
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Effect of experimental parameters on optimal reflection of
light from opaque media

Benjamin R. Anderson, Ray Gunawidjaja, and Hergen Eilers
Phys. Rev. A 93, 013813 — Published 11 January 2016

DOI: 10.1103/PhysRevA.93.013813

http://dx.doi.org/10.1103/PhysRevA.93.013813


Effect of Experimental Parameters on Optimal Reflection of Light from

Opaque Media

Benjamin R. Anderson1, Ray Gunawidjaja1, and Hergen Eilers∗1

1Applied Sciences Laboratory, Institute for Shock Physics,

Washington State University, Spokane, WA 99210-1495∗

(Dated: December 8, 2015)

Previously we considered the effect of experimental parameters on optimized transmission through
opaque media using spatial light modulator (SLM) based wavefront shaping. In this study we
consider the opposite geometry in which we optimize reflection from an opaque surface such that
the backscattered light is focused into a spot on an imaging detector. By systematically varying
different experimental parameters (genetic algorithm iterations, bin size, the SLM active area, target
area, spot size, and sample angle with respect to the optical axis) and optimizing the reflected light
we determine how each parameter affects the intensity enhancement. We find that the effects of
the experimental parameters on the enhancement are similar to those measured for a transmissive
geometry, but with the exact functional forms changed due to the different geometry and the use of
a genetic algorithm instead of an iterative algorithm. Additionally, we find preliminary evidence of
greater enhancements than predicted by random matrix theory suggesting a possibly new physical
mechanism to be investigated in future work.

PACS Codes: 42.25.Dd, 42.25.Bs, 42.25.Fx, 05.60.-k

I. INTRODUCTION

In 2007 Vellekoop and Mosk demonstrated the
ability to focus light through an opaque medium us-
ing wavefront shaping via a liquid crystal on silicon
spatial light modulator (LCOS-SLM) [1]. This ex-
perimental observation was the first demonstration
of Freund’s 1990 prediction that wavefront shaping
could be used to control the optical properties of
opaque media [2]. After Vellekoop and Mosk’s suc-
cess with focusing light through a scattering sys-
tem, the technique of wavefront shaping has been
applied to numerous applications, including: con-
trol the spatio-temporal characteristics of random
lasers [3–6], enhance fluorescence microscopy [7–9],
achieve spectral control of a broadband light source
[10–13], compress ultrashort pulses [14, 15], con-
trol polarization [16, 17], achieve perfect focusing
[7, 18], phase conjugation of fluorescence in tur-
bid tissue [19], tunable beam splitters [20], spatial
control of second-harmonic light [21, 22], control of
single-photon Fock-state propagation [23], control
of photocurrent in disordered photovoltaics [24], fo-
cusing through dynamic tissue [25], improving free-
space optical communication [26], image projection
through disordered media [27], three dimensional
microscopy [28], improved optical coherence tomog-
raphy [29], creation of an ultrafast nanophotonic
switch [30], optical control of excitation waves in car-
diac tissue [31] and enhance astronomical/biological
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imaging [32–34] (with further improvements to bi-
ological imaging developed using the supplemen-
tary technique of photoacoustic wavefront shaping
(PAWS) [35–41]). In addition to these different ap-
plications, the technique of wavefront shaping to
control the optical properties of opaque media has
been proposed as a viable implementation method
for optical physically unclonable functions [42–47].

In general, physically unclonable functions
(PUFs) are systems with a large number of ran-
domly distributed degrees of freedom such that it
is practically impossible to reproduce the system,
thus making them unclonable [42, 44, 48–50]. This
random distribution can be interrogated using dif-
ferent techniques (electrical signals, acoustic waves,
optical waves, etc.) to produce a unique signature
which corresponds to the system’s specific realiza-
tion of disorder. In an ideal PUF any change to the
random distribution will result in the unique sig-
nature changing, thus giving evidence of a differ-
ent distribution. These properties – irreproducibil-
ity and unique signatures – make PUFs attractive in
the fields of secure authentication and cryptography.

In the case where optical techniques are used to
probe the system, the PUF is known as an optical
physically unclonable function (O-PUF). The most
common O-PUF is a scattering system, such as a
nanoparticle (NP)-doped solid matrix. In these sys-
tems the position of all the scatterers are the de-
grees of freedom and any change to the NP positions
will result in a different optical signature. To date,
the majority of research on O-PUFs has focused
on passive determinations of the O-PUF’s optical
signature, with the primary method being to mea-
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sure the speckle pattern of a laser beam scattered
from/through the PUF [49, 51–55]. In this technique
the speckle pattern (or a mathematical transforma-
tion of the pattern [49]) becomes the unique optical
signature.

While the passive method of measuring the PUF’s
speckle pattern is a strong method of authenticat-
ing a PUF’s veracity, an additional layer of security
can be introduced by utilizing wavefront shaping,
which in essence turns the PUF into a “lock” and
the shaped wavefront into a “key”. Only by probing
the correct PUF with the correct key will a predeter-
mined optical response result. Typically this optical
response is a focused spot on a detector with any
other wavefront (or PUF) resulting in a speckle pat-
tern on the detector [42–44, 46].

In order to successfully implement wavefront shap-
ing as a probe of an O-PUF for secure authentica-
tion we must first understand the underlying fac-
tors which impact the system’s performance. To
this end we previously considered how different ex-
perimental parameters effect optimal transmission
through opaque media and developed a wave propa-
gation model to describe the observed experimental
dependancies [45]. While optimized transmission is
one method for implementing O-PUFs, an alterna-
tive method is to use optimized reflection. In op-
timized reflection both the optical probe and corre-
sponding response share the same optical path, with
the optical response reflected back from the O-PUF.
This geometry is advantageous, as it is not always
possible to place a detector in a position to measure
transmission through the O-PUF, but it is simple to
measure the reflected light.

Given that the reflective geometry is beneficial for
implementing O-PUFs, we previously used it to mea-
sure the stability of the wavefront-sample coupling
under sample translation and rotation [47]. These
measurements used image correlation coefficients to
determine how sensitive the wavefront-sample cou-
pling was to the sample being moved. However,
the influence of different experimental parameters
on the optimization efficiency for the reflective ge-
ometry has yet to be explored. Therefore, in this
study we consider the influence of different exper-
imental parameters on optimizing reflection from
opaque media. These parameters include number
of algorithm generations, bin size, active SLM area,
target area, sample position along the optical axis,
and sample angle. We find that while the optimiza-
tion efficiency’s dependence on these experimental
parameters is similar to the dependencies found in
our study on the transmissive geometry using an it-
erative optimization algorithm, there are unique dif-
ferences due to the reflective geometry and use of a
genetic algorithm.

II. BACKGROUND

Before discussing our current experiments in a re-
flective geometry, we first provide an overview of
previous work on optimized transmission to pro-
vide a context for the various parameters, metrics,
and models used. The first experimental study on
wavefront shaping to optimize transmission of light
through an opaque media was performed in 2007
by Vellekoop and Mosk in which they focused light
transmitted through a TiO2 sheet into a focal point
[1]. In their study they defined the metric of opti-
mization to be the intensity enhancement η, which
is given by [1, 56]

η ≡
I

〈I0〉
, (1)

where I is the intensity in the target area after op-
timization and 〈I0〉 is the average intensity in the
target area before optimization. Using an opti-
cal analogue to electron conduction in a disordered
wire based on random matrix theory (RMT)[57–61],
Vellekoop and Mosk predicted that the ideal inten-
sity enhancement is given by

η =
π

4
(N − 1) + 1, (2)

where N is the number of modulated wavefront seg-
ments. Note that Equation 2 only depends on the
number of modulated wavefront segments and pre-
dicts that the enhancement should be independent
of sample properties and system parameters [62].
After Vellekoop and Mosk’s study, further re-

search on optimized transmission was performed and
a wide array of different enhancements was obtained
for similar numbers of modulated wavefront seg-
ments [1, 16, 17, 63–66]. Initially these discrepancies
were posited to be due to system noise and sample
persistence time [56, 67], where the persistence time
Tp, is defined as the time during which a sample’s
speckle pattern remains unchanged – typically on
the order of hours for solid systems and miliseconds
for liquids and living tissue [1, 56, 68].
In order to correct for the effect of persistence

time, Vellekoop and Mosk modeled an iterative op-
timization algorithm using RMT and found that the
modified enhancement is given by [56]:

η ≈
π

4N

(

1− e−NTi/(2Tp)

eTi/(2Tp) − 1

)2

, (3)

where Ti is the time for one algorithm iteration to
complete. In the limit of infinite persistence time
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Equation 2 and 3 only differ by an offset factor, while
in the limit of small persistence times Equation 3
approaches zero.
Using a similar modeling approach to Vellekoop

and Mosk, Yilmaz et al. modeled the effect of noise
on optimization and predicted that the enhancement
in the presence of noise behaves as

η =
π

4
N

(

1−
N

R2

)

, (4)

where R is the signal-to-noise ratio of the system.
Based on Equations 3 and 4 we would expect that

the enhancement would only depend on the num-
ber of modulated segments, persistence time, itera-
tion time, and the signal-to-noise ratio of the system.
However, recently we performed an extensive study
of the effect of different experimental parameters on
the enhancement and found that the bin size b, num-
ber of phase steps M , active SLM area L2, target
radius r, and spot size d all affect the enhancement
[45]. While there is no closed form expression for the
enhancement as a function of all five variables, the
enhancement as a function of the number of bins is
found to follow

η = 1+ η0

[

1− e−N/N0

]

, (5)

where 1+ η0 is the asymptotic enhancement and N0

is the 1/e number of bins. Note that both η0 and
N0 depend on the other four parameters.
Given the drastic difference between previous

models of optimized transmission and the experi-
mentally measured enhancement as a function of
the different experimental parameters, we developed
an alternative model to describe the observed ef-
fects which is based on wave propagation of a Gaus-
sian beam with a random phase front. This model
is called the random phase Gaussian beam model
(RPGBM). Initially, we modeled the effect of an
opaque sample as adding a random phase front to
a Gaussian beam, but neglected scattering effects to
the beam’s intensity profile at the exit surface of the
sample, which lead to some discrepancies between
the RPGBM and experiments [45]. To correct for
these shortcomings we later improved the RPGBM
by including RMT modeling to describe the effect
of the sample on the incident beams amplitude and
phase [47].
While the RPGBM was initially formulated to

model how different experimental parameters affect
optimization of transmission through opaque media,
it should be noted that there is a symmetry between
transmission and reflection in which both the trans-
mitted and reflected fields should behave similarly

during wave propagation from the sample surface.
This symmetry implies that the predictions of the
RPGBM should be independent of whether we per-
form optimized transmission or reflection. However,
as we will see below, the choice of optimization al-
gorithm and detector geometry does affect the pa-
rameter dependencies.

III. METHOD

To determine how different experimental param-
eters affect optimizing reflection we first prepare
ZrO2 NP doped polyepoxy nanocomposites to use
as our scattering media. These nanocomposites are
prepared as follows: first, spherical ZrO2 NPs are
synthesized by forced hydrolysis followed by cal-
cination at 600 ◦C for 1 hr [69]. The NPs are
then hydrophobized in a 1 vol% solution of n-
octadecyltriethoxysilane in toluene [70]. The hyro-
phobized ZrO2 NPs are then dispersed in solution of
bisphenol A diglucidyl ether (BADGE) and toluene,
with a BADGE concentration of 20 mg/ml and a
NP concentration of 10 wt%. Once mixed, the so-
lution is sonicated to aid in dispersal. Next, ad-
ditional BADGE is added to yield the desired ZrO2

concentration and the mixture is further sonicated to
achieve a homogenous mixture and then the toluene
is evaporated in vacuum. After mixing and evapo-
rating we add an equivalent amount of diethylene tri-
amine (DETA) curing agent and thoroughly mix the
mixture. Once mixed the mixture is poured onto a
1” × 1.5” glass slides and the nanocomposite coated
glass slides are placed in an 80 ◦C oven for 2 hours
with the resulting films having thicknesses of 1 –
3 mm and scattering lengths on the order of several
microns. Given that the sample thickness L, is much
greater than the scattering length we conclude that
our samples lie in the multiple scattering regime.
In order to optimize reflection from the samples

we use an LCOS-SLM based wavefront optimization
system in a reflection geometry, shown schematically
in Figure 1. The system consists of a Coherent Verdi
V10 Nd:YVO4 CW laser, a Meadowlark (formerly
Boulder Nonlinear Systems) LCOS-SLM, a Mitu-
toyo 20× high working distance objective, a Thor-
labs DCC1545 monochrome CMOS camera, and var-
ious focusing and polarization optics. To control
sample alignment, we mount the sample on a custom
sample holder connected to a Thorlabs translational
stage and Newport rotation stage. Optimization is
controlled using a feedback loop between the SLM
and CMOS detector with the optimization algorithm
being a simple genetic algorithm [71].
When considering the effects of different experi-

mental parameters on optimized reflection we chose
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FIG. 1: (Color Online) Schematic diagram of
reflective geometry optimization setup. BD: Beam
dump, L1: 40 mm lens, L2: 150 mm lens, BS1:

90:10 beamsplitter, BS2,BS3: 50:50 beamsplitter,
HWP: half-waveplate, P: Polarizer.

the six main parameters: number of algorithm gen-
erationsG, bin size b, active SLM area L2 [72], target
area A = πr2, where r is the target integration ra-
dius, sample position along the optical axis z, and
sample angle relative to the optical axis θ. See Fig-
ure 2 for a schematic of the experimental geometry
showing both z and θ. Using these six parameters
we determine their effects on optimized reflection by
performing optimization while varying one parame-
ter at a time and holding all other parameters fixed.
In order to determine some of the covariant depen-
dencies of the enhancement on the parameters, we
perform the optimization experiments using several
different parameter configurations in which a second
parameter acts as a sub-variable, e.g. measuring the
enhancement as a function of sample angle for three
different sample z positions.

At this point we note that while in this paper
we report results from ZrO2 NP doped polyepoxy,
the dependence of the enhancement on experimen-
tal parameters is applicable for any scattering sam-
ple. While not discussed here, our measured depen-
dencies are found to be consistent for other scat-
tering samples including: paper, polyurethane with
dispersed NPs, Y2O3 ceramics, and ground glass.
Additionally, while we use specific hardware (e.g.
lenses, camera, SLM) for our experiments, the mea-
sured parameter dependencies should be indepen-
dent of the hardware used, with the hardware only
influencing the precise values of fit parameters. This
universality is due to our results being found to arise
from wave propagation and scattering from disor-
dered media, which are general phenomenon appli-
cable in a wide range of experimental configurations.

FIG. 2: (Color Online) Schematic of experimental
geometry parameters with the Gaussian beam

envelope overlaid. The angle θ is measured relative
to the optical axis and the distance z is measured

relative to the focal point.

IV. RESULTS AND DISCUSSION

A. Number of Algorithm Generations

While we previously used an iterative algorithm
(IA) to optimize transmission through opaque media
[45], in this study we use a simple genetic algorithm
(SGA) [71] as it is both faster and more resistant
to experimental noise than the iterative algorithm.
One of the main differences between the IA and SGA
is that the IA uses discrete phase steps, while the
SGA is a stochastic algorithm that uses randomly
generated phase values that are not discretized [71].
This means that the number of phase steps M , con-
sidered previously in our transmission study, is no
longer a valid parameter for testing. Instead the
SGA admits a new parameter, which is the number
of algorithm generations G.
To measure the effect of the number of algorithm

generations on the enhancement we use the full SLM
area (L = 512), place the sample surface at z = 0
(giving a spot size of d = 1 µm), use an integration
radius of r = 2, a sample angle of θ = 0, and six
different bin sizes corresponding to total number of
bins of N = {16, 64, 256, 1024, 4096, 16384}. Figure
3 shows the enhancement as a function of the num-
ber of generations for different total number of bins,
with the enhancement found to follow a stretched
exponential function given by,

η(G) = 1 + η0

[

1− e−(G/G0)
β
]

, (6)

where 1 + η0 is the asymptotic enhancement, G0 is
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FIG. 3: (Color Online) Enhancement as a function
of iteration for different bin numbers.

TABLE I: Fit parameters from Equation 6 for
different bin numbers. While the asymptotic

enhancement and stretch parameter are found to
vary with the number of bins, the width parameter
is found to be consistent for all bin numbers with

an average value of G0 = 1.32(±0.40)× 105.

N 1 + η0 β
16384 20000 ± 10000 0.7315 ± 0.0067
4096 11300 ± 5400 0.6760 ± 0.0071
1024 3100 ± 1200 0.5400 ± 0.0082
256 630 ± 170 0.3930 ± 0.0074
64 137 ± 26 0.2852 ± 0.0066
16 16.9 ± 1.1 0.115 ± 0.014

the 1/e number of generations, and β is the expo-
nential stretch parameter. Fitting the data in Figure
3 to Equation 6 we determine the fit parameters for
each total number of bins, which are tabulated in
Table I and displayed in Figure 4 as a function of
the number of bins.
From Figure 4 and Table I we find that the asymp-

totic enhancement as a function of the number of
bins follows a simple exponential given by

1 + η0 = ηM

[

1− e−N/N0,a

]

, (7)

where ηM is the maximum enhancement attainable
(e.g. enhancement as both G and N go to infinity)
andN0,a is the 1/e number of bins for the asymptotic
amplitude. Fitting the asymptotic enhancement in
Figure 4 to Equation 7 we find that ηM = 21096±
395. Additionally, from Figure 4 and Table I, we

FIG. 4: (Color Online) Asymptotic enhancement
and stretch parameter as a function of different
number of bins. The asymptotic enhancement is
found to behave as a simple exponential function
and the stretch parameter behaves as a stretched

exponential given by Equation 8.

find that the exponential stretch parameter follows
a stretched exponential given by,

β(N) = β0

[

1− exp

{

−

(

N

N0,b

)1/3
}]

, (8)

where β0 is the asymptotic stretch parameter and
N0 is the 1/e number of bins. Fitting the stretch
parameter in Figure 4 to Equation 8 we determine
that β0 = 0.7564± 0.0081 and N0,b = 343± 36.
Based on these results we conclude that partition-

ing the SLM into smaller and smaller bins quickly
reaches a point of diminishing returns, where fur-
ther partitioning leads to only minor increases in
the enhancement. This can be seen as the asymp-
totic enhancement and stretch parameter are both
near their maximal values for N = 16384. On the
other hand we find that the number of generations
remains very important out to large values of G.
Namely, the 1/e number of generations from Fig-
ure 3 is found to be G0 = 1.32(±0.40)× 105 which
is over 1000× larger than the maximum number of
generations used in this study.
The last major finding when considering the effect

of the number of iterations, is evidence of an ap-
parent violation of the maximum enhancement pre-
dicted by random matrix theory [1]. To demonstrate
this violation we plot the asymptotic enhancement
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FIG. 5: (Color Online) Asymptotic enhancement
fit curve and enhancement prediction from Ref [1].

and the RMT predicted enhancement as a function
of the number of bins in Figure 5. From Figure 5
we find that for bin numbers below approximately
N = 28000 the asymptotic enhancement is greater
than the enhancement predicted by Equation 2, im-
plying that the predicted RMT enhancement is in-
correct.

While this finding may be evidence for new and
unexplored physics, there are several possible alter-
native explanations. Firstly, we must note that we
are comparing the RMT enhancement to the asymp-
totic enhancement determined by fits to the data
in Figure 3, meaning that rather than measuring
a direct enhancement violation, we are extrapolat-
ing from currently measured data. Therefore there
is a possibility that the enhancement at large num-
bers of generations could diverge from Equation 6,
which would make the current asymptotic enhance-
ment invalid. Ideally to test this possibility we would
perform an optimization run with over 105 genera-
tions to see how the enhancement behaves. How-
ever, this possibility is difficult to test as experimen-
tal noise and sample decoherence effects are found to
become important after approximately 1000 genera-
tions, meaning that separating the effects of noise
and decoherence from the underlying behavior is
complicated. To get around issues of noise and
sample decoherence we are performing optimization
modeling with the genetic algorithm for large num-
bers of generations to determine if the functional be-
havior remains the same. Additionally we are work-
ing on accelerating the overall speed of the optimiza-

tion system in order to allow more generations to be
run before sample decoherence begins to be a major
factor on the enhancement.

Another possible explanation to the enhancement
violation is that the fundamental assumptions of
the RMT enhancement prediction maybe violated
in our system, thus making the comparison invalid.
Therefore it is necessary to check the validity of
these assumptions, which include: (1) the sample
is disordered such that the reflection matrix coeffi-
cients rmn, are statistically independent and obey
a circular Gaussian distribution (2) all segments of
the phase modulator contribute equally and (3) the
number of segments N is much less than the number
of mesoscopic channels [1, 56, 57, 59, 73, 74]. Imme-
diately we know that assumption 3 is not violated
as the anomalous enhancement is seen at small N
rather than large N . Assumption 2 is most likely
violated in our system as we use a TEM00 Gaus-
sian beam for our coherent source which has a spa-
tially varying intensity. This spatial variation will
change the contribution of different SLM bins based
on their position. However, a violation of assump-
tion 2 should produce a smaller enhancement, not
a larger value. Finally, the validity of assumption
1 is more difficult to ascertain as it requires mea-
suring the reflection matrices of a large number of
different configurations of disorder to determine the
statistical properties of the matrices. In order to de-
termine whether or not assumption 1 is violated we
are currently planning the necessary experiments to
determine the reflection matrices of a wide array of
different configurations of disorder [75].

The final possible explanation for the anomalous
enhancement is that there are other factors that
affect the enhancement which are not considered
within the RMT model of optimization. These in-
clude noise [45, 56, 67, 71], sample persistence time
[1, 56, 67, 71], and experimental configuration [45].
While these effects are not considered by RMT, they
are found – in the case of optimized transmission –
to decrease the attainable enhancement and not im-
prove it, which makes them appear to be poor can-
didates for the increased enhancement. However,
there is a subtle difference between optimization of
reflection and transmission, which may account for
the increased enhancement.

In the case of the transmissive geometry the inci-
dent light couples into different transmission chan-
nels of the disordered system, such that the light
exiting the sample is wholly determined by the
transmission matrix. To optimize transmission to
a specific mode requires shaping the incident wave-
front such that the transmission matrix elements are
matched to couple light into a target exit mode. In
the ideal case of a perfectly shaped incident wave-
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front, the wavefront completely couples with the
transmission matrix to give optimal transmission
into the target mode. However, in reality experi-
mental limitations (SLM size, pixel size, SLM effi-
ciency, objective numerical aperture, etc.) make the
overlap of the experimental and optimal wavefront
imperfect [62, 76, 77].
For the reflective geometry, optimization is similar

to the transmissive case, but with one key difference.
While the transmitted light from a disordered me-
dia is fully determined by the transmission matrix,
in reflection there is a small amount of light which
is ballistically reflected from the surface of the sam-
ple due to fresnel reflection (≈ 5%) and therefore
does not depend on the reflection matrix of the dis-
ordered system. As this light is not confined by the
reflection eigenchannels of the disordered medium,
it is possible to couple a large portion of the ballisti-
cally reflected light into the target area giving an en-
hancement greater than predicted by RMT (which
ignores the ballistically reflected light). To better
understand this effect and determine if it indeed ex-
plains the observed enhancement violation we are
performing modeling using the RPGBM model with
the inclusion of a small ballistically reflected wave-
front in addition to the diffuse reflected light from
the disordered sample.

B. Bin Size

Using the results of the enhancement as a func-
tion of generation for different numbers of bins we
determine the effect of bin size on the enhancement.
Figure 6 shows the enhancement as a function of the
inverse bin size for G = {30, 60, 90, 120} algorithm
generations with the measured enhancement found
to follow a stretched exponential function

η = 1 + η0

[

1− exp

{

−

(

b0

b

)4/3
}]

, (9)

where 1 + η0 is the asymptotic enhancement and b0
is a width parameter.
Fitting the data in Figure 6 to Equation 9, we

determine the asymptotic enhancement and the bin
size parameter for each different number of genera-
tions with the results tabulated in Table II. From
table II we find that as the number of generations
increases the asymptotic enhancement increases and
the width parameter decreases. The decrease in the
width parameter with increasing number of gener-
ations corresponds to more bins being required to
achieve the asymptotic enhancement. This means
that more bins can be utilized before the enhance-

FIG. 6: (Color Online) Enhancement as a function
of number of bins, which is found to be fit by a

double exponential function.

TABLE II: Fit parameters from Equation 9 for the
intensity enhancement as a function of bin size.

G 1 + η0 b0
30 42.5 ± 1.4 9.71 ± 0.90
60 67.5 ± 2.3 7.84 ± 0.91
90 94.5 ± 2.8 6.83 ± 0.53
120 117.6 ± 3.6 6.08 ± 0.57

ment saturates, which leads to greater possible en-
hancements.These results are consistent with Figure
3 where the enhancement is shown to increase with
number of generations and the effects of decreasing
bin size are more pronounced for larger numbers of
generations.

These results are consistent with previous mea-
surements of optimized transmission using a genetic
algorithm – where the enhancement behaved as a
stretched exponential as a function of bin numbers
[71] – suggesting that the reflective geometry does
not influence how the bin size affects the optimiza-
tion. While there is consistency between optimized
reflection and transmission using a genetic algo-
rithm, the results differ from optimized transmission
using an IA, which behaves as a single exponential
[45]. This implies that the difference in the optimiza-
tion’s dependence on bin size is due to the algorithm
and not the geometry.
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TABLE III: Fit parameters from Equation 10 for
the intensity enhancement as a function of active

area.

r 1 + η0 ∆L
2 105.9 ± 3.6 24.63 ± 0.54
20 60.9 ± 2.5 25.38 ± 0.53
40 28.9 ± 2.6 27.2± 2.2

C. SLM Cropping

Along with the bin size determining the total num-
ber of bins, the active side length L, of the SLM also
changes the number of active bins. To measure the
enhancement’s dependence on the active side length
we use a spot size of d = 1 µm, a bin size of 8 px,
an angle of θ = 0, 120 generations, and three differ-
ent target radii r = {2 px, 20 px, 40 px}. Figure
7 displays the enhancement as a function of active
side length for different target radii, with the en-
hancement found to follow a super-Gaussian of the
form,

η = 1 + η0

[

1− exp

{

−

(

L

∆L

)4
}]

, (10)

where 1 + η0 is the asymptotic enhancement and
∆L is a width parameter. We note that Equation
10 is functionally identical to the form observed for
the transmission geometry, which is to be expected
due to the symmetry of wave propagation between
reflection and transmission. Fitting the data in Fig-
ure 7 to Equation 10 we determine the fit parameters
for the three different target radii, with the results
shown in Table III. From Table III we find that
as the target radius decreases the asymptotic en-
hancement increases and the Gaussian width is con-
stant within experimental uncertainty. While the
enhancement increase with decreasing target radius
is expected, the observation of the width parameter
remaining constant with target radius is unexpected
and different to the behavior observed in the trans-
mission geometry [45].

In the case of optimizing transmission through
opaque media, a strong inverse relationship between
the target radius and the width in Equation 10
was observed. The inverse relationship between the
Gaussian width and spot size is due to the Fourier
relationship between the sample and detector planes
[45]. Upon initial consideration it seems intuitive
that the Fourier relationship between the sample and
detector planes should remain consistent between
the two geometries; however, we observe that this
is not the case.

FIG. 7: (Color Online) Enhancement as a function
of active side length. The enhancement is found to

scale exponentially with L4.

To understand this discrepancy we need to con-
sider the different operations of the IA and SGA.
The IA operates by sequentially optimizing each
pixel. This typically manifests in an optimization
curve in which the outer pixels have little influence
on the optimization, while the central pixels produce
the largest changes in the enhancement. With re-
gards to cropping, this method leads to the observa-
tion of the Fourier relationship between the cropping
width and target radius as each pixel is optimized
individually and only those within a certain width
contribute to optimization. However, in the case of
the SGA all pixels are optimized simultaneously such
that the Fourier relationship is not observed. This
simultaneous optimization leads to the target area
not influencing the cropping width. Note that in
case that the number of generations approaches G0

we would anticipate that the phase mask will start
approaching the same as found via the IA, resulting
in the Fourier relationship being recovered. To test
this prediction we are performing modeling in which
the number of generations is set to very large values.

D. Target Area

Thus far we have considered optimization param-
eters related to the SLM (bin size and cropping)
and overall operation of the SGA (number of gen-



9

FIG. 8: (Color Online) Enhancement as a function
of target area for different bin sizes and a spot size

of 100 µm.

erations). In addition to these parameters, the SGA
also depends on the target area being optimized on
the detector. We therefore consider the effect of
changing the target area on the enhancement. For
these tests we use 120 generations, the full SLM
(L = 512), an angle of θ = 0, three different bin
sizes b = {8 px, 16 px, 32 px}, and three different
spot sizes d = {1 µm, 100 µm, 400 µm}. Figure 8
shows the enhancement as a function of target area
for different bin sizes and Figure 9 shows the en-
hancement for different spot sizes. From both fig-
ures we find that the enhancement as a function of
target area behaves as the sum of two exponentials
given by

η = 1 + η1e
−A/A1 + η2e

−A/A2 , (11)

where η1 and η2 are the exponential amplitudes for
the slow and fast components, respectively, and A1

and A2 are the 1/e areas for the slow and fast compo-
nents, respectively. This functional form is identical
to that observed for the transmissive geometry. Us-
ing Equation 11 we fit the data in Figures 8 and 9
and tabulate the fit parameters in Table IV.
From Table IV we find that as the number of

bins increases the exponential amplitudes increase
and the 1/e areas behave non-monotonically by first
increasing when going from N = 64 to N = 256
and then decreasing when going from N = 256 to
N = 4096. The behavior of the amplitudes is ex-
pected as the enhancement increases with the num-
ber of bins. However, the behavior of the 1/e areas

FIG. 9: (Color Online) Enhancement as a function
of target area for different beam spot sizes and a

bin size of 8 px.

is unexpected given their behavior perviously seen
when in the transmissive geometry. In the case of
optimized transmission, the 1/e areas were found to
decrease with increasing number of bins, eventually
reaching a steady state value [45].
While more modeling and experiments are re-

quired to precisely determine the difference in the
1/e area behavior with bin number between the
transmission study and the current study, we note
that preliminary experimental results using the iter-
ative algorithm suggest that the increasing 1/e area
with number of bins is related to the use of a ge-
netic algorithm. To understand why the choice of
algorithm should influence the 1/e area we consider
the underlying physics of optimization as a function
of spot size.
When considering optimization of a speckle pat-

tern it is known that the average speckle size roughly
correlates with a single reflection (transmission)
mode [1, 73, 78]. Therefore when optimizing an area
on the order of a single speckle the optimization al-
gorithm works to couple light into a single exit mode.
As the target area increases the number of modes be-
ing optimized increases. This increase in the number
of modes being optimized results in the influence of
noise and sample decoherence being greater, leading
to a decrease in the possible enhancement for larger
areas.
Given the nature of the influence of sample de-

coherence on optimization (see Equation 3), we an-
ticipate that its influence will be more pronounced
as the total optimization time increases. For the it-
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TABLE IV: Fit parameters from Equation 11 for the intensity enhancement as a function of integration
area for differnet bin sizes and spot sizes.

d (µm) N η1 A1 (px2) η2 A2 (px2)
100 64 21.3 ± 3.0 2607.7 ± 1.4 18.3± 5.0 198± 1.5
100 256 46.4 ± 1.5 8760 ± 30 22.11 ± 1.45 970± 64
100 4096 56± 10 7638.8 ± 4.4 25.9± 5.4 925.3 ± 2.1
1 4096 64.69 ± 0.58 11110 ± 140 69.8± 6.6 1021± 13

100 4096 56± 10 7638.8 ± 4.4 25.9± 5.4 925.3 ± 2.1
400 4096 9.81 ± 0.58 2570.1 ± 1.5 68.35 ± 0.95 34.0± 2.8

erative algorithm the total optimization time scales
with N , while for the Genetic algorithm the total
optimization time is independent of N . Therefore
it makes sense that by increasing N the 1/e areas
should decrease for the iterative algorithm as the ef-
fect of decoherence and noise will be greater at larger
areas and longer times. However, for the Genetic
algorithm the increase in N does not influence the
optimization time, so the influence of decoherence
and noise is unchanged. Additionally, the increase
of N allows for greater coupling into multiple modes,
which results in the 1/e area increasing.
Along with measuring the effect of bin size on the

enhancement as a function of target area, we also
consider the effect of spot size on the enhancement’s
functional behavior. From Table IV we find that
there is an inverse relationship between the spot size
and the 1/e areas, which can also be seen in Figure
9 where the enhancement curves narrow as the spot
size increases. This effect arises due to the Fourier
relationship between the sample and detector planes.

E. Sample Position

Along with the SLM and detector parameters,
the enhancement is also influenced by changing the
beam-sample intersection. This is achieved by either
moving the sample along the optical axis or rotat-
ing the sample such that the reflection is no longer
normal to the surface of the sample. We begin study-
ing the effect of the beam-sample intersection on the
enhancement by considering the sample’s position
along the optical axis with the objective’s focal point
defined as z = 0. For these tests we use the full SLM
area, an angle of θ = 0, a bin size of 8 px, 60 genera-
tions, and three target radii of r = {2 px, 20 px, and
40 px}. Figure 10 shows the enhancement as a func-
tion of position along the optical axis with the beam
focal point defined as z = 0 and positive z positions
corresponding the the sample being closer to the lens
than the focal point. From Figure 10 we find that
the enhancement is not symmetric about the focal
point and that it peaks near the focal point. This
result differs from the transmissive case, in which

FIG. 10: (Color Online) Enhancement as a
function of translation along the optical axis

the enhancement was found to be symmetric about
the focal point and had its peak at positions away
from the focal point.

The mechanism of this difference in behavior be-
tween the two geometries is related to the position-
ing of the target objective. In the transmissive ge-
ometry the target objective remains at a fixed dis-
tance of one focal length from the sample such that
no matter the beam size incident on the sample
the transmitted light is collimated onto the detec-
tor. However, in the reflective geometry the fo-
cusing objective also acts as the target objective
such that the distance between the target objective
and sample changes when moving the sample. This
leads to the back scattered light having some di-
vergence/convergence from the objective for sample
positions other than z = 0, implying that the unop-
timized intensity in the target area depends on the
sample position. To demonstrate this we plot the
average unoptimized intensity in the target area as
a function of position in Figure 11.
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FIG. 11: (Color Online) Average background
intensity as a function of z position with a fit to

Equation 13.

To quantify the effect of the distance between the
sample and objective we use ray matrices [79, 80] to
determine the beam size at the detector plane. Us-
ing a simple model consisting of the reflected beam
traveling a distance x from the sample to an ob-
jective with focal length f , followed by propagation
over a distance L to the detector, we can determine
the beam size at the detector to be

wd =

[

1− L

(

1

x
−

1

f

)]

w0, (12)

where w0 is the initial beam width focused onto the
sample. Assuming that the power P0, is unchanged
with sample position we can write the background
intensity on detector as

〈I0〉 =
P0

πw2
d

=
P0

π
[

1− L
(

1
x − 1

f

)]2

w2
0

. (13)

Using Equation 13, we fit the average unoptimized
intensity in Figure 11 and find them to be in good
agreement.

Given that the average unoptimized intensity in-
creases drastically after the sample passes the ob-
jectives focal point, it is obvious that the enhance-
ment, which is inversely proportional to 〈I0〉, should
decrease as the sample is translated.

FIG. 12: (Color Online) Enhancement as a
function of sample angle for three different spot
sizes. The enhancement is found to be invariant

under translation for an angle of approximately 250
mrad (14.3◦).

F. Sample Angle

Finally, we consider the effect of the sample angle
on the enhancement. For these measurements we use
a bin size of 8 px, 120 generations, a target radius
of r = 2, the full SLM area, and three different spot
sizes d = {1 µm, 100 µm, and 400 µm}. Figure 12
shows the enhancement as a function of sample angle
for three different spot sizes, with the enhancement
found to follow a simple exponential function given
by

η = η0e
−|θ|/θ0, (14)

where η0 is the zero-degree enhancement and θ0 is
the 1/e angle. From Figure 12 we find that all three
enhancement curves intersect at approximately 250
mrad (14.3◦) and that the 1/e angle, tabulated in
Table V, increases with spot size. Both these re-
sults are unexpected, as our previous study on the ef-
fect of sample rotation on the wavefront-sample cou-
pling found that the wavefront-sample interaction is
more stable for smaller spot sizes [47]. These previ-
ous results would suggest that the 1/e angle should
decrease with increasing spot size, which would in
turn lead to the different enhancement curves not
intersecting, implying that there should be no iso-
enhancement angle.
In order to better understand and explain these
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TABLE V: Fit parameters from Equation 14 for
the intensity enhancement as a function of angle.

d(µm) η0 θ0(mrad)
1 129.7 ± 9.8 184.5 ± 5.7

100 69.3± 1.1 296± 9.1
400 53± 23 370± 46

effects we are currently in the process of performing
modeling using the modified RPGBM [47], with the
spot size and sample angle influence on the wave-
front taken into account. While further research is
underway to fully explain the influence of the sam-
ple angle on enhancement, one explanation of the
observed dependence is related to the nature of a
focusing Gaussian beam and scattering from an an-
gular surface.
When light backscatters from a scattering media

the light is not reflected in a collimated beam, but
is instead scattered with some angular distribution
f(φ; θ), where φ is the outgoing angle measured rel-
ative to the optical axis and θ is once again the angle
of the sample shown in Figure 2. Not only does this
distribution depend on the incoming and outgoing
angles, it also depends on the wavefront of the inci-
dent light. For a well collimated beam the wavefront
is relatively flat and all rays are parallel. This means
that when the beam scatters from the surface all rays
will follow roughly the same distribution, leading to
a tighter reflected pattern. However, when the in-
cident wavefront is not flat, with the different rays
either diverging or converging, the resulting reflected
pattern will have a wider angular distribution. This
observation is simplified when considering reflection
from a mirror: a collimated beam reflecting from a
mirror remains collimated, while a converging or di-
verging beam incident on the mirror will result in
the far-field beam diverging.
The end result of the wider angular distribution

is to allow more of the reflected light to be collected
as the angle θ increases. This result is once again
simplified by considering a mirror in place of the
sample. As the mirror is rotated the reflected beam
will eventually be rotated to the point where it no
longer reflects into the objective. However, for a
larger angular distribution, the angle at which the
beam misses the focusing objective is greater, giving
rise to a broader angular distribution as measured
by the detector.
These angular effects come into play when look-

ing at the different beam spot sizes, as a Gaussian
beam near its waist has a flat wavefront, while fur-
ther from its waist, where the spot size is larger, the
wavefront is converging. This difference in the inci-
dent wavefront as a function of spot size leads to the
observed behavior in the enhancement as a function

of sample angle.

G. Comparing Reflection and Transmission

We have thus far considered the influence of exper-
imental parameters on optimized reflection using a
simple genetic optimization algorithm. At this point
we summarize our results and make comparisons to
the results for the transmissive geometry [45]. Table
VI lists the enhancement’s dependencies on the dif-
ferent experimental parameters for the different ge-
ometries as well as the proposed mechanism leading
to different behavior between the two geometries.
From Table VI we find that the functional form of

the bin size dependence of the enhancement changes
between the transmission based study and the cur-
rent reflection based study. This difference is due to
using a different algorithm, as it has been previously
observed that a genetic algorithm produces a differ-
ent bin size dependance than the iterative algorithm
[71]. Additionally, the functional dependence on the
bin size for both the transmissive and reflective ge-
ometry is different than predicted by RMT, with the
underlying mechanism related to beam propagation
effects and the influence of experimental noise [45].
While we find that the functional form of the bin

size dependence changes due to the different algo-
rithms, we find that the functional form of the en-
hancement on the active SLM area and target area
are the same between geometries. This observation
is expected as these functional dependancies are re-
lated to beam propagation effects, which are inde-
pendent of the geometry. However, despite being
functionally the same we find that the fit parame-
ters behave differently depending on the choice of
algorithm, with the difference in target area depen-
dence due to the algorithms’ differing resistances to
noise and sample decoherence [71] and the difference
in the cropping parameter dependence being due to
the simultaneous optimization of the SGA. These
results show that the genetic algorithm is able to
more successfully optimize large target areas than
the iterative algorithm, with the fundamental dif-
ference being the genetic algorithms ability to resist
the larger noise and sample decoherence as well as
the simultaneous optimization versus pixel-by-pixel
optimization.
Lastly from Table VI we find that the enhance-

ment as a function of sample position along the op-
tical axis is drastically different depending on the
geometry. For the transmissive case the enhance-
ment is found to follow a symmetric two-peak func-
tion with the peak centers located at a non-zero z
position. However, for the reflective geometry the
enhancement is found to follow an asymmetric sin-
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TABLE VI: Enhancement dependence on experimental parameters for transmission and reflection
geoemtries with proposed mechanisms for differences.

Experimental

Parameter
Transmission[45] Reflection

Mechanism of

Difference

Algorithm
Generations G

– 1 + η0
[

1− e−(G/G0)
β
]

n/a

Phase Steps M 1 + η0 cos
p
(

π
2M

)

– n/a

Bin size b 1 + η0 exp
{

−
(

b0
b

)2
}

1+η0
[

1− exp
{

−
(

b0
b

)4/3
}]

Fundamental difference in
algorithms [71]

Active SLM
Side Length L

1 + η0
[

1− exp
{

(

L
∆L

)4
}]

(∆L decreases with
increasing A)

1 + η0
[

1− exp
{

(

L
∆L

)4
}]

(∆L is invariant with A)

Simultaneous vs Sequential
Optimization

Target Area A
1 + η1e

−A/A1 + η2e
−A/A2

(A1, A2 decreases with N)
1 + η1e

−A/A1 + η2e
−A/A2

(A1, A2 increases with N)
Noise and decoherence
resistance of algorithm

Sample
Position z

Symmetric two-peak
function with centers at

z 6= 0

Asymmetric peak function
with center at z = 0

Difference in detector
geometry

Sample Angle
θ

– η0e
−|θ|/θ0 n/a

gle peak function with the peak occurring at z = 0.
This difference arises due to the different detector
geometries. In the transmission case the the collec-
tion objective is placed at a fixed distance from the
sample exit surface, such that the changes in the en-
hancement arose due to the changing spot size and
not due to changes in the collection optics. However,
in the reflective case the focusing and collection ob-
jective are the same, such that a change in the sam-
ple positioning results in a change of the distance
between the collection objective and the sample sur-
face. This change in positioning changes the beam
propagation characteristics and leads to the differ-
ent behavior of the enhancement observed for the
reflective geometry.

V. CONCLUSIONS

Spatial light modulator controlled reflection from
opaque media is a strong candidate for implement-
ing optical physically unclonable functions for use in
secure authentication. To help facilitate these appli-
cations it is necessary to understand the effects of
different experimental parameters on an optimiza-
tion algorithm’s ability to enhance reflection. In this
study we measure the effects of six different experi-
mental parameters on optimization, with the param-
eters being the number of algorithm generations, bin

size, active SLM area, target area, sample position
along the optical axis, and sample angle relative to
the optical axis.
From these reflection based measurements we find

that the enhancement as a function of different pa-
rameters behaves similarly to our previous study on
the transmission geometry using an IA, with the ma-
jority of parameter effects based in the Fourier re-
lationship between the sample and detector planes.
However, despite a large number of similarities, we
find that for some parameters the reflective geometry
and SGA produce different functionalities than pre-
viously observed for the transmission geometry and
IA. These functional differences are primarily due to
the different operations of the SGA and IA, as well
as the positioning of the target objective. In order
to better understand these differences and provide a
predictive model of the parameter dependencies we
are currently developing the RPGBM to account for
the target objectives positioning and implementing
the genetic algorithm into the optimization scheme.
Additionally from these measurements we find ev-

idence of possible enhancements larger than pre-
dicted by RMT. This result suggests the possibil-
ity of new physical mechanisms currently ignored by
RMT for scattering from disordered media. We pro-
pose that the most likely candidate for this mech-
anism is Fresnel reflection from the air-sample in-
terface, which is ballistically reflected and currently
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ignored by RMT.
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