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A single phonon in a nonlinear nanomechanical resonator (NAMR) can block the excitation of a second
phonon [Phys. Rev. A82, 032101 (2010)]. This intrinsically quantum effect is called phonon blockade, and
is an analog of Coulomb blockade and photon blockade. Here we predict tunable multiphonon blockade in
coupled nonlinear NAMRs, where nonlinearity is induced by two-level systems (TLSs) assuming dispersive
(far off-resonance) interactions. Specifically, we derive an effective Kerr-type interaction in a hybrid system
consisting of two nonlinearly-interacting NAMRs coupled to two TLSs and driven by classical fields. The
interaction between a given NAMR and a TLS is described by a Jaynes-Cummings-like model. We show
that by properly tuning the frequency of the driving fields one can induce various types of phonon blockade,
corresponding to the entangled phonon states of either two qubits, qutrit and quartit, or two qudits. Thus, a
k-phonon Fock state (with k = 1, 2, 3) can impede the excitation of more phonons in a given NAMR, which we
interpret as a k-phonon blockade (or, equivalently, phonon tunneling). Our results can be explained in terms of
resonant transitions in the Fock space and via phase-space interference using the s-parametrized Cahill-Glauber
quasiprobability distributions including the Wigner function. We study the nonclassicality, entanglement, and
dimensionality of the blockaded phonon states during both dynamics and in the stationary limits.

PACS numbers: 85.85.+j, 03.65.Yz, 42.50.Dv

I. INTRODUCTION

Nanomechanical and optomechanical devices are a versa-
tile technology [1–7], with a range of applications in the quan-
tum regime [8]. Examples include small mass or weak-force
detection [9–11], quantum measurements [12], and quantum-
information processing. The first success in putting a me-
chanical device in a quantum state was performed [13] by
purely cryogenic means, due to the frequency of the mechan-
ical phonons [14] being larger than the thermal energy. Since
then lower-frequency devices (which thus have larger mass)
have been put in quantum states using side-band cooling via
microwave and optical cavities [15–18]. These breakthroughs
have been followed by the observation of state transfer [19–
22] between an electromagnetic cavity and the mechanical
system, with the goal of developing hybrid mechanical cir-
cuit devices [19, 23, 24] for applications in quantum technolo-
gies [25, 26].

Moving into the nonlinear regime with such quantum
nanomechanical devices is desirable for several reasons: It
will allow to observe highly nonclassical effects, as well as al-
lowing to individually address different transitions within the
mechanical system, so that it behaves as a mechanical artifi-
cial atom. In the realm of quantum optics [27–36] and circuit
quantum electrodynamics [37–39], nonlinearities are typically
associated with “photon blockade” (also referred to as the op-
tical state truncation by quantum nonlinear scissors [40, 41]).
In this regime the nonlinear nature of the spectrum of an op-
tical cavity [42], induced via, e.g., a Kerr nonlinearity, means
that the presence of a single photon within the cavity prevents
the transmission of a second photon. In nonlinear mechanical
systems one expects an analogous “phonon blockade” [43, 44]

to arise. This requires either strong intrinsic nonlineari-
ties [45], or induced nonlinearity via ancillary nonlinear sys-
tems (like qubits or artificial two-level systems [46]). Finally,
while coupling between mechanical phonons and electromag-
netic photons has been achieved in the quantum regime [47],
the controlled coupling between multiple mechanical modes
has so far been restricted to classical devices [48]. Such con-
trollable coupling would enable the observation of entangled
states [49–51], and the Bell inequality violation with massive
objects [45], as well as the realization of coupled mechanical
qubits [52, 53].

Our goal in this work is to study the combination of
nonlinearity-induced phonon blockade effects via the cou-
pling between the mechanical modes of NAMRs. We will
show that the infinite-dimensional mechanical states of the
NAMRs, under proper resonance conditions, can effectively
be truncated to the states of finite-dimensional systems of
either two coupled qubits, a three-level system (called a
qutrit) coupled to a four-level system (referred to as quartit or
ququart), or, in general, two coupled d-level systems (qudits).

While our model can be considered as a quantum limit of
the classical systems studied in Ref. [54], we discuss explicitly
how the nonlinearities can be tuned using an ancilla two-level
system (TLS). We will show how this combination of phonon-
blockade and two-NAMR (or two-mode) coupling leads to
multiphonon blockade (or phonon tunneling), in analogy to
the predictions of multiphoton blockade [55–58] and closely
related photon tunneling [36, 58–60]. For example, Ref. [36]
provides a pedagogical explanation of how photon blockade
can lead to the observation of a single-photon tunneling effect
in an analogous way to how Coulomb blockade can lead to the
observation of single-electron tunneling.
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FIG. 1: (Color online) Schematic diagram for the couplings in the
dissipative hybrid system described by the Hamiltonian given in
Eq. (1). The system consists of two linear nanomechanical resonators
(NAMRs), with frequencies ω(n)

res , and a pair of two-level systems
(TLSs), with frequencies ω(n)

q , driven by classical fields, with fre-
quencies ω(n)

drv and ω̄(n)
drv, respectively. Moreover, Ωn, fn, gn, and

J12 denote the coupling strengths of the depicted subsystems; γn are
the NAMR decay rates; an (a†n) is the phonon annihilation (creation)
operator for the nth NAMR, and σz

n is the Pauli operator for the nth
TLS.

We discuss here how the form of the multiphonon block-
ade can be tuned via driving, and verify the resultant highly
nonclassical states with a variety of measures.

This paper is organized as follows: In Sec. II, we describe
a model for a hybrid system of coupled linear NAMRs and
TLSs. In this section and in Appendix A, we also show how a
Kerr-type nonlinearity can be induced via NAMR-TLS inter-
actions, and derive an effective Hamiltonian for the coupled
nonlinear NAMRs. The possibility of observing multiphonon
blockades in this system is described in Sec. III. We summa-
rize several methods to assess nonclassicality, which we then
apply in our analysis of phonon blockade in Secs. IV and V.
We conclude in Sec. VI.

II. MODEL

A. Time-dependent Hamiltonian

We consider a hybrid system, as schematically depicted in
Fig. 1, consisting of two interacting driven linear nanome-
chanical resonators (NAMRs), described by the Hamiltonian
Hres, coupled to two driven two-level systems (TLSs, qubits),
given by the Hamiltonian Hq. The interaction HJC between
the nth NAMR and nth TLS (for n = 1, 2) is described
by a Jaynes-Cummings-like model under the rotating wave-
approximation. The interactionHint between the two NAMRs
can be interpreted as a combined driven process of frequency
conversion and parametric amplification [54]. Thus, the total

microscopic Hamiltonian, representing the system shown in
Fig. 1, reads (hereafter ~ = 1 and n = 1, 2):

H = Hres +Hq +HJC +Hint, (1)

Hres =
∑
n

ω(n)
res a

†
nan + fn

[
an exp(iω

(n)
drvt) + h.c.

]
, (2)

Hq =
∑
n

ω
(n)
q

2
σzn +

Ωn
2

[
σ−n exp(iω

(n)
drvt) + h.c.

]
, (3)

HJC =
∑
n

gn(anσ
+
n + a†nσ

−
n ), (4)

Hint = J12

[
a1 exp(iω

(1)
drvt) + h.c.

]
×
[
a2 exp(iω

(2)
drvt) + h.c.

]
, (5)

where an and a†n are, respectively, the phonon annihilation
and creation operators for the nth NAMR,

an = (2mnω
(n)
res )−1/2(mnω

(n)
res xn + ipn),

a†n = (2mnω
(n)
res )−1/2(mnω

(n)
res xn − ipn), (6)

which are given in terms of the position operator xn, momen-
tum operator pn, and frequency ω(n)

res of the NAMR. Moreover,
σzn = |en〉〈en| − |gn〉〈gn| is the Pauli Z operator for the nth
TLS, while σ−n = |gn〉〈en| (σ+

n = |gn〉〈en|) is the qubit low-
ering (raising) operator given in terms of the ground (|gn〉) and
excited (|en〉) states of the nth TLS; ω(n)

q is the TLS frequency
and ω(n)

drv (ω(n)
drv) is the NAMR (TLS) driving-field frequency.

The coupling strengths of the subsystems, as shown in Fig. 1,
are denoted by Ωn, fn, gn, and J12. The symbol h.c. denotes
the Hermitian conjugated term.

This system, described by Eq. (1), can be realized in vari-
ous ways as a combination of two types of implementations,
e.g.: (i) the proposal of Ref. [43] for observing single-mode
phonon blockade in a driven single NAMR coupled to a su-
perconducting quantum two-level system and (ii) the system
of two nonlinearly-coupled NAMRs, which was experimen-
tally realized in the NTT experiments (see, e.g., Ref [54] and
references therein). It is worth noting that we assumed that
the interaction Hint is additionally driven at frequencies ω(1)

drv

and ω(2)
drv, as given in Eq. (5), which slightly generalizes the

model applied in Ref. [54]. We also note that the interaction
described by Eq. (4) conserves the number of excitations, in
contrast to that described by Eq. (5).

B. Time-independent Hamiltonian in a rotated dressed-qubit
basis

In the following, we assume the following large detunings:

∆(n)
rq ≡ ω(n)

res − ω(n)
q = ω

(n)
drv − ω

(n)
drv � gn > 0, (7)

∆n ≡ ∆
(n)
rd ≡ ω

(n)
res − ω

(n)
drv = ω(n)

q − ω(n)
drv � Ωn > 0. (8)

The large detuning ∆
(n)
rq � gn implies that, e.g., the qubit

states cannot be flipped by the interaction with the NAMR (see
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Appendix A). While the large detuning ∆n � Ωn enables us
to omit, in particular, the terms which do not conserve the
number of excitations in the TLS-NAMR interaction Hamil-
tonian, as will be explained below. Note that the assumption
that ω(n)

res − ω(n)
drv = ω

(n)
q − ω(n)

drv is not essential in our deriva-
tion, and is applied only for simplicity.

First, we transform the Hamiltonian H , given in Eq. (1),
into a rotating reference frame by the unitary transformation

UR(t) =
∏
n

exp
(
−iω(n)

drva
†
nant− 1

2 iω̄
(n)
drvσ

z
nt
)
, (9)

which results in the following effective Hamiltonian

H ′ = U†RHUR − iU
†
R

∂

∂t
UR, (10)

which can be given explicitly as

H ′ = H ′res +H ′q +H ′JC +H ′int, (11)

H ′res =
∑
n

∆na
†
nan + fn

(
an + a†n

)
, (12)

H ′q =
∑
n

∆n

2
σzn +

Ωn
2
σxn, (13)

H ′JC =
∑
n

gn[anσ
+
n exp(−i∆(n)

rq t) + h.c.], (14)

H ′int = J12(a1 + a†1)(a2 + a†2), (15)

where σxn = σ+
n +σ−n . Note that this Hamiltonian is still time

dependent.
Now we diagonalize the qubit Hamiltonian, given by

Eq. (13), by transforming it into a dressed-qubit basis follow-
ing the method described in, e.g., Refs. [62, 63]. Thus, one
finds

H ′′q =
∑
n

∆̄n

2
ρzn, (16)

where ∆̄n =
√

∆2
n + Ω2

n and the dressed-qubit operator
ρzn = |En〉〈En| − |Gn〉〈Gn| can be defined by the dressed-
qubit basis states [63]:

|En〉 = cosxn|en〉+ sinxn|gn〉,
|Gn〉 = − sinxn|en〉+ cosxn|gn〉, (17)

where xn = (1/2) tan−1(Ωn/∆n). It is seen that the dressed
nth qubit refers to the nth TLS dressed with the nth NAMR
phononic field (for a general discussion see Ref. [62]).

To transform the Hamiltonian H ′JC, given by Eq. (14), into
the dressed-qubit basis, first we note that

aσ+
n = cos2(xn)aρ+

n −sin2(xn)aρ−n + 1
2 sin(2xn)aρzn, (18)

where ρ−n = |Gn〉〈En|, and ρ+
n = |En〉〈Gn|. By re-

calling the assumption, given in Eq. (8), we can write
aσ+

n ≈ cos2(xn)aρ+
n . For example, if Ωn/∆n = 0.1 then

cos2(xn) = 0.9975, sin2(xn) = 0.0025, and sin(2xn)/2 ≈
0.05. Thus, we can omit the second and third terms in

FIG. 2: (Color online) Schematic diagram for the couplings in the
dissipative hybrid system described by the effective Hamiltonian
given in Eq. (28), which consists of two nonlinear NAMRs driven by
classical fields. Here Fn and J denote the corresponding coupling
strengths; Kn is the effective Kerr nonlinearity of the nth nonlinear
NAMR, and En is its energy. Other symbols are the same as in Fig. 1.

Eq. (18), and their Hermitian conjugates, which do not con-
serve the number of excitations. Then, the Hamiltonian H ′JC
can approximately be transformed into

H ′′JC ≈
∑
n

g′n[anρ
+
n exp(−i∆(n)

rq t) + h.c.], (19)

where g′n = gn cos2(xn).
To obtain a time-independent total Hamiltonian, we trans-

form it into a qubit rotating frame by applying the standard
unitary transformation

Uq = exp(−iH ′′q t). (20)

This results in

H ′′′JC =
∑
n

g′n

{
anρ

+
n exp[−i(∆(n)

rq − ∆̄n)t] + h.c.
}
. (21)

By assuming ∆
(n)
rq = ∆̄n (for n = 1, 2), one obtains the time-

independent Jaynes-Cummings Hamiltonian in the dressed-
qubit basis,

H ′′′JC =
∑
n

g′n(anρ
+
n + a†nρ

−). (22)

Thus, after these transformations, the total Hamiltonian reads

H ′′′ = H ′′′res +H ′′′JC +H ′′′int, (23)

where H ′′′int = H ′int and H ′′′res = H ′res. Note that H ′′′q = 0.

C. Effective Hamiltonian with a qubit-induced nonlinearity

We assume another large detuning

δn ≡ ∆̄n −∆n � g′n, (24)

which leads to dispersive interactions. Note that condi-
tions (8) and (24) are not contradictory as can be shown as
follows: By denoting rn = Ωn/∆n, Eq. (24) can be given as

δn = ∆n

(√
1 + r2

n − 1
)
≈ 1

2∆nr
2
n � g′n. (25)
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Thus, Eqs. (8) and (24) can be combined as the following hi-
erarchy of conditions:

∆n � Ωn � g′n, such that Ω2
n � 2g′n∆n. (26)

For example, if rn = 0.1 then we require 0.005∆n � g′n.
Now we describe how the TLS-NAMR interaction can ef-

fectively induce a Kerr-type nonlinearity. To show this, we
can expand the Hamiltonian H ′ in a power series of the pa-
rameter

λn =
g′n
δn

=
gn cos2

[
1
2 tan−1(Ωn/∆n)]√

∆2
n + Ω2

n −∆n

, (27)

such that |λn| � 1. As derived in Appendix A, one can keep
terms of such expansions up to λ3

n only and assume that both
TLSs remain in their excited states |En〉 during the whole sys-
tem evolution, which can be observed for the large detuning
∆

(n)
rq � gn, as given in Eq. (7). Then, the total Hamiltonian

H ′′′, given in Eq. (23), can be transformed into the following
effective Hamiltonian:

Heff =
∑
n

[
H

(n)
Kerr(0, 1)− ω(n)

drva
†
nan + Fn

(
an + a†n

) ]
+J(a1 + a†1)(a2 + a†2), (28)

where the Kerr-type Hamiltonian

H
(n)
Kerr(0, 1) = Kna

†
na
†
nanan + Ena†nan (29)

describes an effectively nonlinear nth NAMR. Here the nth
NAMR energy En and the effective Kerr nonlinearity Kn are
given by

En = ω(n)
res + 2Kn + g′nλn(1− λ2

n), (30)
Kn = −g′nλ3

n, (31)

respectively. Moreover, Fn = fn(1 + 1
2λ

2
n) is an effective

driving-field strength, and J = J12(1 + 1
2λ

2
1)(1 + 1

2λ
2
2) is an

effective coupling between the NAMRs. All these coupling
coefficients are shown in Fig. 2. A few lowest energy levels
for the Kerr-type part of this Hamiltonian, given in Eq. (29),
are shown in Fig. 3(a), where we set n = 1.

Equation (28) describes an effective driven Kerr-type self-
interaction (an anharmonic model) in one phonon mode non-
linearly coupled to another phonon mode. In the context of
various types of photon and phonon blockades, this phonon-
phonon model can formally be considered as a two-mode gen-
eralization of the single-mode phonon model of Ref. [43].
Moreover, our model with the nonlinear coupling between
the NAMRs can be interpreted as a generalization of (i) the
linearly-coupled hybrid model studied in Ref. [44] to de-
scribe single-phonon and single-photon blockades and (ii)
the linearly-coupled optical model with single-mode [64–66]
and two-mode drivings [67, 68] leading to two-mode single-
photon blockades.

The Kerr Hamiltonian, given in Eq. (29) can formally be
rewritten as (k, l = 0, 1, ...)

H
(n)
Kerr(k, l) = Kn(a†nan − k)(a†nan − l) + Ekln a†nan − Ckln ,

(32)

FIG. 3: (Color online) Energy levels for the Kerr-type Hamiltonians
given in (a) Eq. (29) (with n = 1) and (b) Eq. (33) (with n = 2 and
E2 ≡ E12

2 ).

where Ekln = En+(k+l−1)Kn, andCkln = klKn is a constant
term, which can be ignored. Thus, Eq. (32) corresponds to
H

(n)
Kerr(0, 1). In the following we will also analyze another

special case of Eq. (32) corresponding to

H
(n)
Kerr(1, 2) ∼= Kn(a†nan − 1)(a†nan − 2) + E12

n a
†
nan, (33)

where, for simplicity, the term C12
n is omitted. A few lowest

energy levels for this Kerr Hamiltonian are shown in Fig. 3(b),
where n = 2 and E2 ≡ E12

2 .
The driving of qubits, as given in the Hamiltonian (3),

can tune the effective Kerr nonlinearity. In addition, as
will be discussed in the following and was also observed
in Refs. [65, 66], there is another mechanism for tuning
the Kerr nonlinearity in the coupled anharmonic oscillators.
Thus, even if the NAMR decay rates γn are much larger
than the NAMR driving strengths Fn and the latter are much
larger than the Kerr nonlinearitiesKn, strong single-time pho-
ton/phonon antibunching can still be observed as an indicator
of the photon/phonon blockade [65, 66].

We will analyze free and dissipative evolutions of the
NAMR systems described by the Hamiltonian given in
Eq. (28), under two different resonance conditions, as spec-
ified later in Eqs. (34) and (35).

III. PHONON BLOCKADE

A. Phonon blockade in two models

In this section we will analyze phonon blockade in two
models, which are special cases of the general model de-
scribed by Heff in Eq. (28) under different resonance condi-
tions.

In one model, we assume that the frequency ω
(n)
drv of the

driving field of the nth NAMR is tuned precisely to the effec-
tive free energy En (n = 1, 2). Then, the effective Hamilto-
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FIG. 4: (Color online) Energy levels Em1m2 , given by
H̄|m1,m2〉 = Em1m2 |m1,m2〉, for the system of two uncoupled
nonlinear NAMRs, described by the Hamiltonian H̄ =

∑
nH

(n)
Kerr,

given in Eq. (29) assuming E ≡ E1 = E2. Here, m1 and m2 are the
Fock states of the two NAMRs. It is seen that the levelsE20 andE02

are off-resonance if K1,K2 6= E/2 and, thus, they are much less
occupied than the other shown levels. This explains the occurrence
of phonon blockade in this coupled system.

nian Heff , given in Eq. (28), simplifies to

H ′eff =
∑
n

Kna
†
nan(a†nan − 1)

+
∑
n

Fn
(
an + a†n

)
+ J(a1 + a†1)(a2 + a†2), (34)

which is referred here to as model 1. The occurrence of single-
phonon blockade in this model is explained in Fig. 4.

In another model, we set the frequency ω(n)
drv of the driving

field of the first (second) NAMR to be tuned with the effective
free energy E ′′1 = E1 (E ′′2 = E2 + 2K2). Thus, the effective
Hamiltonian Heff reduces to:

H ′′eff = K1a
†
1a1(a†1a1 − 1) +K2(a†2a2 − 1)(a†2a2 − 2)

+
∑
n

Fn
(
an + a†n

)
+ J(a1 + a†1)(a2 + a†2), (35)

which is referred here to as model 2. Note that we ignored
in Eq. (35) the irrelevant constant terms Ckln (for n = 1, 2).
Some lowest energy levels for the Kerr-type Hamiltonian of
Eq. (35) for n = 1 are shown in Fig. 3(a) in comparison with
those for n = 2 shown in Fig. 3(b). A closer analysis of
Fig. 3(b) shows that E3 − E0 = 3E , which implies that a
three-phonon resonant transition can be observed, as shown
in Fig. 5. The occurrence of multiphonon blockade in this
coupled system can clearly be understood by analyzing Fig. 6.

B. Phonon blockade in non-dissipative systems

In order to show phonon blockade in the non-dissipative
model 1, we start from the analysis of the system, described
by the Hamiltonians H ′eff , without dissipation. Hereafter we
assume that both NAMRs were initially in the ground phonon

FIG. 5: (Color online) Energy levels for a single NAMR, as a sim-
plified version of model 2: How to induce a three-phonon resonant
transition in a single nonlinear NAMR described by the Hamiltonian
given in Eq. (33). If the driving field frequency is resonant with the
transition between the energy levels |1〉 and |2〉, E2 − E1 = E , then
one can also induce the three-phonon transition between the energy
levels |0〉 and |3〉, since E3 − E0 = 3E . Solid (dashed) lines denote
real (virtual) energy levels. We note that only single-phonon tran-
sitions can be observed if the driving field frequency is tuned with
the transition between other levels |n〉 and |n+ 1〉 (n 6= 1). More-
over, we cannot observe such multiphonon transitions if the system
is described by the Hamiltonian given in Eq. (29) for any n.

FIG. 6: (Color online) Energy levels for model 2, i.e., for the NAMR
system described by the Hamiltonian H ′′eff , given in Eq. (35), assum-
ing two drives and the same Kerr nonlinearities K1 = K2 ≡ K
and free energies E1 = E2 ≡ E of both NAMRs. This graph ex-
plains the occurrence of multiphonon blockade in this coupled sys-
tem. The occurrence of the resonant three-phonon transition is ex-
plained in Fig. 5. We note that, in particular, the following lev-
els are off-resonance: E01 = E 6= E10, E12 = 3E 6= E21,
E02 = E11 = 2E 6= E10 + E , and E20 = 2E + 4K 6= E10 + E .

states, |ψ(t = 0)〉 = |00〉. A generalization of such solu-
tion for other initial states is simple. For simplicity, we as-
sume that both NAMRs are driven equally with the strength
F1 = F2 ≡ F . Then, under these assumptions, the solu-
tion of the Schrödinger equation for the wave function |ψ〉 =
exp(−iH ′efft)|00〉 is given by

|ψ〉 = c00|00〉+ c01|01〉+ c10|10〉+ c11|11〉, (36)



6

with the time-dependent probability amplitudes:

c00 =
1

4
e−i(2F+J)t

(
1 + e4iF t + 2e2i(F+J)t

)
,

c01 = c10 = − i
2

exp(−iJt) sin(2Ft),

c11 = c00 − exp(iJt), (37)

as calculated for simplicity in the two-qubit Hilbert space.
Only for short evolution times, these solutions approximate
well our precise numerical solutions, which were obtained in
a high-dimensional Hilbert space and plotted in the left frames
of Fig. 7. Much better agreement with these precise numerical
solutions can be found by diagonalizing the Hamiltonian H ′eff
in a two-qutrit Hilbert space. Unfortunately, we cannot obtain
a compact-form analytical solution in this case, as discussed
in Appendix B.

As a measure of the quality of phonon blockade (or phonon
truncation), one can calculate the fidelity, defined as F (t) =∑
m1,m2=0,1 |cm1,m2 |2, where the probabilities |cm1,m2 |2 are

computed precisely in a large-dimensional Hilbert space. For
the same parameters as in the left frames of Fig. 7, we find
that the fidelity periodically oscillates between the values
0.977 and 1. This shows that the evolution of phonons in the
NAMRs is practically confined in a two-qubit Hilbert space in
model 1 even without dissipation.

Let us now analyze phonon blockade in the non-dissipative
model 2. For simplicity, we again assume that the driving
field strengths are the same, F1 = F2 ≡ F . The solu-
tion of the Schrödinger equation for the wave function |ψ〉 =
exp(−iH ′′efft)|00〉 reads,

|ψ〉 = c00|00〉+ c03|03〉+ c10|10〉
+ c13|13〉+ c21|21〉+ c22|22〉, (38)

where the probability amplitudes can be found only numeri-
cally, as explained in Appendix B. We plotted the evolution of
these probability amplitudes for model 2 in Fig. 8 (solid blue
curves) in analogy to those shown in Fig. 7 for model 1.

Analogously to model 1, we can quantify the qual-
ity of phonon blockade in model 2 by calculating the fi-
delity F (t) =

∑
(m1,m2) |cm1,m2

|2; but now (m1,m2) =

(0, 0), (0, 3), (1, 0), (1, 3), (2, 1), (2, 2). For the dissipation-
free evolution shown in Fig. 8, we find that the fidelity F (t) ∈
[0.9643, 1]. Thus, we can conclude that the evolution of
phonons in the NAMRs according to model 2 even without
damping is effectively confined in the Hilbert space of an en-
tangled qutrit-quartit system.

C. Phonon blockade in dissipative systems

In the standard description of dissipation under Markov’s
approximation, the evolution of the reduced density operator

FIG. 7: (Color online) Non-stationary phonon blockade in model 1:
Evolutions of probabilities P (m1,m2) = |cm1,m2 |2 for the non-
dissipative (left frames, γ = 0) and dissipative (right frames, γ =
J/3) systems of the two nonlinear NAMRs described by the effective
Hamiltonian H ′eff plotted for the rescaled time Jt, where J is the
interaction strength between the NAMRs. Probabilities P (m1,m2)
for the other values of m1,m2 are negligible on the scale of these
figures and, thus, not presented here. We set the Kerr nonlinearities
Kn = 10J , the drive strengths Fn = J , and the mean number
of thermal phonons n̄(n)

th = 0.01 (right frames), for n = 1, 2. It
is seen in the right frames that the oscillations are rapidly damped.
Surprisingly, the stationary damped states are highly nonclassical as
it is shown in other figures.

ρ(t) is governed by the master equation,

ρ̇ = −i[Heff , ρ]

+
∑
n

γn
2
n̄

(n)
th (2a†nρan − ana†nρ− ρana†n)

+
∑
n

γn
2

(n̄
(n)
th + 1)(2anρa

†
n − a†nanρ− ρa†nan), (39)

where γn is the nth NAMR decay rate (damping constant),
n̄

(n)
th = {exp[ω/(kBT )]−1}−1 is the mean number of thermal

phonons interacting with the nth NAMR, kB is the Boltzmann
constant, and T is the reservoir temperature at thermal equilib-
rium. For simplicity, we assume equal decay rates γ1 = γ2 ≡
γ and mean thermal-phonon numbers n̄(1)

th = n̄
(2)
th ≡ n̄th. In

our numerical analysis, we focus on the steady-state solutions
ρss = ρ(t → ∞) of the master equation, obtained for ρ̇ = 0.
We obtain such numerical solutions by applying the inverse
power method implemented in Ref. [69].

Examples of dissipative evolutions of phonon-number
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FIG. 8: (Color online) Non-stationary phonon blockade in model 2:
Probabilities P (m1,m2) same as in Fig. 7 but for the non-dissipative
(blue solid curves, γ = 0) and dissipative (red dashed curves, γ =
J/3) NAMR systems described by the effective Hamiltonian H ′′eff .

probabilities are shown by the red curves in Fig. 7 for model 1
and the red dashed curves in Fig. 8 for model 2. It is seen
that short-time oscillations are rapidly damped. The resulting
steady-state phonon-number probabilities are shown in Figs. 9
and 10, respectively. In panels (a) of these figures, we plot-
ted the probabilities P (m1,m2) = 〈m1,m2|ρss|m1,m2〉 for
the two-NAMR density matrices ρss. While in panels (b) and
(c), we presented the single-NAMR phonon-number proba-
bilities P (n)(m) = 〈m|ρ(n)

ss |m〉 for ρ(n)
ss = Tr3−n(ρss), with

n = 1, 2.
We can clearly interpret these results as single-, two-, and

three-phonon blockades corresponding to the cases shown in
Figs. 9(b), 10(b), and 10(c), respectively.

We note that the steady states are not pure, contrary to the
standard assumptions made in analogous studies of single-
photon blockades of optical [66, 68] and optomechanical [58]
systems. Indeed for the examples of the states shown in
Figs. 9 and 10, we found that their purities are the follow-
ing: Trρ2

ss = 0.4212 and Tr(ρ
(1)
ss )2 = Tr(ρ

(2)
ss )2 = 0.5670

for model 1, and Trρ2
ss = 0.1471, Tr(ρ

(1)
ss )2 = 0.3920, and

Tr(ρ
(2)
ss )2 = 0.3212 for model 2.

Finally we note that, for simplicity, we applied here the
standard master equation, given by Eq. (39) assuming two
separable dissipation channels for the NAMRs. A more pre-
cise description, which could be especially important for a
stronger coupling between the NAMRs, should be based on
a generalized master equation within the general formalism of

FIG. 9: (Color online) Stationary solutions for model 1 de-
scribing an effective two-qubit system and, thus, corresponding
to single-phonon blockade: The phonon-number probabilities (a)
P (m1,m2) = 〈m1,m2|ρss|m1,m2〉 for two NAMRs and (b)
P (1)(m) = 〈m|Tr2(ρss)|m〉 for the first NAMR (and, equiva-
lently, P (2)(m) for the second NAMR) for the steady-state solutions
ρss of the master equation (39) with the Hamiltonian H ′eff , given
by Eq. (34), assuming the same parameters as in Fig. 7. More-
over, (xy) denotes all phonon numbers such that x, y > 1, so
P (xy) = 1 −

∑
m1,m2=0,1 P (m1,m2). Panel (b) shows single-

phonon blockade in every NAMR.

Breuer and Petruzzione (see sect. 3.3 in Ref. [70]). In this
approach both NAMRs dissipate into usually-entangled dissi-
pation channels. An explicit form of such generalized master
equation for two strongly-coupled infinitely-dimensional sys-
tems will be presented elsewhere [71]. Note that a generalized
master equation for an infinitely-dimensional system strongly
coupled to a qubit system has already been well studied [72].

IV. PHONON BLOCKADE IN PHASE SPACE

Here we apply the Wigner function W ≡ W (0) and the
Cahill-Glauber s-parametrized quasiprobability distribution
(QPD) W (s) in order to visualize the nonclassical properties
of the phonon-blockaded states studied in Sec. III.

The Wigner function for a two-mode (or two-NAMR) state
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FIG. 10: (Color online) Stationary solutions for model 2 de-
scribing an effective qutrit-quartit system and, thus, correspond-
ing to multiphonon blockade: The phonon-number probabilities (a)
P (m1,m2) = 〈m1,m2|ρss|m1,m2〉 for two NAMRs, and (b,c)
P (n)(m) = 〈m|Tr3−n(ρss)|m〉 for the nth NAMR (n = 1, 2) for
the steady-state solutions ρss of the master equation (39) with the
Hamiltonian H ′′eff , given by Eq. (35), and the same parameters as in
Fig. 7 and (xy) denotes all phonon numbers such that x > 2 and
y > 3. Panel (b) [(c)] shows two-phonon (three-phonon) blockade
in the first (second) NAMR.

ρ can be given by

W12(α1, α2) = W12(q1, p1, q2, p2)

=
1

π2

∫
〈q1 − x1, q2 − x2|ρ|q1 + x1, q2 + x2〉

× exp [2i(p1x1 + p2x2)] dx1dx2, (40)

in terms of the canonical position qn and momentum pn op-
erators, and αn = qn + ipn for the nth NAMR. It is seen

that Eq. (40) is a straightforward generalization of the Wigner
function for a single-mode (in our case single-NAMR) case,

W (αn) = W (qn, pn) =
1

π

∫
〈qn − xn|ρn|qn + xn〉

× exp (2ipnxn) dxn, (41)

where ρn can correspond, e.g., to Tr3−nρ for n = 1, 2.
Specifically, the single-NAMR Wigner function W (αn) can
be considered as the marginal functions of the two-NAMR
Wigner function W (α1, α2).

Figure 11 shows the Wigner function W (α1) = W (α2) for
the steady state ρ(n)

ss = Tr3−nρss (n = 1, 2) for some cho-
sen values of the coupling and damping parameters. Unfortu-
nately, the contribution of the vacuum state in ρss is dominant,
as shown in Fig. 9. Thus, the Wigner function for ρ(n)

ss looks
like a slightly deformed Gaussian representing the vacuum.

To show this deformation more clearly we also plotted the
s-parametrized Cahill-Glauber QPD, W (s)(αn) for s = 1/2.
For simplicity, we analyze this QPD only for a single-mode
(i.e., single-NAMR) case, while the extension for the two-
and multi-mode cases is straightforward. The Cahill-Glauber
QPD W (s)(αn) can be defined in the Fock-state representa-
tion of an arbitrary-dimensional single-mode state ρ as fol-
lows [73]:

W (s)(αn) =

∞∑
k,l=0

〈k|ρ|l〉〈l|T (s)(αn)|k〉, (42)

where

〈l|T (s)(αn)|k〉 = c

√
l!

k!
yk−l+1zl(α∗n)k−lLk−ll (xαn), (43)

for s ∈ [−1, 1], c = 1
π exp[−2|αn|2/(1 − s)], xαn

=

4|αn|2/(1 − s2), y = 2/(1 − s), z = (s + 1)/(s − 1),
and Lk−ll are the associate Laguerre polynomials. As for the
Wigner function, αn is a complex number, where its real and
imaginary parts can be interpreted as canonical position and
momentum, respectively. The operator T (s)(αn) is defined
in the Fock representation by Eq. (43). In the special cases
of s = −1, 0, 1, the QPD W (s)(αn) becomes the Husimi Q,
Wigner W , and Glauber-Sudarshan P functions, respectively.

Here, we apply a well known definition of nonclassicality
(see, e.g., Ref. [74] and references therein): A photonic or
phononic state can be considered nonclassical if and only if its
Glauber-Sudarshan P function is not positive (semi)definite,
which means that it is not a classical probability density. Thus
only coherent states and their statistical mixtures are classical.

The Wigner functions and 1/2-parametrized QDPs for the
steady states of models 1 and 2 are shown in Figs. 11 and 12,
respectively. These steady states ρss are nonclassical, as they
correspond to the partially-incoherent finite superpositions of
phonon Fock states, which are not mixtures of coherent states
(in particular, they are not the vacuum). The nonclassicality
of these states ρss is clearly seen in the non-positive functions
W (s=1/2) (their negative regions are plotted in blue). How-
ever, the nonclassicality of ρss is difficult to deduce from the
plots of the nonnegative Wigner functions.
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FIG. 11: (Color online) Stationary solutions for model 1 as in Fig. 11
but for (a) the single-NAMR Wigner functionW (α1) = W (α2) and
(b) the single-NAMR quasiprobability distribution (QPD) function
W (s)(α1) = W (s)(α2) with parameter s = 1/2 for the steady-state
solutions ρ(n)

ss = Tr3−nρss (for n = 1, 2). Note that the negative
regions of the QPD functions are marked in blue.

To understand this apparent discrepancy, we recall a known
relation between two single-mode QPDs,W(s0) andW(s) for
the chosen parameters s < s0 [73]:

W(s)(αn) = c′
∫

exp

(
−2|αn − βn|2

s0 − s

)
W(s0)(βn)d2βn,

(44)
where c′ = 2/[π(s0 − s)]. This relation means that any QPD
for s ≤ s0 can be obtained from W(s0) by mixing it with
the Gaussian noise. In particular, the Wigner function can be
obtained in this way from the P = W(1) andW(1/2) QPDs.
By decreasing the parameter s from s0 = 1, the QPD W(s),
for a given nonclassical state, becomes less and less negative,
and finally becomes nonnegative at some s′ ≥ −1. As a re-
sult, in the analyzed examples shown in Figs. 11 and 12, the
negativity of the P -function for ρss is only partially lost in
the QPDs W(1/2), but completely lost in the corresponding
Wigner functions.

V. ENTANGLEMENT, DIMENSIONALITY, AND
NONCLASSICALITY OF NAMRS

To analyze more deeply the nonclassical properties of the
generated phonon states in the two NAMRs in models 1 and 2,
we apply the following measures of quantum correlations: the
negativity and its closely related entanglement dimensionality,
as well as the entanglement potential, as a measure of nonclas-
sicality.

A. Entanglement

To quantify the entanglement of a bipartite state ρ of arbi-
trary finite dimensions, we apply the negativity N , which can
be expressed as [75]

N(ρ) =
||ρΓ||1 − 1

2
(45)

FIG. 12: (Color online) Stationary solutions for model 2 as in Fig. 11,
but for the single-NAMR Wigner functions W (αn) (a,c) and the
single-NAMR QPD functions W (s)(αn) with parameter s=1/2 (b,d)
for the steady-state solutions ρ(n)

ss = Tr3−nρss (for n = 1, 2).

via the trace norm ||ρΓ||1 of the partially-transposed statistical
operator ρΓ. This entanglement measure is closely related to
the Peres-Horodecki criterion. The negativity N is an entan-
glement monotone and, thus, can be used in quantifying en-
tanglement in bipartite systems. However, the negativity does
not detect bound entanglement (i.e., nondistillable entangle-
ment) in systems more complicated than two qubits or qubit-
qutrit [75]. The negativity can be interpreted operationally.
For example, the logarithmic negativity,

Ecost(ρ) = log2[N(ρ) + 1], (46)

quantifies the entanglement cost under operations preserving
the positivity of the partial transpose (PPT), which is, for
short, referred to as the PPT entanglement cost [76, 77].

The evolutions of this entanglement measure are plotted in
Fig. 13(a) for model 1 and Figs. 14(a) for model 2, by includ-
ing and excluding the dissipation. The oscillations ofEcost(ρ)
are rapidly damped; however the entanglement is not com-
pletely lost in the infinite-time limit. Indeed, for the coupling
parameters K,J, F , decay rate γ, and thermal-phonon mean
numbers n̄th specified in the figures, the entanglement be-
tween the NAMRs is found to be Ecost(ρss) = 0.1413 for
model 1 and almost three times smaller Ecost(ρss) = 0.0494
for model 2.
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B. Dimensionality

The negativity also determines the dimensionality Dent of
entanglement, which is the number of degrees of freedom of
two entangled subsystems. Specifically, the entanglement di-
mensionality Dent for a bipartite state ρ is simply related to
the negativity N(ρ) as follows [78]

Dent(ρ) = 2N(ρ) + 1 = ||ρΓ||1. (47)

More precisely, the least integer ≥ Dent gives a lower bound
to the number of entangled dimensions between the entangled
subsystems of ρ [78]. According to Eq. (47), Dent = 1 for
separable states (N = 0). This measure could be useful for
characterizing even a single test system (in our case, a single
phonon mode) with unknown quantum dimension. This can
be done in a standard way “by entangling [the test system]
with an auxiliary system of known dimension and measuring
the negativity, a lower bound to the number of quantum lev-
els in the test system can be found” [78]. In our case of two
NAMRs, we can directly apply the negativity, without the use
of an auxiliary system, to determine a lower bound to the num-
ber of quantum levels in the total system (see also Ref. [79]).

The evolutions of the entanglement dimensionality are plot-
ted in Fig. 13(b) for model 1 and Fig. 14(b) for model 2.
Since the entanglement dimensionality and the entanglement
cost are closely related, we can conclude, the same as for
Ecost(ρ), that Dent does vanish in the steady states. Specifi-
cally, the entanglement dimensionality between the NAMRs
reads: Dent(ρss) = 1.2058 for model 1 and Dent(ρss) =
1.0696 for model 2.

C. Nonclassicality

The negativity can also be used in quantifying the nonclas-
sicality of a single-mode photonic or phononic state ρn via
the so-called entanglement potential (EP), which is defined
as [74, 80]

EP(ρn) ≡ log2

{
N
[

exp(−iHt)(ρn⊗|0〉〈0|) exp(iHt)
]
+1
}
.

(48)
Here H = 1

2 (a†nb + anb
†) describes a balanced beam splitter

or a linear coupler, where an and b are the annihilation opera-
tors of the input modes. The basic idea behind this measure in
optics is as follows: If a single-mode nonclassical (classical)
photonic state is combined with the vacuum at a beam split-
ter then the output state is entangled (separable), for which
various entangled measures (including the negativity) can be
applied. By generalizing this concept for phonons it is enough
to interpret this ancilla beam splitter as a linear coupler.

The evolutions of the nonclassicality of single NAMRs are
plotted in Fig. 13(c) for model 1 and Figs. 14(c) and 14(d) for
model 2. We find the following nonzero values of EP(ρ

(n)
ss )

in the corresponding steady states: EP(ρ
(1)
ss ) = EP(ρ

(2)
ss ) =

0.1126 for model 1, while EP(ρ
(1)
ss ) = 0.1354 for the first

NAMR and EP(ρ
(1)
ss ) = 0.1770 for the second NAMR in

model 2.

FIG. 13: (Color online) Non-stationary solutions for model 1: (a)
Entanglement, measured by the PPT entanglement cost Ecost(ρ),
(b) dimensionality of entanglement Ddim(ρ), and (c) nonclassical-
ity, measured by the entanglement potential EP(ρ(1)), of the first
(and, equivalently, second) NAMR for the states ρ generated in the
non-dissipative (blue solid upper curves, γ = 0) and dissipative (red
dashed lower curves, γ = J/3) systems described by the effective
Hamiltonian H ′eff . Parameters are same as in Fig. 7.

Here, for brevity, we studied only the evolution of one non-
classicality measure. In future work, it might be physically
interesting to compare it with the evolution of other mea-
sures [74] and witnesses [81] of nonclassicality.

VI. DISCUSSION AND CONCLUSIONS

We studied tunable phonon blockade, which can be intu-
itively understood as follows: Any number of phonons can
be generated in a harmonic resonator. However, this is not
possible in an anharmonic resonator, which is characterized
by nonlinear (nonequidistant) energy levels. So, if the driv-
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FIG. 14: (Color online) Non-stationary solutions for model 2: Same
as in Fig. 13 but for the effective Hamiltonian H ′′eff . Additionally,
panel (d) shows the nonclassicality, measured by the entanglement
potential EP(ρ(2)), of the second NAMR.

ing field is in resonance with the transition between the two
lowest levels (say |0〉 and |1〉), then it is not in resonance with
the transitions between the other levels. Thus, single-phonon
blockade can be observed. We showed in detail that a higher-
order n-phonon blockade can also be observed in a dissipative
nonlinear system if the driving field is resonant with the tran-
sition between other levels |0〉 and |n〉. By applying coupled

nonlinear systems, instead of a single system, one can more
easily tune various types of multi-phonon two-mode block-
ades, as studied in detail in this paper.

It is important to clarify the main differences between
our model of coupled oscillators and that studied in, e.g.,
Refs. [44, 65, 66]: (1) Here we assumed that the oscilla-
tors are nonlinearly coupled as described by the Hamiltonian
Hint ∼ (a1 + a†1)(a2 + a†2) in contrast to the linear cou-
pling given by Hint ∼ (a†1a2 + a1a

†
2), which was applied in

Refs. [44, 65, 66]. Note that this linear coupler (which is for-
mally equivalent to a beam splitter or a frequency converter),
does not change the nonclassicality of a total system [74]. In
contrast to this, the nonlinear coupler increases the nonclas-
sicality of a total system, as measured by, e.g., the entangle-
ment potential. It is also worth noting that, by applying our
precise numerical calculations, we found the steady-states of
the NAMRs to be only partially coherent (partially mixed),
while the steady states calculated in, e.g., Ref. [66] were as-
sumed to be completely coherent (perfectly pure). (2) We
have derived an effective Kerr-type Hamiltonian from a mi-
croscopic one, given in Eqs. (1), while an analogous Kerr-
type Hamiltonian in Refs. [44, 65, 66] was assumed with-
out derivation. Moreover, we studied here the Kerr interac-
tion under two different resonance conditions, as described by
Eqs. (29) and (33). Refs. [44, 65, 66] discussed only the Kerr
interaction given by Eq. (29). (3) We analyzed the blockade
of mechanical phonons, contrary to photon blockade studied
in Refs. [65, 66]. Moreover, the interplay between single-
phonon blockade in one oscillator and single-photon block-
ade in another oscillator was studied in Ref. [44]. Here we
predicted tunable k-phonon blockades (with k = 1, 2, 3) in
each oscillator, where the k-phonon Fock state impedes the
excitation of more phonons. To our knowledge, multiphonon
blockade has not been studied before.

In conclusion, we showed here a rich tapestry of phonon
blockade effects in two coupled nonlinear nanomechanical
resonators. Different types of phonon blockade could be
“picked out” of this tapestry by controlling the nonlinearity
via ancilla TLS, and by changing the driving frequency of
the resonators themselves. Within these different types of
phonon blockade, the coupled NAMRs can be made to be-
have like two coupled qubits, a qutrit coupled to a quartit, or
even two coupled qudits. We verified this picture by looking
at the nonclassical properties of these states including their
single-NAMR nonclassicality, and two-NAMR entanglement
and entanglement dimensionality. The nonclassical properties
of these states were also analyzed in phase space by applying
the s-parametrized Cahill-Glauber quasiprobability distribu-
tions and, in particular, the Wigner function. We expect that,
if realized in experiment, the ability to operate in these dif-
ferent regimes will have a range of applications in quantum
information and quantum technologies.
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Appendix A: Derivation of the effective Hamiltonian

Here we show how to derive the effective Hamiltonian
Heff , given by Eq. (28), from the Hamiltonian H ′′′, given in
Eq. (23). The latter can be divided into the following parts:

H ′′′ = H ′′′sys +H ′′′drv +H ′′′int, (A1)

where

H ′′′sys = H ′′′0 +H ′′′JC =
∑
n

∆na
†
nan +H ′′′JC, (A2)

H ′′′drv =
∑
n

fn(a+ a†). (A3)

Here H ′′′JC is given by Eq. (22) and H ′′′int = H ′int is given by
Eq. (15).

Our derivation is based on the method described in Ref. [82]
for the exact diagonalization of the Jaynes-Cummings model
with the following unitary transformation

Un = exp[−Λ(λn)(a†nρ
−
n − anρ+

n )], (A4)

where the operator Λ(λn) = − arctan(2λn
√
Nn)/(2

√
Nn)

is given in terms of the total number of excitations Nn =
a†nan + |En〉〈En| in the nth NAMR and TLS. Thus, the
expansions of the annihilation operators, ān = U†naUn and
ρ̄−n = U†nρ

−
nUn of Ref. [82] can be rewritten for our dressed

qubit states as follows:

ān = an(1 + 1
2λ

2
nρ

z
n) + λnh

(3)
n ρ−n + λ3

na
2
nρ

+
n +O(λ4

n),(A5)

ρ̄−n = h(1)
n ρ−n + λnanρ

z
n − λ2

na
2
nρ

+
n +O(λ3

n), (A6)

where h(k)
n = 1 − kλ2

n(a†nan + 1/2) and O(λkn) denotes the
omitted terms of order ∼ λkn and higher. Now one can easily
transform the Hamiltonian H ′′′ into

H̄ = U†1U
†
2H
′′′U2U1. (A7)

In particular, by applying Eq. (A5), H ′′′drv transforms into

H̄drv =
∑
n

fn[ān + ā†]. (A8)

If the qubits remain in the excited dressed-qubit states |En〉,
given in Eq. (17), then

〈E1E2|H̄drv|E1E2〉 =
∑
n

fn(an+a†n)(1+λ2
n/2)+O(λ4

n).

(A9)
The assumption of a “frozen” state of both qubits is physically
justified for the large detuning ∆

(n)
rq � gn, as specified in

Eq. (7). Moreover, H ′′′int transforms into

H̄int = J12(ā1 + ā†1)(ā2 + ā†2), (A10)

and, thus,

〈E1E2|H̄int|E1E2〉 = J(a1 +a†1)(a2 +a†2)+O(λ4
n), (A11)

where J = J12(1+λ2
1/2)(1+λ2

2/2). Analogously, by gener-
alizing the results of Ref. [82] for the dressed-qubit operators
ρzn, one can find that

H̄sys = U†H ′′′sysU − iU†
∂

∂t
U (A12)

= H ′′′0 − 1
2

∑
n

δn
(
1−

√
1 + 4Nnλ2

n

)
ρzn

≈ H ′′′0 +
∑
n

2Kna
†
nan + hnρ

z
n +Kn(a†n)2a2

nρ
z
n,

where H ′′′0 is defined in Eq. (A2), hn = χn(a†nan + 1
2 ), with

χn = g′nλn(1−λ2
n), and the effective Kerr nonlinearity reads

Kn = −g′nλ3
n = −(g′n)4/δ3

n. Moreover, U = U1U2 and
∂
∂tU = 0. Thus, one can write

〈E1E2|H̄sys|E1E2〉 =
∑
n

Cn +Dna
†
nan

+Kn(a†n)2a2
n +O(λ4

n), (A13)

where Cn = (χn + ∆̄n)/2 and Dn ≡ En − ω(n)
drv = ∆n +

2Kn + χn. Finally, the effective Hamiltonian

Heff ≡ 〈E1E2|(H̄sys + H̄drv + H̄int)|E1E2〉, (A14)

is given explicitly by Eq. (28), where the terms ∼ O(λ4
n) are

omitted.

Appendix B: Probability amplitudes in Eqs. (36) and (38)

The probability amplitudes cxy(t) = 〈xy|ψ(t)〉 (for x, y =
0, ..., 3), given in Eqs. (36) and (38), can be obtained using the
eigenvalue decompositions H ′eff |E′n〉 = E′n|E′n〉, as

cxy(t) =
∑
n

exp(−iE′nt)〈E′n|00〉〈xy|E′n〉, (B1)

and analogously for H ′′eff |E′′n〉 = E′′n|E′′n〉. To simplify these
problems, let us limit the dimension of the Hilbert space to
that of two qutrits and assume K1 = K2 = 10J and J =
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F1 = F2 (as in Figs. 7 and 8). Then the Hamiltonians, given
in Eqs. (34) and (35), reduce to

H ′eff

J
=



0 1 0 1 1 0 0 0 0

1 0
√

2 1 1
√

2 0 0 0

0
√

2 20 0
√

2 1 0 0 0

1 1 0 0 1 0
√

2
√

2 0

1 1
√

2 1 0
√

2
√

2
√

2 2

0
√

2 1 0
√

2 20 0 2
√

2

0 0 0
√

2
√

2 0 20 1 0

0 0 0
√

2
√

2 2 1 20
√

2

0 0 0 0 2
√

2 0
√

2 40


,

(B2)

H ′′eff

J
=



20 1 0 1 1 0 0 0 0

1 0
√

2 1 1
√

2 0 0 0

0
√

2 0 0
√

2 1 0 0 0

1 1 0 20 1 0
√

2
√

2 0

1 1
√

2 1 0
√

2
√

2
√

2 2

0
√

2 1 0
√

2 0 0 2
√

2

0 0 0
√

2
√

2 0 40 1 0

0 0 0
√

2
√

2 2 1 20
√

2

0 0 0 0 2
√

2 0
√

2 20


,

(B3)

respectively. It is seen that the matrices, given by Eqs. (B2)
and (B3), differ only in their diagonal terms. Unfortunately,
even in these special cases, it is very unlikely that exact analyt-
ical compact-form solutions of these eigenvalue problems can
be found, as they require finding the roots of sixth and ninth
order equations, respectively. Especially, highly-irregular os-
cillations of cxy(t) for model 2, as shown in Fig. 8, confirm
this conclusion.
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