via the
amount of work put forth along the path of a parti-
cle [21]. Expanding these basic tenets, the relativistic
principle of virtual power utilizes prior knowledge of a
system’s power flux, power density, and energy density to
derive the associated system dynamics. The expressions
for these relations must be valid even if the material is ac-
celerating and/or deforming. By using valid transforms
(i.e Lorentz transformation) along with prescribed defi-
nition and manipulations of the power expressions, the
force density, stress tensor, and momentum density are
derived for the corresponding subsystem. The relativis-
tic principle of virtual power is expressed mathematically
as [21]

(∇ · S̄0)0 +
S̄0

c
·
(

∂v̄

∂t

)0

+

(

∂W 0

∂t

)0

+W 0 (∇ · v̄)0 − ϕ0

= −T 0 : (∇v̄)0 − Ḡ0 ·
(

∂v̄

∂t

)0

(6)

where superscript 0 denotes values within the arbitrary
reference frame to the first order velocity value [21]. Ad-
ditionally, the operator : signifies the dyadic dot product,
also known as the double dot product with respect to the
dyadic matrix.
As one would expect, transformation from one inertial

frame to another requires prescribed Lorentz transforma-
tion laws. Here, we employ both Chu andMinkowski field
transformations (1) to not assume a specific electromag-
netic formulation and (2) to derive the system dynamics
tied to the shared energy relations in the moving frame,

S̄0 = Ē0 × H̄0 (7a)

W 0 =
1

2
(ǫ0Ē

0 · Ē0 + µ0H̄
0 · H̄0). (7b)

Here, the question is which interpretation of the elec-
tromagnetic fields correctly describes the electromag-
netic subsystem involving the given energy relations. In
the following subsections, we apply each respective field
transformation to uniquely derive the electromagnetic
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stress tensor and momentum density associated with each
field representation.

1. Minkowski field analysis

By use of Eqs. (7) and Eq. (1b), the Einstein-Laub en-
ergy relations are employed to derive the electrodynamic
forces via the method of RPVP. Applying the first order
velocity vector field transforms [21],

Ē0 = Ē + v̄ × B̄ (8a)

H̄0 = H̄ − v̄ × D̄ (8b)

B̄0 = B̄ − v̄ × Ē

c2
(8c)

D̄0 = D̄ +
v̄ × H̄

c2
, (8d)

the energy relations are rendered such that

S̄0 = Ē × H̄ + [(v̄ × D̄)× Ē] + [(v̄ × B̄)× H̄ ] (9a)

W 0 =
1

2
(ǫ0E

2 + µ0H
2)− v̄ · [ǫ0Ē × B̄ + µ0D̄ × H̄],

(9b)

where higher order velocity terms have been omitted.
Substituting Eqs. (9) into the left hand side of Eq. (6)
results in the following relation

Q0 = [∇ · {Ē × H̄ + [(v̄ × D̄)× Ē] + [(v̄ × B̄)× H̄ ]}]0

+
Ē0 × H̄0

c2
·
(

∂v̄

∂t

)0

+ Ē0 ·
(

∂ǫ0Ē

∂t

)0

+ H̄0 ·
(

∂µ0H̄

∂t

)0

−
(

∂v̄

∂t

)0

·
(

ǫ0Ē
0 × B̄0

+ µ0D̄
0 × H̄0

)

+
( ǫ0
2
Ē0 · Ē0 +

µ0

2
H̄0 · H̄0

)

(∇ · v̄)0

+ Ē0 · J̄0
e + H̄0 · J̄0

m. (10)

By use of vector properties in conjunction with Poynt-
ing’s theorem, one finds Eq. (10) to render,

¯̄T 0 =
[

D̄0 · Ē0 − ǫ0
2
Ē0 · Ē0 + B̄0 · H̄0 − µ0

2
H̄ · H̄0

]

¯̄I

−D̄0Ē0 − B̄0H̄0 (11a)

Ḡ0 = ǫ0Ē
0 × B̄0 + µ0D̄ × H̄ − ǫ0µ0Ē

0 × H̄0. (11b)

The resulting stress tensor and momentum density do
not transform to the Einstein-Laub formulation. Conse-
quently, we are unaware of any reported stress-energy-
momentum tensor that includes the stress tensor and
momentum density relations presented in Eq. (11). Fur-
thermore, the transformed momentum density is not con-
sistent with the kinetic form of the momentum density,
and cannot be considered as a kinetic representation of
electrodynamics.

2. Chu field analysis

Here, we present an abbreviated analysis of the Chu
field while employing the RPVP methods. This allows
for comparison between the Chu and Einstein-Laub in-
terpretations. However, the full treatment of the Chu
analysis is given in Ref. [21].
Using the Chu transformation laws to the first order

velocity term [21],

Ē0 = Ē + v̄ × µ0H̄ (12a)

H̄0 = H̄ − v̄ × ǫ0Ē, (12b)

the energy relations are rendered such that [21]

S̄0 = Ē × H̄ + [(v̄ × ǫ0Ē)× Ē] + [(v̄ × µ0H̄)× H̄ ]

(13a)

W 0 =
1

2
(ǫ0E

2 + µ0H
2)− 2v̄

c2
· [Ē × H̄], (13b)

where higher order velocity terms have been omitted.
Substituting Eqs. (13) into the left hand side of Eq. (6)
results in the following relation [21]

Q0 = [∇ · {Ē × H̄ + [(v̄ × ǫ0Ē)× Ē] + [(v̄ × µ0H̄)× H̄ ]}]0

+
Ē0 × H̄0

c2
·
(

∂v̄

∂t

)0

+ Ē0 ·
(

∂ǫ0Ē

∂t

)0

+ H̄0 ·
(

∂µ0H̄

∂t

)0

− 2

(

∂v̄

∂t

)0

·
(

Ē × H̄

c2

)0

+
( ǫ0
2
Ē0 · Ē0 +

µ0

2
H̄0 · H̄0

)

(∇ · v̄)0

+ Ē0 · J̄0
e + H̄0 · J̄0

m. (14)

By use of vector manipulations and Poynting’s theorem,
one finds Eq.(14) to render [21],

¯̄T 0 =
[ǫ0
2
Ē0 · Ē0 +

µ0

2
H̄ · H̄0

]

¯̄I − ǫ0Ē
0Ē0 − µ0H̄

0H̄0

(15a)

Ḡ0 = ǫ0µ0Ē
0 × H̄0, (15b)

which is the Chu stress tensor and momentum density
within the arbitrarily moving reference frame. This indi-
cates that the Chu energy-momentum tensor transforms
correctly between inertial reference frames. However, fur-
ther justification will be presented in the next section,
where we provide relativistic analysis of the SEM ten-
sors, further demonstrating the mathematical differences
between the Chu and Einstein-Laub formulations.

B. Invariance of SEM components

It is well known that physical laws describing a system
are relativistically invariant and transform between iner-
tial reference frames. Here, we applying this concept to
a generalized SEM tensor while considering two frames
of reference, S and S′ such that S′ moves with velocity v
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along the x-axis with respect to S. The SEM tensor, rep-
resented in the rest or moving frame, S, takes the general
form,

Tαβ =







Txx Txy Txz icGx

Tyx Tyy Tyz icGy

Tzx Tzy Tzz icGz

iSx/c iSy/c iSz/c W






. (16)

Transformation from the S frame to the moving frame,
S′, invokes the following relations:

T ′
xx = γ2

(

Txx + β(Sx/c+ cGx)− β2W
)

(17a)

T ′
yy = Tyy (17b)

T ′
zz = Tzz (17c)

T ′
xy = γ(Txy + βSy/c) (17d)

T ′
yx = γ(Txy + cβGyc) (17e)

T ′
xz = γ(Txz + βSz/c) (17f)

T ′
zx = γ(Txz + cβGz) (17g)

T ′
yz = Tyz (17h)

T ′
zy = Tzy (17i)

iS′
x/c = −γ2

(

icGx + iβ(Txx −W ) + iβ2Sx/c
)

(17j)

icG′
x = −γ2

(

iSx/c+ iβ(Txx −W ) + icβ2Gx

)

(17k)

iS′
y/c = −iγ(Sy/c+ βTxy) (17l)

icG′
y = −iγ(cGy + βTxy) (17m)

iS′
z/c = −iγ(Sz/c+ βTxz) (17n)

icG′
z = −iγ(cGz + βTxy) (17o)

W ′ = γ2(W − β(Sx/c+ cGx)− Txxβ
2), (17p)

where β = v/c and γ = (1−β)−1/2. For the remainder of
this subsection, we review the prospective Einstein-Laub
and Chu formulations with respect to the Lorentz trans-
forms of the Chu and Minkowski equations. This will
demonstrate the relativistic transformations of both for-
mulations with regards to each field interpretation, which
ultimately demonstrates the invariance of the force and
power densities of each formulation, corresponding to the
energy and momentum described by each formulation.

1. Chu field analysis

The Chu Lorentz transformation laws for field vari-
ables Ē, H̄ , P̄ , and M̄ from the moving frame to the
laboratory frame are given by [21, 36]

Ē′ = Ē‖ + γ(Ē⊥ + v̄ × µ0H̄) (18a)

H̄ ′ = H̄‖ + γ(H̄⊥ − v̄ × ǫ0Ē) (18b)

P̄ ′ = P̄‖ + γ

(

P̄⊥ − v̄ × (P̄ × v̄∗)

c2

)

(18c)

M̄ ′ = M̄‖ + γ

(

M̄⊥ − v̄ × (M̄ × v̄∗)

c2

)

, (18d)

where v̄ is the velocity of the unprimed frame and v̄∗

is the velocity of the electromagnetic material. Here,

defining v̄ = v̄∗ = x̂v, the Lorentz transformations of
the Chu field values are given as

Ex = E′
x (19a)

Ey = γ(E′
y + cµ0βH

′
z) (19b)

Ez = γ(E′
z − cµ0βH

′
y) (19c)

Hx = H ′
x (19d)

Hy = γ(H ′
y − cǫ0βE

′
z) (19e)

Hz = γ(H ′
z + cǫ0βE

′
y) (19f)

Px = P ′
x (19g)

Py = γP ′
y (19h)

Pz = γP ′
z (19i)

Mx = M ′
x (19j)

My = γM ′
y (19k)

Mz = γM ′
z. (19l)

Considering the Chu formulation, the components of the
SEM tensor are

S̄ = Ē × H̄ (20a)

Ḡ =
S̄

c2
(20b)

W =
1

2
(ǫ0Ē · Ē + µ0H̄ · H̄) (20c)

Tαβ = ǫ0EαEβ + µ0HαHβ − δαβW. (20d)

Due to the discrepancies between the stress tensor, we
look to transform the field values within the moving
frame back to the stationary frame, demonstrating the
relativistic invariance (or lack there of) of the stress ten-
sor of each formulation. Thus, employing Eq. (17a) and
Eqs. (20),

T ′
xx = γ2

(

ǫ0ExEx + µ0HxHx + 2
β

c
(Ē × H̄)x

−1

2
(1 + β2)(ǫ0Ē · Ē + µ0H̄ · H̄)

)

. (21)

Expanding the scalar and vector products,

ǫ0Ē · Ē + µ0H̄ · H̄ = ǫ0ExEx + ǫ0EyEy + ǫ0EzEz

+ µ0HxHx + µ0HyHy + µ0HzHz

(Ē × H̄)x = EyHz − EzHy

and employing the Lorentz fields in Eqs. (19), we find

ǫ0Ē · Ē + µ0H̄ · H̄ = ǫ0E
′
xE

′
x + µ0H

′
xH

′
x

+ γ2

[

(1 + β2)(ǫ0E
′
yE

′
y + ǫ0E

′
zE

′
z + µ0H

′
yH

′
y

+ µ0H
′
zH

′
z) + 4ǫ0µ0cβ(E

′
yH

′
z − E′

zH
′
y)

]

(22a)

(Ē × H̄)x = γ2

[

(1 + β2)(E′
yH

′
z − E′

zH
′
y) + cβ(ǫ0E

′
yE

′
y

+ ǫ0E
′
zE

′
z + µ0H

′
yH

′
y + µ0H

′
zH

′
z)

]

. (22b)
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Substituting Eqs. (22) into Eq. (21) renders

T ′
xx = γ2

[

1

2
(1− β2)ǫ0E

′
xE

′
x + µ0H

′
xH

′
x − γ2

2
(1− β2)2

× (ǫ0E
′
yE

′
y + ǫ0E

′
zE

′
z + µ0H

′
yH

′
y + µ0H

′
zH

′
z)

]

= ǫ0E
′
xE

′
x + µ0H

′
xH

′
x + δxxW

′. (23)

As can be seen, the Chu stress tensor remains unchanged
when transformed to the S′ frame, demonstrating rela-
tivistic invariance. Here, we note that additional manip-
ulation of the remaining expressions in Eqs. (17) provide
the desired relativistic transformations.

For completeness, we repeat the previous derivation for
the Einstein-Laub formulation while employing the Chu
fields. However, we note that the Einstein-Laub formu-
lation was originally formulated with Minkowski fields.
Thus, the Einstein-Laub stress tensor under the Chu field
representation is given as

Tαβ = (ǫ0E + P )αEβ + µ0(H +M)αHβ − δαβW,(24)

where Sx, Gx, and W retain the form presented in
Eqs. 20. Using standard field definitions, along with the
Einstein-Laub values render Eq. (17a) as

T ′
xx = γ2

[

(ǫ0Ex + Px)Ex + µ0(Hx +Mx)Hx + 2
β

c

× (Ē × H̄)x − 1

2
(1 + β2)(ǫ0Ē · Ē + µ0H̄ · H̄)

]

.(25)

Plugging Eqs. (22) into Eq. (25) renders

T ′
xx = ǫ0E

′
xE

′
x + µ0H

′
xH

′
x + δxxW

′

+ γ2(P ′
xE

′
x + µ0M

′
xH

′
x). (26)

It is easily seen that the additional material components
included within the dyadic product of the Einstein-Laub
stress tensor do not transform relativistically, thereby
proving that the SEM tensor provided by Einstein-Laub
formulation as an invalid representation of electrodynam-
ics while using the Chu fields.

2. Minkowski field analysis

The Lorentz transformation laws for Minkowski field
values Ē, H̄ , D̄, and B̄ are given as [21, 37]

Ē′ = Ē‖ + γ(Ē⊥ + v̄ × B̄) (27a)

H̄ ′ = H̄‖ + γ(H̄⊥ − v̄ × D̄) (27b)

D̄′ = D̄‖ + γ

(

D̄⊥ +
v̄ × P̄

c2

)

(27c)

B̄′ = B̄‖ + γ

(

B̄⊥ − v̄ × M̄

c2

)

. (27d)

Asserting v̄ = x̂v, the Lorentz transforms for the
Minkowski fields are given as

Ex = E′
x (28a)

Ey = γ(E′
y + cβB′

z) (28b)

Ez = γ(E′
z − cβB′

y) (28c)

Hx = H ′
x (28d)

Hy = γ(H ′
y − cβD′

z) (28e)

Hz = γ(H ′
z + cβD′

y) (28f)

Dx = D′
x (28g)

Dy = γ(D′
y + βH ′

z/c) (28h)

Dz = γ(E′
z − βH ′

y/c) (28i)

Bx = B′
x (28j)

By = γ(H ′
y − βE′

z/c) (28k)

Bz = γ(H ′
z + βD′

y/c). (28l)

Here, we utilize the previously defined SEM components
Eq. (17a), Eqs. (20a - 20c), along with

Tαβ = DαEβ +BαHβ − δαβW, (29)

such that

T ′
xx = γ2

(

DxEx +BxHx + 2
β

c
(Ē × H̄)x

−1

2
(1 + β2)(ǫ0Ē · Ē + µ0H̄ · H̄)

)

. (30)

Expanding the scalar and vector products while employ-
ing the Lorentz field transformation Eq.(28), we find

ǫ0Ē · Ē + µ0H̄ · H̄ = ǫ0E
′
xE

′
x + µ0H

′
xH

′
x

+ γ2

[

(ǫ0E
′
yE

′
y + ǫ0E

′
zE

′
z + µ0H

′
yH

′
y + µ0H

′
zH

′
z)

+ c2β2(ǫ0B
′
yB

′
y + ǫ0B

′
zB

′
z + µ0D

′
yD

′
y + µ0D

′
zD

′
z)

+ 2cβ
{

(ǫ0Ē
′ × B̄′)x + (D̄′ × µ0H̄

′)x
}

]

(31a)

(Ē × H̄)x = γ2

[

(Ē′ × H̄ ′)x + c2β2(D̄′ × B̄′)

+ cβ(H ′
yB

′
y +H ′

zB
′
z + E′

yD
′
y + E′

zD
′
z)

]

(31b)

Plugging Eqs. (31) into Eq. (30) gives

T ′
xx = γ2

[

E′
xD

′
x +H ′

xB
′
x +

2γ2β

c

{

(Ē′ × H̄ ′)x

+ c2β2(D̄′ × B̄′) + cβ(H ′
yB

′
y +H ′

zB
′
z + E′

yD
′
y

+ E′
zD

′
z)
}

− 1

2
(1 + β2)

{

ǫ0E
′
xE

′
x + µ0H

′
xH

′
x

+ γ2
[

(ǫ0E
′
yE

′
y + ǫ0E

′
zE

′
z + µ0H

′
yH

′
y + µ0H

′
zH

′
z)

+ c2β2(ǫ0B
′
yB

′
y + ǫ0B

′
zB

′
z + µ0D

′
yD

′
y + µ0D

′
zD

′
z)

+ 2cβ
{

(ǫ0Ē
′ × B̄′)x + (D̄′ × µ0H̄

′)x
} ]

}]

, (32)
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FIG. 1. A plane wave normally incident on a magneto-

dielectric halfspace with refractive index n =
√

ǫµ

ǫ0µ0
, moving

with velocity v = xt.

which doesn’t transform to the Einstein-Laub formula-
tion in the moving frame using the Minkowski field val-
ues. However, for the reader, it is easy to validate the
expression given in Eq. (32) as the Einstein-Laub for-
mulation by taking β → 0, which, as one would expect,
renders Eq. (29). Additionally, this result indicates that,
while utilizing both the Chu and Minkowski field values,
the Einstein-Laub formulation is an invalid interpreta-
tion of electromagnetics. This is due to untransformable
SEM values, of which constitute the force, power, energy,
and momentum of the electromagnetic subsystem.

IV. MODELING

In this section, we utilize the Chu, Einstein-Laub, and
Abraham formulations to demonstrate the electromag-
netic force and power distributions, further illustrating
the discrepancies within the prospective kinetic formula-
tions. In doing so, we evaluate the electromagnetic in-
teractions with a linear, lossless, nondispersive magneto-
dielectric material for both the stationary and moving
material cases. This allows for discussion with respect
to each electromagnetic formulation, where conservation
theorems and the subsystem concept, as presented in
[21, 22], are utilized.

A. Stationary analysis

Consider an electromagnetic wave normally incident
from vacuum onto a linear, lossless, nondispersive
magneto-dielectric halfspace, as seen in Fig. 1. Here the
incident, reflected, and transmitted field values, along
with the reflection and transmission coefficients are pre-
sented in Appendix A. The material is stationary, and is
held at a constant velocity v = 0 by an external mechan-
ical force. We note that for the stationary analysis, the
field definitions for any representation of electrodynamics
are equivalent. With this, we employ the time average
force and power relations via the subsystem concept for

each respective formulation,

〈F̄j〉 =
˚

V

dV 〈f̄j〉 = −
‹

a

dā · 〈 ¯̄Tj〉 (33a)

〈Pj〉 =
˚

V

dV 〈ϕj〉 =
‹

a

dā · 〈S̄j〉, , (33b)

where
∑

j f̄ = 0 and
∑

j ϕj = 0 for all system partitions
j. Utilizing Table I, the Abraham force at the boundary
interface is rendered as

〈F̄Abr〉 = −x̂U0[1 +R2 − ǫrT
2]

= −x̂
2U0(n

2 − 2n2µr + µ2
r)

(n+ µr)2
, (34)

and the Einstein-Laub and Chu force as

〈F̄Chu〉 = 〈F̄EL〉 = −x̂U0

[

1 +R2 − 1

2

(

1 +
n2

µ2
r

)

T 2

]

= x̂0, (35)

where ǫr and µr are the relative permittivity and per-
meability of the magneto-dielectric medium, with n =
√
ǫrµr and U0 =

E2

0

2c2µ0

. Utilizing Eq. (33b) in a similar

fashion yields

〈PAbr〉 = 〈PChu〉 = 〈PEL〉 = −cU0[1−R2 − n

µr
T 2]

= 0 (36)

for each kinetic formulation. These results are consistent
with previous related research [23, 24, 45], and global en-
ergy and momentum conservation laws. However, closer
inspection of the stationary conservation statements re-
veal trivial results for each electromagnetic formulation.
This can be shown by employing the standard power re-
lation 〈F̄e〉 · v̄ = Pe with v̄ = 0̄, validating any electro-
magnetic force expression, where by conservation theo-
rems 〈F̄mech〉 = −〈F̄e〉. Simplify stated, this relation
holds because the stationary time average electromag-
netic power, as demonstrated in Eq. (36), always renders
zero net power flow, where the electromagnetic force can
be arbitrarily defined and validate the system. This illus-
trates that stationary media analysis alone is insufficient
for determining the kinetic subsystem [22, 24]. Other
conclusions from the present stationary analysis are fur-
ther discussed in the latter sections of this correspon-
dence.

B. Moving analysis

Now, consider an electromagnetic wave normally inci-
dent from vacuum onto a moving, linear, lossless, nondis-
persive magneto-dielectric halfspace, as seen in Fig. 1.
Here, the constitutive relations of the moving material
are transformed from the moving frame to the labo-
ratory frame, rendering bianisotropic material parame-
ters [23]. Employing the moving material constitutive
relations and the kDB system, wavevector k̄ and the



8

Minkowski fields are generated for relativistic analysis,
where the methods are demonstrated in [22, 23], and in
Appendix B. Additionally, the Chu fields are generated
by using field transformation laws, along with the derived
Minkowski fields, and are expressed in Appendix B.
In evaluating the moving system, we employing the

subsystem concept [21] in conjunction with the jump con-
dition provided by kinematic theory [38]. This yields the
time average force and power relations for moving media
as

〈F̄j〉 = −
‹

a

dā ·
{

〈 ¯̄Tj〉 − v̄〈Ḡj〉
}

(37a)

〈Pj〉 =
‹

a

dā ·
{

〈S̄j〉 − v̄〈Wj〉
}

, (37b)

where
∑

j f̄j = 0 and
∑

j ϕj = 0 by conservation laws,
as previous. Within the analysis, two subsystem are con-
sidered: electromagnetic and mechanical. Here the elec-
tromagnetic subsystem is individually modeled by each
leading kinetic formulation, where the mechanical sub-
system retains a constant material velocity as per rela-
tivistic constraints. Now, application of Eqs. (37), formu-
lation specific SEM components, and the associated field
definitions in Appendix B render the Abraham force and
power as

〈F̄Abr〉 = −x̂[〈 ¯̄TAbr〉] + v〈ḠAbr〉] = −x̂
2U0(1 + β)

(1− β)

× (n2 − 2nµ′
r(n+ β(1− n2)) + µ′2

r )

(n+ µ′
r)

2
(38a)

〈PAbr〉 = −[〈S̄Abr〉] + v[〈WAbr〉] =
2U0(1 + β)

(1− β)

×cβ(n2 − 2nµ′
r + µ′2

r )

(n+ µ′
r)

2
(38b)

the Einstein-Laub force and power as

〈F̄EL〉 = −x̂[〈 ¯̄TEL〉] + v[〈ḠEL〉] = −x̂
2U0β

(1− β)2(n+ µ′
r)

2

×
[

(2β2nµ′
r(1− n2) + 2n(n2 − µ′

r(2− µ′
r))

−β(n4 + µ′2
r + n2(1− 4µ′

r + µ′2
r ))

]

(39a)

〈PEL〉 = −[〈S̄EL〉] + v[〈WEL〉] =
2U0cβ

(1 − β)2(n+ µ′
r)

2

×
[

(n2β + µ′2
r β)(β + 2n− n2β)− 2(n2 + µ′2

r )

−2nµ′
r(β − 2n+ n2β)

]

(39b)

and the Chu force as

〈F̄Chu〉 = x̂[〈 ¯̄TChu〉] + v[〈ḠChu〉] = x̂0 (40a)

〈PChu〉 = −[〈S̄Chu〉] + v[〈WChu〉] = 0, (40b)

where superscript ′ represent material parameters in the
moving frame. Plots of the force and power distributions

β
-0.8 -0.6 -0.4 -0.2 0 0.2

〈F
x
〉
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·
m

−
2
)

×10-12
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8

10

12

14

16
〈F̄Chu〉

〈F̄Abr〉

〈F̄EL〉

(a)The electromagnetic force on the moving material, with the
normalized velocity ranging from −1 to 1/n.

β
-0.8 -0.6 -0.4 -0.2 0 0.2

〈P
〉
(W

·
m

−
2
)

×10-3

-2

-1.5

-1

-0.5

0

0.5

1

1.5
〈PChu〉
〈F̄Chu〉 · v̄
〈PAbr〉
〈F̄Abr〉 · v̄
〈PEL〉
〈F̄EL〉 · v̄

(b)The electromagnetic power on the moving material, with the
normalized velocity ranging from −1 to 1/n.

FIG. 2. The electromagnetic (a) force and (b) power versus
velocity for the leading kinetic formulations are presented for
a moving magneto-dielectric halfspace. Here ǫ′r = 5, µ′

r = 3,
n =

√

ǫ′rµ′
r, with β = v

c
as the normalized velocity.

for each formulation are demonstrated in Fig 2. Here,
the mechanical force and power used in maintaining the
system is 〈F̄mech〉 = −〈F̄e〉 and 〈Pmech〉 = −〈Pe〉 by con-
servation theorems. This implies 〈F̄e〉·v̄ = 〈Pe〉must hold
for each individual electromagnetic formulation. Apply-
ing this to each derived moving system, however, demon-
strates neither the Abraham or Einstein-Laub equations
possess valid conservation expressions within the system,
as can be seen in Fig 2(b). At least one of the force or
power expressions resulting form both the Abraham and
Einstein-Laub expressions are incorrect, leading to in-
valid electrodynamic representations within the system.
In contrast, the Chu formulation provides valid results for
the kinetic force and power expressions, further demon-
strating the correct electrodynamics in all inertial refer-
ence frames.
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V. LAGRANGIAN

Hamilton’s variational principle provides a systematic
process for deriving the equations of motion and con-
servation laws for a physical system from a postulated
Lagrangian density, where the use of a generalized La-
grangian produces consistent dynamics within a closed
system. The Lagrangian density is formulated by [39, 40]

L = LF + LI + LM (41)

where LF , LI , and LM are the electromagnetic field,
field-matter interaction, and matter Lagrangian densi-
ties, respectively. The energy and co-energy functions
are defined in terms of the electric and magnetic field
vectors Ē and H̄ consistent with the shared energy and
momentum relations, which leads to the invariant expres-
sion for the electromagnetic field Lagrangian density [21]

LF =
ǫ0
2
|Ē|2 − µ0

2
|H̄ |2. (42)

To allow for the accurate partitioning of field and
material subsystems, we reserve discussion of the mat-
ter Lagrangian density LM to a latter correspondence.
In general, however, LM will depend upon the model
used for the material, and examples of causal mate-
rial models have been given for dielectrics [41] and
magneto-dielectrics [42]. With a vector potential struc-
ture previously applied to describe systems with mag-
netic monopoles [43] and to model radiation using the
equivalence principle [44]

Ē = −∇Φe −
1

ǫ0
∇× Āe −

∂Ām

∂t
(43a)

H̄ = −∇Φm +
1

µ0
∇× Ām − ∂Āe

∂t
, (43b)

the field-matter interaction Lagrangian density is defined
to include electric and magnetic interaction terms

LI = −ρeΦe + J̄e · Ām + ρmΦm + J̄m · Āe, (44)

where J̄e and J̄m are the effective electric and magnetic
current densities, ρe and ρm are the effective electric and
magnetic charge densities, Φe and Φm are the electric
and magnetic scalar potentials, and Āe and Ām are the
electric and magnetic vector potentials.
The Euler-Lagrange equation [40] is given by the rela-

tion

d

dt

∂L
∂ẋj

=
∂L
∂xj

− d

dXK

∂L
∂(∂xj/∂XK)

, (45)

where the Lagrangian density is used to derive the dy-
namics of the subsystem. Thus, substituting the kinetic
Lagrangian density,

LFk
=

ǫ0
2

(

−∇Φe −
1

ǫ0
∇× Ām − ∂Āe

∂t

)2

− µ0

2

(

−∇Φm +
1

µ0
∇× Āe −

∂Ām

∂t

)2

− ρeΦe + J̄e · Āe + ρmΦm + J̄m · Ām, (46)

into Eq.(45) the kinetic form of Maxwell’s equations are
derived. For the electric scalar potential, we find the
Lagrangian with respect to Φe by

d

dt

∂L
∂(∂Φe/∂t)

=
∂L
∂Φe

− d

dzj

∂L
∂Φe,j

(47)

to yield

0 = −ρe + ǫ0
d

dzj
Ē

ρe = ǫ0∇ · Ē (48)

Similarly, we find the Lagrangian with respect to the
magnetic scalar potential Φm by yielding

0 = ρm − µ0
d

dzj
H̄

ρm = µ0∇ · H̄ (49)

Application of the Lagrangian with respect to the electric
vector potential, Āe, renders

−ǫ0
d

dt
Ē = Jei − (−αkji)

d

dzj
H̄

∇× H̄ − ǫ0
∂Ē

∂t
= J̄e (50)

where the permutation symbol αklm is used. Lastly, the
Lagrangian in terms of the magnetic vector potential,
Ām, is found such that

−µ0
d

dt
H̄ = Jmi

+ (−αkji)
d

dzj
Ē

∇× Ē + µ0
∂H̄

∂t
= −J̄m. (51)

Collection of Eqs.(48), (49), (50), and (51) yields
Maxwell’s equations in terms of the Ē,H̄ fields, as seen
in Eq. (3). Here, we must point out that the material
contributions J̄e, J̄m, ρe, and ρm, have yet to be defined,
of which, uniquely define the electromagnetic subsystem.
This invokes that specific field definitions, rendering the
physical interpretation and formulation of electrodynam-
ics, cannot be completely known. However, the electro-
magnetic framework has been derived, allowing for gen-
eralized field analysis of the electromagnetic subsystem.
Eqs. (3) are easily recast into matrix representation

such that

Fαβ =







0 Hz −Hy −icǫ0Ex

−Hz 0 Hx −icǫ0Ey

Hy −Hx 0 −icǫ0Ez

icǫ0Ex icǫ0Ey icǫ0Ez 0






(52a)

Gαβ =







0 −Ez Ey −icµ0Hx

Ez 0 −Ex −icµ0Hy

−Ey Ex 0 −icµ0Hz

icµ0Hx icµ0Hy icµ0Hz 0






,(52b)

where Greek subscripts α, β have their usual meaning
[21]. Applying the generalized relativistic transformation
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matrix [21] such that S′ is traveling with velocity v̄ = x̂v
with respect to S, the field tensors transform to

F ′
αβ =









0 H ′
z −H ′

y −icǫ0E
′
x

−H ′
z 0 H ′

x −icǫ0E
′†
y

H ′
y −H ′

x 0 −icǫ0E
′†
z

icǫ0E
′
x icǫ0E

′†
y icǫ0E

′†
z 0









(53a)

G′
αβ =









0 −E′
z E′

y −icµ0H
′
x

E′
z 0 −E′

x −icµ0H
′
y

−E′
y E′

x 0 −icµ0H
′
z

icµ0H
′
x icµ0H

′†
y icµ0H

′†
z 0









,(53b)

with the primed matrix values given as

E′
x = Ex

E′
y = γ(Ey − cµ0βHz)

E′†
y = γ(cµ0Hz − βEy)

E′
z = γ(Ez + cµ0βHy)

E′†
z = γ(cµ0Hy + βEz)

H ′
x = Hx

H ′
y = γ(Hy + cǫ0βEz)

H ′†
y = γ(cǫ0Ez + βHy)

H ′
z = γ(Hz − cǫ0βEy)

H ′†
z = γ(cǫ0Ey −Hzβ),

where the transformation made no assumption towards
any field representation. In deriving the shared energy
relations and kinetic momentum density, the relativistic
SEM tensor is found such that

T
′
αβ =

1

2
µ0F ′

αβF ′
βγ +

1

2
ǫ0G′

αβG′
βγ (54)

where Eq. (54) represents the combination of Eqs. (17),
(18), and (20). Here, we note that this demonstrates the
Chu formulation as the relativistically invariant electro-
magnetic system tied to Eqs. (3).

VI. DISCUSSION

In Sec III-V, we study the relativistic nature of two per-
spective kinetic formulations. Employing such analytic
methods as the principle of virtual power and Lagrangian
analysis, as well as utilizing Lorentz invariance arguments
and relativistic modeling, both the Chu and Einstein-
Laub electromagnetic subsystems are studied with refer-
ence to relativistic frameworks. In this section, we re-
view our finding while discussing related contributions,
thereby revealing the discrepancies between the two for-
mulations.
Field kinetic research has utilized several leading for-

mulations in modeling the center-of-mass translation
with respect to electromagnetic material interactions [6].
Each prospective formulation attempts to reformulate
or divide Maxwell’s equations into pure field and mate-
rial responses, of which constitutes the electromagnetic

subsystem. Within the literature, two leading formu-
lations used in modeling the kinetics of light are the
Chu and Einstein-Laub formulations, where both formu-
lations correspond to partitioning Maxwell’s equations
such that the material is modeled as electric and mag-
netic dipoles [20]. Although similar, the two formula-
tions differ in the expressions of the force density, stress
tensor, and electromagnetic field interpretations. Recent
literature review reveals both formulations are used in
modeling the field kinetic subsystem for multiple com-
putational experiments, as well as theoretical discussion
[45–49]. The problem with this is that, for stationary me-
dia (as much of the literature models), both formulations
simultaneously satisfy momentum conservation using dif-
ferent force density expressions, where the power density
expressions remain equivalent and unchanged. This is
a consequence of rearranging terms in the conservation
equations

f̄Fk
= −∇ · ¯̄TFk

− ∂

∂t
(ǫ0µ0Ē × H̄), (55)

such that the force density and stress tensor are ambigu-
ously defined, allowing for multiple mathematically valid
force density expressions representing the kinetic subsys-
tem. To demonstrate, we employ vector calculus identi-
ties [24]

−(∇ · P̄ )Ē = (P̄ · ∇)Ē −∇ · (P̄ Ē) (56a)

−µ0(∇ · M̄)H̄ = µ0(M̄ · ∇)H̄ − µ0∇ · (M̄H̄),(56b)

to rearrange the Chu stress tensor and force density val-
ues to yield the Einstein-Laub force density

[ρ+ (P̄ · ∇)]Ē + (µ0M̄ · ∇)H̄ +

(

J̄ +
∂P̄

∂t

)

× µ0H̄

− µ0
∂M̄

∂t
× ǫ0Ē = − ∂

∂t
[ǫ0µ0Ē × H̄ ]

−∇ ·
[

1

2
(ǫ0Ē · Ē + µ0H̄ · H̄) ¯̄I − D̄Ē − B̄H̄

]

. (57)

This augmentation is similar to that used in describing
the Abraham force, which alters the Minkowski formu-
lation rendering the Abraham formulation while sharing
Minkowski energy definitions [24]. However mathemati-
cally correct, such mathematical exercises should not be
taken as a basis for defining physical systems, and should
instead be tested against known mathematical and phys-
ical constructs (one such being invariant forces).
To uniquely resolve the analytic electrodynamics ex-

pressions, one can employ RPVP while utilizing a pri-

ori energy relations along with respective field trans-
formations to derive the related stress tensor and mo-
mentum density valid for all inertial reference frames.
This was accomplished in Sec. III A, where both the
Chu and Minkowski fields were applied to produce the
associated stress tensor and momentum density values.
Here, only one analysis, the Chu analysis, demonstrated
in Eqs. (15), rendered invariant results for the force den-
sity, stress tensor, and momentum density expressions, of
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which, corresponds with previous research on the kinetic
subsystem [33]. In contrast, the Einstein-Laub analysis,
demonstrated in Eqs. (11), did not produce the kinetic
momentum density, and resulted in unreported expres-
sions for both the stress tensor and momentum density.
In Sec. III B, further analysis using relativistic SEM ten-
sor and vector field transformations demonstrates rela-
tivistic invariance of the Chu stress tensor between iner-
tial reference under Chu field transforms. The Einstein-
Laub stress tensor, however, failed to transform under
both Chu and Minkowski field definitions. This indicates
that the Einstein-Laub formulation, in general, cannot
constitute a valid electromagnetic subsystem. This is
due to the prescribed electrodynamics changing from one
inertial reference frame to another, which, according to
special relativity, cannot be true.

In Sec IV, the Chu, Einstein-Laub, and Abraham for-
mulations were used in modeling the field kinetic subsys-
tem for stationary and moving media. First, consider-
ing the electromagnetic models in the stationary system,
the Abraham momentum, as presented in Eq. (34), is
equivalent to that of the Minowski momentum results
presented in [45], of which imposes that the Abraham
kinetic formulation produces an equivalent pulling force
to the canonical Minkowski force. This comes as no sur-
prise being that the stress tensor definitions of both for-

mulations are equivalent (i.e. ¯̄TM = ¯̄TA), which in the
stationary frame, derive the time average force density
expression. Alternatively, the Chu and Einstein-Laub
formulations demonstrate null quantities for the electro-
magnetic momentum normally incident at the boundary
interface. This is due to both formulations modeling the
transmitted electromagnetic momentum flow within the
material and the free space momentum flow outside the
material as equal and opposite electromagnetic momen-
tum contributions. For each case considered, the electro-
magnetic system satisfies global energy and momentum
conservation laws, where the quasi-stationary approxi-
mation ensures conservation by limiting the materials
physical quantities (velocity v → 0 and mass m → ∞)
such that the momentum vector remains non-zero [6, 24].
For moving media, however, this is not the case, and in-
stead uses the electromagnetic energy flow to analyze the
system, providing validation of global conservation laws
[22, 50]. Considering the moving electromagnetic models,
the Abraham and Einstein-Laub formulations demon-
strate a build up of electromagnetic energy in front of the
moving magneto-dielectric slab, causing a material at-
traction or pulling force towards the incident light. This
indicates that the mechanical force supplied to keep the
material moving at a constant velocity must be balanced
to sustain the system by the relation 〈F̄mech〉· v̄ = −〈Pe〉.
By conservation theorems, the electromagnetic force and
mechanical force must have equal and opposite contri-
butions, allowing for the material to move at a constant
velocity. The relations presented by Eq. (38a) and (39a)
demonstrate a pulling force, but at different rates than
what is prescribed by the mechanical force expression.

This indicates that the Einstein-Laub and Abraham for-
mulations predict incorrect force and/or power distribu-
tions for moving systems. In contrast, the Chu formula-
tions retains the interpretation as presented in the sta-
tionary frame, where the free space and transmitted con-
tributions cancel rendering invariant results in the mov-
ing frame.
In 1918, Walter Dallenbach wrote Einstein about in-

herent problems within the Einstein-Laub force density
expression. After several exchanges, Einstein wrote in
response to Dallenbach [35], “It has long been known
that the values I had derived with Laub at the time are
wrong; Abraham, in particular, was the one who pre-
sented this in a thorough paper. The correct strain tensor
has incidentally already been pointed out by Minkowski.”
It has since been shown that additional torque terms
P̄ × Ē+µ0M̄ × H̄ must supplement the usual r̄× f̄ form
of the torque density in the Einstein-Laub formulation.
Such an augmentation can be criticized on the basis that
mathematical manipulation requires an equal augmenta-
tion to the interaction term to preserve the angular mo-
mentum continuity equation. Of course, this changes the
division and interpretation of the subsystems. The same
argument applies to the so called “hidden momentum”
term which is often applied to the Amperian momentum
to achieve the kinetic field momentum [24]. In light of
this, recent research [19] has shown a relation between
the canonical and kinetic momenta. Thus, energy and
momentum conservation demonstrates that the sum of
the field and material contributions of the kinetic sub-
system are equal to the field and material contributions
of the canonical subsystem. This indicates that partition-
ing the total electrodynamic system leads to a material
and kinetic subsystem, of which, the kinetic subsystem
demonstrates field and material responses and is consis-
tent with global energy and momentum conservation.

VII. CONCLUSION

In conclusion, we have studied the Einstein-Laub and
Chu formulations by use of relativistic principle of virtual
power, relativistic invariance, mathematical modeling,
and Lagrangian methods. Within each analysis, both
formulations are compared in determining which electro-
magnetic formulation is tied to the kinetic momentum
density and the shared energy relations. The outcome
of each analysis demonstrated inconsistencies within the
Einstein-Laub formulation, which were revealed when
transforming between inertial reference frames. Con-
versely, the Chu formulation presented invariant forms
for RPVP and SEM transforms, as well as in mathemat-
ical modeling. In deriving field kinetic values indepen-
dent of formulation specific field definitions, Lagrangian
methods were employed where field values were replaced
by prescribed scalar and vector potentials. Defining the
Lagrangian density in energy and co-energy expressions
[21], along with including any theoretically possible inter-
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action values, the Lagrangian analysis yielded the field ki-
netic (E,H) form of Maxwell’s equations. To validate the
electrodynamics in all inertial reference frames, the field
kinetic Maxwell’s equations were recast into Minkowski
space and transformed using a generalized Lorentz trans-
formation. The energy-momentum tensor of the field ki-
netic subsystem was shown to be Lorentz invariant when
deriving the kinetic momentum density and shared en-
ergy relations, where the transformed SEM tensor is con-
sistent with the one derived by L. Chu [21, 36]. Thus, the
Chu formulation is relativistically invariant in a medium
with a local velocity field v̄ given that the charge and cur-
rent densities describing material response are described
by Eqs. (5). This is demonstrated in Sec. IV, where the
Chu formulation, unlike the Einstein-Laub and Abraham
formulations, demonstrated consistent and invariant re-
sults for the electromagnetic force and power within the
moving system. The analysis presented herein demon-
strates that the Chu formulation is the correct phys-
ical interpretation tied to Eqs. (3), thereby disproving
the Einstein-Laub formulation of electromagnetics. Ad-
ditionally, we note that the derivations, as presented
in Sec III A and V, made no a priori assumption for
the force density, momentum density, or stress tensor,
thereby strengthening our conclusions.
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Appendix A: Stationary fields and coefficients

Consider an electromagnetic wave normally incident
from vacuum onto a stationary (v = 0), linear, loss-
less, nondispersive magneto-dielectric halfspace, as seen
in Fig. 1. The incident fields are rendered as

Ēi = ẑE0e
−ik1x (A1a)

H̄i = ŷ
E0

cµ0
e−ik1x, (A1b)

the reflected fields as

Ēr = ẑE0Reik1 (A2a)

H̄r = −ŷ
E0

cµ0
Reik1x, (A2b)

and the transmitted fields as

Ēt = ẑE0Te
−ik2x (A3a)

H̄t = ŷ
E0

cµ0

n

µr
Te−ik2x, (A3b)

where the wavevectors and wavenumbers for the respec-
tive regions are rendered as

k21 = ω2ǫ0µ0

k22 = ω2ǫµ

k̄i = −x̂k1

k̄r = x̂k1

k̄t = −x̂k2.

Application of the tangential boundary conditions, Ē1 −
Ē2 = 0 and H̄1− H̄2 = J̄ = 0, reveals the expressions for
the reflection and transmission coeffiencents such that,

R =
µr − n

µr + n
(A4a)

T =
2µr

µr + n
. (A4b)

Appendix B: Moving fields and coefficients

Here, we present the field values for the transformed
Minkowski and Chu formulations. Both field transforma-
tions take on bianisotropic material parameters, where
the constitutive relations have been transformed from the
moving frame to the laboratory frame such that [22, 23]

¯̄C = ¯̄L−1
6 · ¯̄C′ · ¯̄L6, (B1)

where

¯̄C′ =

[ ¯̄P ′ ¯̄L′

¯̄M ′ ¯̄Q′,

]

(B2)

with ¯̄P ′ = cǫ′ ¯̄I, ¯̄L′ = ¯̄M ′ = ¯̄̄0, ¯̄Q =
¯̄I

cµ′
, along with ¯̄L6

and ¯̄L−1
6 as the standard and inverse Lorentz transforma-

tion matrices [23]. Using constitutive relation transfor-
mations and the kDB system, the wavevector relations
along the x̂ direction are [22, 23]

k̄+ = x̂
n+ β

1 + nβ

ω

c
(B3a)

k̄− = −x̂
n− β

1− nβ

ω

c
(B3b)

where superscripts +,− denote the wavevector solutions
in the positive and negative directions within the mate-
rial.

1. Minkowski representation

Consider a plane wave normally incident on a mov-
ing magneto-dielectric halfspace, as seen in Fig 1. The
incident Minkowski fields in the laboratory frame are

Ēi = ẑE0e
−i(kix+ωit) (B4a)

H̄i = ŷ
E0

cµ0
e−i(kix+ωit), (B4b)
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where the incident wavevector is k̄i = −x̂ωi

c . The re-
flected Minkowski fields in the laboratory frame are

Ēr = ẑE0Rei(krx−ωrt) (B5a)

H̄r = −ŷ
E0

cµ0
Rei(krx−ωrt), (B5b)

where the reflected wavevector is k̄r = x̂ωr

c . The trans-
mitted Minkowski fields observed from the laboratory
frame are

Ēt = ẑE0e
−i(ktx+ωit) (B6a)

B̄t = ŷ
E0

c

n− β

1− nβ
Te−i(ktx+ωit) (B6b)

D̄t = ẑ
E0

c2µ0

n(n− β)

µ′
r(1− nβ)

Te−i(ktx+ωit) (B6c)

H̄t = ŷ
E0

cµ0

n

µ′
r

Te−i(ktx+ωit), (B6d)

where the transmitted wavevector within the moving ma-

terial is k̄t = −x̂nt
ωt

c , and nt =
(n−β)
(1−nβ) .

Employing moving tangential boundary conditions Ē+
v̄ × B̄ = 0 and H̄ − v̄ × D̄ = J̄ = 0, we derive the
expressions

(1 + β) +R(1− β) = T

(

1− β2

1− nβ

)

(1 + β)−R(1− β) = T
n

µ′
r

(

1− β2

1− nβ

)

,

which, after manipulation, result in the reflection and
transmission coefficients

R =
(µ′

r − n)

(µ′
r + n)

(1 + β)

(1− β)
(B7a)

T =
2µ′

r

(µ′
r + n)

(1− nβ)

(1− β)
. (B7b)

2. Chu representation

Here, we transform the Minkowski fields presented to
the Chu fields by the transformations [21]

ĒC = ĒM +
v̄ ×

{

[ĒM −
(

D̄M

ǫ0

)

]× v̄
}

c2(1− β2)

+
v̄ × (B̄M − µ0H̄M )

(1− β2)
(B8a)

H̄C = H̄M +
v̄ ×

{

[H̄M −
(

B̄M

µ0

)

]× v̄
}

c2(1 − β2)

− v̄ × (D̄M − ǫ0ĒM )

(1− β2)
(B8b)

P̄C = D̄M − ǫ0ĒM +
v̄ ×

{

(D̄M − ǫ0ĒM )× v̄
}

c2(1− β2)

− ǫ0v̄ × (B̄M − µ0H̄M )

(1− β2)
(B8c)

µ0M̄C = B̄M − µ0H̄M +
v̄ ×

{

(B̄M − µ0H̄M )× v̄
}

c2(1 − β2)

−µ0v̄ × (D̄M − ǫ0ĒM )

(1− β2)
, (B8d)

In vacuum, the field representations for the Chu and
Minkowski fields are equivalent, and are demonstrated
in Eqs.(B4-B5). The transmitted Chu fields are

ĒCt
= ẑ

µ′
r − nβ

µ′
r(1 − nβ)

E0Te
−i(ktx+ωtt) (B9a)

H̄Ct
= −ŷ

n− µ′
rβ

µ′
r(1 − nβ)

E0

cµ0
Te−i(ktx+ωtt) (B9b)

P̄Ct
= ẑ

n2 − µ′2
r

µ′
r(1 − nβ)

E0

c2µ0
Te−i(ktx+ωtt) (B9c)

µ0M̄Ct
= −ŷ

n(µ′
r − 1)

µr(1 − nβ)

E0

c
T e−i(ktx+ωtt). (B9d)

In determining the reflection and transmission coeffi-
cients, application of the Chu fields and boundary condi-
tions result in identical relation as previously defined in
Eqs. (B7).
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