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Entangled atomic states, such as spin squeezed states, represent a promising resource for a new
generation of quantum sensors and atomic clocks. We demonstrate that optimal control techniques
can be used to substantially enhance the degree of spin squeezing in strongly interacting many-body
systems, even in the presence of noise and imperfections. Specifically, we present a protocol that is
robust to noise which outperforms conventional methods. Potential experimental implementations

are discussed.

PACS numbers: 42.50.Dv, 02.30.Yy, 32.80.Qk

I. INTRODUCTION

Spin squeezed states are among the most interesting
examples of entangled states. In quantum metrology they
allow for measurements with an improved precision, ul-
timately limited only by the Heisenberg limit. Since the
early theoretical proposals to realize them with non linear
interactions [2, 3], spin squeezed states have been imple-
mented in several experiments. Specific examples include
generation of spin squeezed states in cavity QED [4-6], in
trapped ions through shared motional modes [7, 8] or us-
ing a Bose-Einstein condensate [9, 10]. In this Letter we
demonstrate that optimal control can be effectively em-
ployed to produce highly squeezed spin states in many-
body quantum systems, drastically reducing the impact
of relaxation and decoherence. Other approaches applied
control techniques creating spin squeezing as a succession
of unitary pulses of a constant Hamiltonian [11-14]. We
employ the Chopped Random Basis (CRAB) technique
[15, 16] to optimally control the evolution of a collection
of N two-level systems mutually coupled through a time-
dependent non linear (i.e. quadratic) interaction. We
calculate optimized evolutions occurring on time scales
several orders of magnitude shorter than the correspond-
ing adiabatic evolutions, with a speed-up increasing with
the system size. Such a speed-up translates directly into
an enhanced robustness of the squeezing in the presence
of noise, as schematically depicted in Fig. 1. We illus-
trate this enhanced robustness by modeling two practical
experimental implementations of squeezed state prepara-
tions: cavity QED and trapped ions [6, 8]. We will focus
on two methods realizing spin squeezed states, both with
advantages in different situations. The first is based on
the so called one-axis twisting protocol, consisting in let-
ting a collection of two-level systems evolve under the
effect of a collective non linear interaction [3], described
by a Hamiltonian of the form

Hsn = wl. + xJ? (1)

Where w is the precession frequency and y is the strength
of the nonlinear interaction and J is a collective spin
operator (defined below). The relative simplicity of the

N O
1
1 ;
0 '0 0 '0
Y _1_1 X Y _\1\_1 X
=] ¥ J LR R | ’ > L |
60+ — optimal ||
| — adiabatic| |
P U{} Noise T
20+ -
0 L
10" 10° 10°
time

FIG. 1: (Color online) Upper panel: initial state (left) and
final highly squeezed state (right) for a system of N = 100
spins. Lower panel: adiabatic (dashed line) and optimal (solid
line) driving fields x generating the maximally squeezed state
shown above; the effect of the noise (big blue arrow) increases
with the total evolution time (shown in units of 1/|w]).

one-axis twisting scheme has been at the basis of its ubig-
uitous presence in squeezing experiments; however such
a scheme is known to be non optimal [3], the spherical
nature of the angular momentum phase space limiting
the maximal squeezing achievable. Such a bound is in-
trinsic for the one-axis twisting protocol with fixed yx.
It nevertheless allows to achieve spin squeezing on com-
parably short time scales which makes it less sensitive
with respect to noise. The second protocol, proposed by
Sgrensen and Mglmer, is based on adiabatic evolution
to steer a system into maximally squeezed states squeez-
ing the variance A%J, under the constraint that (J,) is
nonzero. [17]. This procedure has been implemented ex-
perimentally in small systems, see for instance Ref. [18].



Unfortunately the required evolution time, which is pro-
portional to the inverse square of the minimum spectral
gap A encountered during the evolution, T,q oc A=2 [19],
scales unfavorably with the system size. This makes adi-
abatic evolution significantly exposed to external noise:
typically in many-body systems the gap closes with in-
creasing system size IV, which implies a dramatic increase
of the time required for adiabatic evolutions for large N.
Previous studies have demonstrated that optimal control
is a powerful tool to drastically reduce the time needed
to perform a many-body quantum evolution [16, 20]. In
particular the Chopped Random Basis (CRAB) tech-
nique offers an efficient way to implement optimal con-
trol, based on an expansion of the control field onto a
truncated basis [15, 16]. Recently it has been shown
that optimal control allows for reaching the Quantum
Speed Limit (QSL), the minimal time required by phys-
ical constraints to perform a given transformation, in
spin chains [20, 21], cold atoms in optical lattices [22],
Bose-Einstein condensates in atom chip experiments and
in crossing of quantum phase transitions [24]. Indeed,
CRAB control makes it possible to reduce the time of the
transformation down to the QSL, which scales as 1/A,
obtaining a quadratic speedup of the protocol with re-
spect to the adiabatic one. In this work we show that
this method is successful also in drastically reducing the
preparation time for maximally spin squeezed states, as
illustrated in Fig. 1, thereby significantly enhancing the
process’ robustness to realistic noise sources even com-
pared to the one-axis twisting protocol.

II. MODEL

A collection of N two-level atoms having (pseudo)spin
S; can be described in terms of the global spin variable
J= Zfil S;, with |J] = N/2 and z-component .J, repre-
senting the population imbalance between the two atomic
internal states. In Ramsey spectroscopy experiments, the
measured signal M yields the mean global angular mo-
mentum pointing along the z-axis, M = (J.), while the
noise is given by the uncertainty in one of the orthogo-
nal components AJ; = /(J2) — (J;)2, i = z,y. In spin
squeezed states, the latter is below the standard quan-
tum limit, i.e. AJ;® < |(J;)]/2 for i # j € {x,y,2}. The
squeezing parameter £ is defined through the signal to
noise ratio as

V2JIAJ,
[eA

Squeezed states satisfy the condition £ < 1, which im-
plies entanglement in the system. The ideal states for
spectroscopy experiments are those minimizing AJ, for
sufficiently large values of the signal, i.e. M o N. The
problem of finding the optimal squeezed state can be re-
cast into the search for the ground state | (x, IV)) of the
Hamiltonian Eq. 1, where w is constant and negative and
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FIG. 2: (Color online) Scaling with the size of the total evo-
lution time T in units (1/|w]|) for the adiabatic (Iq = 7-1073,
red triangles) and the optimized dynamics (Iop: = 5- 1074,
black circles). Numerical fits for 30 < N < 150 (dashed lines)
result in Thq oc N2 and Topt N9 Inset: Scaling of {2;
a fit gives €2 ~ 2.1/N°91,

the non-linear interaction x(t¢) is now taken to be tunable
in time [32]. (From now on we set h = 1 and time is
measured in units of 1/|w|.) Adiabatic evolution under
Hg s automatically produces optimal squeezed states, as
follows: At the time ¢t = 0 one takes x(0) = 0 and the
system is prepared in its initial ground state |1o(0, N)),
the coherent state |J, = J) with £ = 1. Then adiabat-
ically increasing x(t), the system evolves following the
instantaneous ground state |t (x(t), N)) of Hgps, yield-
ing exactly the family of states with optimal squeezing
at a given value of M (see Fig. 1).

III. OPTIMIZATION IN THE ABSENCE OF
NOISE

We first investigate the properties of the Hamiltonian
Hg ) in Eq.(1) to identify target squeezed states that can
be reached via adiabatic evolution. We calculate the time
required to perform an adiabatic transformation from the
initial state into the target and its scaling with the sys-
tem size N. Subsequently, we apply optimal control to
determine the dynamics (neglecting for the moment deco-
herence effects) leading to the same target state in a much
shorter time. Finally, we compare the optimized evolu-
tion with the adiabatic one. As previously mentioned,
squeezed states suitable for quantum metrology should
have sufficiently strong signal M as deformations of the
variance of the collective spin reduce its mean length to
M < 1. To fulfill this requirement we choose (through-
out the whole work) M = J/+/2 = 0.707J, i.e. M x N.
Then we find the value x;;(N) of the interaction such
that |vo(xxz, NV)) has (J,) = M for a given N. The
inset of Fig. (2) shows the corresponding value of the
ground-state squeezing for varying N: a power-law fit
€2 = A/NB for 30 < N < 150 yields A = 2.1 4 0.05



and B = 0.94 + 0.01, compatible with the Heisenberg
limit €2 oc N~=!. This means that we have identified a
class of states |¢o(x 7, N)) with the desired characteris-
tics. We can now take those states as a target for the
optimization, to achieve constant intensity of the signal
M and maximal squeezing ¢ for any given system size
N. As discussed above, the system is initially prepared
in the coherent state |1)9(0, N)) where all spins are po-
larized along the positive z-direction and &2 = 1, and
we aim at reaching the goal state |vg) = |[vo(Xz, N))
after an evolution time 7. The initial and target state
for the case N = 100 are depicted in Fig. 1 (upper pan-
els). For the adiabatic case, evolution is computed using
a linear ramp x(t) = xx;t/T. Comparing the resulting
final state |4 (T")) with the goal state yields the infidelity
I =1—|(bo(xu, N)|w(T))|?. Fig. 2 shows, as a function
of the size N, the time T,, needed to reach a given in-
fidelity value I,4 via adiabatic evolution (red triangles).
A fit T = ANB for 30 < N < 150 gives A = 0.31 £ 0.01
and B = 1.95+0.01, in agreement with the prediction of
the adiabatic theorem T,4 ~ 1/A% ~ N2. We then apply
the quantum optimal control CRAB algorithm [15, 16] to
find the time 7T}, needed by an optimal transformation to
reach an infidelity I,,:. More precisely we write the driv-
ing field in the form x(¢) = x iz [1+A(¢) z;lil a; sin(w;t)+
b; cos(w;t)]t/T, where A(t) ensures constant boundary
conditions, w; = 27 /T(1 + r;), rj is a random number,
and ny ~ O(10), and we look for the optimal correc-

-,

tion (i.e. the coefficients @,b) such that the infidelity is
minimized for a given time (for details on the algorithm
and of its complexity see [16, 25]). A typical result is
shown in Fig. 1 (lower panel), while the scaling of the
optimized evolution time T,y as a function of the size
N is shown in Fig. 2 (black circles). A power-law fit
Topt = ANPE for 30 < N < 150 gives A = 0.06 £0.01 and
B = 0.93 &+ 0.04, consistent with our conjecture about
the QSL (see above). This shows that optimal squeezing
preparation results in a quadratic improvement in the
scaling of the preparation time as a function of the sys-
tem size, while additionally reducing the total evolution
time by at least two orders of magnitude.

Our discussion up to this point neglected completely the
effect of noise, which of course is a major concern in a
real experiment. Therefore, in order to test the robust-
ness of the protocol, we simulate the dynamics of the
system in the presence of noise. We will consider two
noise models, as different experimental implementations
of squeezed spin states are affected by different kinds of
noise. We will show that optimized protocols work also
in the presence of these types of noise, and that they are
much more resilient to noise than adiabatic protocols.

IV. EFFECT OF CLASSICAL NOISE

A typical situation in which classical fluctuations of an
external field occur, reflecting in random fluctuations of
the interaction strength, is found in trapped ions, also

FIG. 3: (Color online) Final squeezing ¢ as a function of
the size N, for v = 500 for the adiabatic (red triangles) and
optimal (black circles) dynamics, subject to random telegraph
noise with amplitude K, = Kg = 0.05 (empty symbols) and
K, = Kg = 0 (full symbols). Data have been averaged over
24 instances of disorder.

relevant for metrological applications [8]. In trapped ion
systems, a global random magnetic noise is expected to
be the most relevant source of disturbance [23]. We in-
clude it in our simulations by adding random classical
telegraph noise to the control field. We then study the
evolution induced by the Hamiltonian

H = x(t)[1 + Kaa(t)]J7 + w1 + K1) . (3)

where «(t), f(t) are random functions of the time with
a flat distribution in [—1,1], changing random value on
average with frequency v. The case K, = Kg = 0 cor-
responds to a noiseless evolution of Eq.(1). In Fig. 3 we
compare the effect of the noise on the final squeezing ob-
tained by varying x(t) either linearly in time (empty red
triangles) or according to the optimized protocol (empty
black circles). The squeezing &2 is plotted as a function
of the size IV, for v = 500 and for an intensity of the noise
K, = Kg = 0.05. As shown in Fig. 3, the noise effect
is stronger for larger system sizes, very quickly destroy-
ing the squeezing for the slow linear (adiabatic) protocol.
The reason is simple: as shown in Fig. 2, for large sizes,
e.g. N > 100, the adiabatic evolution time is three or-
ders of magnitude larger than the optimized one. Vice
versa the fast optimal driving turns out to be robust even
at large sizes and relatively high intensities of the noise,
resulting in a final squeezing almost equivalent to that
obtained via the adiabatic process in the absence of noise
(full red triangles).

V. EFFECT OF QUANTUM NOISE

Recently, techniques in evolving interactions of spin
ensembles with nano-mechanical resonators have investi-
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FIG. 4: (Color online) Squeezing £2 as a function of the col-
lective cooperativity N7 in the case of one-axis twisting (blue
circles), optimal (red squares) and adiabatic (yellow solid line)
protocols with N = 30.

Inset: &2 as a function of N7 for the one-axis twisting
(blue circles) compared to the optimized pulse obtained at
N7 = 10° (full square) and applied for different values of the
cooperativity (empty squares).

gated the possible implementation of the one-axis twist-
ing protocol, showing comparable results to ours in a
similar range of the collective cooperativity [30].

Finally we discuss a noise model suitable for the de-
scription of QED experiments [6], in which the effect of
the noise is treated through the formalism of the mas-
ter equation. In cavity QED, relaxation of the atomic
levels towards the ground state and leakage of photons
outside the cavity are the most relevant source of dissi-
pation [4]. In order to estimate the effect of the noise in
a realistic system, we derive the Hamiltonian of Eq. (1)
from a microscopical model. We consider a collection
of N three level atoms with two stable ground states
|a) and |b) and an excited state |e), in an optical cav-
ity; the ground state energy splitting is given by wap
and the relevant cavity mode has a frequency wg. The
stable ground state |a) (|b)) is coupled to the excited
state with a Rabi frequency 27 (£22) and a frequency
w1 (w2) which is detuned from the excited state by A,
(Ag). In the regime of weak laser power, the excited
level is almost not populated and it can be adiabatically
eliminated, leading to an effective photon-mediated in-
teraction between the two ground state levels |a) and
|b). By introducing the total angular momentum op-
erators J, = ZIJCV:l la) (blg, J- = Zgzl |b)k{alr and
J, = (Zgzl la)r{alr — |b)k(b|i)/2, and by further assum-
ing the strength of the two Raman processes to be iden-
tical, Q195 /A1 = Qagl /Ao = Qg* /A, after adiabatically
eliminating also the cavity field, we obtain the following
master equation for the density matrix [33]:

p=—i[Heyss,p|l + Lp, (4)

with unitary part given by
HeffZWJz"‘XJia (5)

where x = [Q]?|g|?/6A% and § = w; — wy — Wap, and
nonunitary part described by the Linbladian

Lp = A2 pJ ™ =T Jp—pJ~JT], (6)

where, from a microscopical derivation of the model, the
most relevant contribution to the relaxation rate is ¥ =

x(t)v6/|g?.

VI. EXPERIMENTAL IMPLICATIONS

As discussed above, the Hamiltonian Eq. (1) is relevant

e.g. for the experiment of Ref. [6]. Here, squeezing of the
collective spin of atoms in a cavity is used to improve
the measurement precision of an atomic clock. With a
realistic estimate of the parameters [6] we have A = 780
nm ~ 3-10" Hz, § ~ 27 -3 GHz, v ~ 27 -5 MHz,
g ~ 27 -0.4 MHz, k ~ 27 -1 MHz. The dominant part
for the relaxation is thus proportional to the intensity
of driving field x with a proportionality constant given
by 76/|g|> ~ 10°. Our estimate of relaxation rate can
be also expressed in terms of cooperativity n = g2/(vk),
leading to 4 = x(t)d/(2kn), where k is the decay rate of
the cavity. In Fig. 4 the squeezing parameter is shown as
a function of the collective cooperativity Nn, for a system
of size N = 30. We compare optimized results directly
obtained for different values of the cooperativity with val-
ues achieved with the one-axis twisting protocol which is
known to be robust with respect to noise. We found that
for values higher than N7 = 10* we can achieve better
results for the squeezing parameter improving further as
the value of the cooperativity gets increased, a behavior
we observe also in simulations with different N.
Additionally, we compared the results of the optimized
pulses with the adiabatic protocol of Sgrensen and
Mpglmer [17] which achieves optimal squeezing for long
time-scales and high cooperativities. In Fig. 4 some com-
parative results of the adiabatic protocol are shown. Fur-
ther results of our simulations have shown that with op-
timized pulses the same results are achievable as with
the adiabatic protocol at a cooperativity seven orders of
magnitude higher. This is a large improvement towards
optimal squeezing at practical accessible values of the co-
operativity.
The inset of Fig. 4 displays the stability of of a cer-
tain optimal pulse in the high-noise regime. Here we
used the pulse obtained for a cooperativity of Nn = 10°
and applied it for a wide range of different values of
Nn. Throughout these values the same optimal pulse
improves the squeezing in comparison to the one-axis-
twisting protocol.



VII. CONCLUSIONS AND OUTLOOK

We have shown that optimal control can be used to
speed up the dynamics for the production of squeezing
with an additional improvement in the scaling of the
preparation time as a function of the system size. Also we
have demonstrated that optimized evolutions scale better
with noise than the one-axis twisting protocol providing
the best values of squeezing known in this context. In
fact, in comparison with the adiabatic protocol, we were
able to achieve maximally squeezed states a lot more ro-
bust with respect to the noise than with the adiabatic
protocol. The implementation of optimized protocols in
spin squeezing experiments could therefore have a great
impact in the field of quantum metrology. The imple-
mentation of closed-loop optimal control strategies might
result in additional improvement [31]. Finally, applica-
tion of the present methods demonstrated here to more
complex spin squeezing schemes [5], as well as adiabatic
quantum computation in the presence of decoherence,
can also be envisioned.
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APPENDIX: MICROSCOPICAL DERIVATION
OF THE MODEL

We consider a collection of IV three level atoms with
two stable ground states |a) and |b) and an excited state
le) in an optical cavity as done in. [4]. The ground state
la) (]b)) is coupled to the excited state with a Rabi fre-
quency Q7 () and a frequency w; (ws), detuned from
the excited state by Ay (Asz). The laser frequencies are
chosen such that their difference is equal to twice the
ground state energy splitting, i.e. w; — wo = 2wgp. With
this choice all single atom transitions are off-resonant and
atoms can only be excited in pairs. The pairwise exci-
tation of atoms is made possible by the presence of a
quantized field inside the cavity coupling both states |a)
and |b) to the excited state |e) with coupling constant
ga and gy, see Fig. 5b for the transition path involving a
double Raman process.

Assuming that all fields are propagating in the same di-
rection, the Hamiltonian is:

H = wOCTC + waezee + wabzbb +
9] .
[(éefw + 9a€) Sea +

Q
( 22 —7,0.1215 + gbc> Eeb + h.C.], (7)

where X;; = Zgzl i)k (j|x are collective operators acting
on the N atoms.

In order to estimate the effect of the noise, we compute
the equation of motion for the ground state coherence
Yab = J4+. The corresponding equation of motion takes
the following form in a frame rotating at laser frequencies
(H— H):

S ~ 93]
iYap = [Sap, H] = _72(1) +grcfemiotn ) _

- Q3
ce“StEﬁ) + 7221(122 — i702q + (Langevin force),
where g is the dephasing rate of the ground state co-
herence, index 1(2) refers to left(right) Raman process in
Fig. 5b, and the Langevin force (L.F.) term ensures the
commutation relations of the operator. Analogously we

can derive the equation of motion for the cavity field:
¢ = —ile,H] =

—igre=tnll) _ ke + (LF.), (8)
with x being the decay rate of the cavity.

In a regime of weak laser power, the excited level is
almost not populated and it can be adiabatically elim-
inated. Therefore in such a regime where |Q?/4 <
A? 4 ~2 with ~ indicating the total decay rate of the ex-
cited state |e), we can set X.. ~ 0 and Sea 13 = 211)22) =0.
With these assumptions the equation of motion for the
polarization becomes:

i = 7&1_ZW/A1 [

* —16t2(2)

i

—2a

2 A b
1+4+idv/A Q

+ gpcle ”‘”721/ L |:—212aa

st L —iv/Ag
Ao

Q1 +in/As [ 12

- A _720, — Ya ‘ Eaa

5 A, b — GaCE

2
— i’onab + (LF),

that is, separating the unitary part from the dissipative
one

Z-Sab = [Eaby ﬁ/]
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+ (L.F) (9)
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2 QP | lgal 02> gol® &
H = — | - Yaa — _— )
( + Hal ofe 1A, + A cfe bb
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(2 1gbce —|—2 2g ce > (10)




which corresponds to Eq. (A1) of Ref. [4]. The first
line of previous equation represents ac-Stark shifts of the
ground state: the classical part (proportional to Q’s) can
be compensated making a change in the frequency of the
fields; the part containing the quantum cavity field is
much smaller than the first one and can be neglected in
the limit g?/6A < 1, see Ref. [4]. Notice that in this
limit the part of the dissipation proportional to cfc can
be also neglected.

In a regime in which the lasers are sufficiently weak and
we are not creating a significant number of photon excita-
tions, the cavity field can be also adiabatically eliminated

d 0t o d )
0= (Cit ) _ ezétaT; +i(5C616t,
using Eq. (8)
; 1 gp$h
it b
~ — Yba
c 5+m{2(A1—m) b
9afla
—=2 =¥, 11
oA 0] (11)

where we are keeping only the Oth-order terms in the
cavity field c¢. Notice that this equation corresponds to
Eq. (A3) of Ref. [4]. Therefore inserting Eq. (11) in
Eq. (9) and assuming the strength of the two Raman pro-
cesses to be identical (Qq1g;/A1 = Qagl /Ay = Qg*/A),
so that

; 1—1ik/6 Qg*
Wt
«“ = 5 2A

(Eab + Z:ba) (12)

we obtain

. ~ ) Q2 Q2
Zzab:[zabaHeff} - Z(’YO"'_’Y | +,7| | )Zab

4A2 4A2
7 19?9
+ ZK 2A26 N(Eab—FEba) (13)

where we used Xy, + Xpe ~ N and

5 19Pl
el T Y5 A2

[Eabzab + Ebazba + EabEba + 2baEab] .

Finally we can introduce the total angular momentum
operators J; = g, J- = Tp, and J, = (Zaa — Zep) /2,
and the quantity x = |Q|?|g|?/dA? so that previous ex-
pressions become:

iJy = [J4,Heyy]

with the Langevin force term (L.F.) ensuring validity of
the commutation relations for J4, and

Hepp = xJ3. (15)
le>
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FIG. 5: a) Top panel: Energy levels and couplings. b) Bottom
panel: transition path involving a double Raman process.

With a realistic estimate of the parameters [6] we have
A =78 nm ~ 3-10* Hz, § ~ 27 -3 GHz, v ~ 27 -5
MHz, g ~ 27-0.4 MHz, x ~ 27-1 MHz, so that we obtain
for the imaginary part of Eq. (14) v§/|g|> ~ 10° and
YN/A ~ 10~"N. The dominant part for the relaxation
is thus proportional to the intensity of driving field x
with a proportionality constant given by vd/|g|* ~ 10°,
so that we can set in the master equation for the density
matrix § = x(t)yd/|g|?, as discussed in the main article.
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