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We introduce a new family of non-hermitian optical potentials that are given in terms of double
exponential periodic functions. The center of PT -symmetry is not around zero and the potential
satisfies a shifted PT -symmetry relation at two distinct locations. Motivated by wave transmission
through thin phase screens and gratings, we examine these novel refractive index modulations from
the perspective of optical lattices that are homogeneous along the propagation direction. The
diffraction dynamics, abrupt phase transitions in the eigenvalue spectrum and exceptional points in
the band structure are examined in detail. In addition, the nonlinear properties of wave propagation
in Kerr nonlinearity media is studied. In particular, coherent structures such as lattice solitons are
numerically identified by applying the spectral renormalization method. The spatial symmetries of
such lattice solitons follow the shifted PT -symmetric relations. Furthermore, such lattice solitons
have a power threshold and their linear and nonlinear stability is critically dependent on their spatial
symmetry point.

PACS numbers: 42.25.Bs, 11.30.Er, 42.82.Et

I. INTRODUCTION

One of the frontiers of modern photonics is the engi-
neering of complex refractive index to create new syn-
thetic systems with novel functionalities. Nowadays it is
understood that ideas and methods from quantum field
theories and quantum mechanics [1, 2] may be useful and
applicable in such an engineering direction. A result of
this fusion is the area of parity-time (PT ) symmetric
optics that originally started in the context of optical
waveguide arrays and lattices [3–6]. After the first ex-
perimental observation of PT -symmetry breaking, in a
passive optical coupler [7] and in two coupled waveguides
with gain and loss [8], this research area has attracted in-
tense interest and attention, partially because of the pos-
sible applications in integrated photonics. In most tech-
nologies, such as, photonic crystal fibers, metamaterials,
and plasmonics, optical loss has always been considered
an obstacle. However, it has recently been demonstrated
that PT -symmetric composite structures with balanced
gain and loss distributions, may offer an alternative solu-
tion to such technological problems. In fact, losses can be
advantageous in various important applications, such as
optical isolators [9–13], coupled microring PT -symmetric
lasers [14, 15], photonic molecules with exceptional points
[16, 17], PT -metamaterials [18, 19], PT -symmetric plas-
monics [20–22], and integrated silicon photonic structures
[23, 24].

All these findings, in turn, have stimulated much re-
search activity in the general area of non-hermitian and
PT -photonics and have led to several theoretical and ex-
perimental predictions. For example: wave propagation
and defect states in PT -synthetic lattices [25–27], PT -
symmetry-breaking in disordered lattices [28], linear [29]
and nonlinear [30] beam dynamics close to the excep-
tional point, Hamiltonian formulation [31], soliton sta-
bility in PT -lattices [32–35], Bloch oscillations, trans-

port and localization in complex crystals [36], spectral
singularities in non-hermitian Friedrichs-Fano-Anderson
models with complex potentials [37], PT -symmetric wave
chaos [38], four-wave mixing [39], visualization of branch
points in PT -symmetric waveguides [40], subdiffraction
and spatial filtering in gain/loss media [41], unidirec-
tional invisibility [42], scattering in PT -symmetric op-
tical cavities [43, 44], dark solitons [45], transient ampli-
fication in lossy media [46], and constant intensity waves
in linear and nonlinear optical systems [47].

In this paper we study linear and nonlinear wave prop-
agation in a new type of optical lattice, that of a doubly
exponential periodic potential. The transmission bands
are computed using Floquet-Bloch theory and their phys-
ical properties are studied. We find a parameter regime
(of the potential) corresponding to high refractive index
where the spectrum of the linear paraxial equation is en-
tirely real. Linear beam dynamics of a wide class of Gaus-
sian inputs are thoroughly investigated in the unbroken
PT -symmetry phase. Finally, localized PT -symmetric
lattice solitons are numerically computed and their sta-
bility properties as well as nonlinear dynamics in the
presence of noise are reported.

II. LATTICES WITH TWO PT -SYMMETRY
POINTS

The starting point of our analysis is the paraxial equa-
tion of diffraction [48], which governs the dynamic evo-
lution of a linearly polarized scalar optical field ψ(x, z)
with a weakly guiding refractive index modulation V (x)
that is homogeneous in the propagation direction z. In
one space dimension and in normalized units this is given
by

iψz + ψxx + V (x)ψ = 0 . (1)
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Our physical motivation here is based on the wave scat-
tering (in the context of the Helmholtz equation) of plane
waves by non-hermitian phase screens or gratings. Such
refractive index modulation is periodic and can be de-
scribed by doubly exponential functions. The resulting
diffraction pattern is spatially asymmetric due to the
presence of gain and loss in the grating. In this paper,
we are interested in studying optical wave propagation in
such photonic structures governed by Eq. (1). For this
reason, we introduce the 2π-periodic doubly exponential
potential

V (x) = eiW (x) , W (x) = cosx+ iV0 sinx , (2)

with free real parameter V0 which, when split into its real
and imaginary parts, yields

V (x) = e−V0 sin x cos(cosx) + ie−V0 sin x sin(cosx) . (3)

Interestingly enough, the potential V (x) does not sat-
isfy the usual symmetry relation V ∗(x) = V (−x). It
rather satisfies the generalized two-fold PT -symmetry
conditions:

V ∗(x) = V (π − x) , (4)

V ∗(x) = V (−π − x) . (5)

As a consequence, the real and imaginary parts of V (x)
are, respectively, even and odd around the points x =
±π/2. Thus potential (2) possesses two distinct symme-
try points. This is different than most studies on “stan-
dard” PT -symmetric potentials (see [3, 5]), which have
focused on optical lattices with one symmetry point typ-
ically located at the origin. In Fig. 1 we show typical
profiles of the lattice for various values of V0. Depending
on magnitude of |V0| the real part of the potential ad-
mits two different local maxima (when |V0| < 1) located
exactly at the symmetry points x = ±π/2 and their 2π-
periodic extensions. On the other hand, for |V0| > 1 the
first symmetry point x = −π/2 (mod 2π) is now the only
local maximum, whereas the other point now corresponds
to a minimum.
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FIG. 1. Real (solid line) and imaginary (dashed line) parts
of the potential V (x) given in Eq. (2) for different values of
V0. Vertical lines indicate the location of the symmetry points
x = ±π/2.

At this point we shall comment on the physical mean-
ing of V0. In contrast to previous studies of PT -
symmetric optical lattices [3, 5, 6], where the potential

parameter controls the level of gain and loss for a fixed
real part of V (x), here V0 appears in both the real and
imaginary parts of the optical potential. Thus chang-
ing V0 would alter both the guiding index as well as the
magnitude of the gain and loss. This can be clearly seen
from Fig. 1. As V0 increases the distance between local
maxima and the refractive index amplitude of the waveg-
uides also increases indicating a decrease in the coupling
between adjacent channels. At the opposite limit, when
V0 = 0, the potential is V (x) = ei cos x.

III. BAND STRUCTURE ANALYSIS AND
DIFFRACTION DYNAMICS

A. Band structure and symmetry breaking

Before we consider the wave dynamics in such optical
lattices, it is important to first understand their eigen-
value spectrum. In particular, we are interested in sta-
tionary solutions, or more precisely the Floquet-Bloch
(FB) modes of the periodic index of refraction. We seek
stationary solutions of the form ψ(x, z) = φ(x)eiλz which
yield the linear eigenvalue problem

Hφ = λφ , (6)

where H = d2/dx2 + V (x) and λ is the propagation con-
stant. Expanding the wave function φ using the partial
wave method

φ(x) =

∞∑
n=−∞

φ̂ne
i(k+n)x , (7)

with Bloch momentum k yields∑
m

V̂mφ̂n−m =
(
λ+ (k + n)2

)
φ̂n , n ∈ Z (8)

where V̂m are the Fourier coefficients of the potential
given in closed form by

V̂m = Cm(1 + sgn(m)V0)|m|
(
i

2

)|m|
, (9)

Cm =
1

|m|!
+

∞∑
k=1

(
i

2

)2k
(1− V 2

0 )k

k!(k + |m|)!
. (10)

For a wide range of potential parameters V0 the largest
imaginary part of the eigenvalue λ as a function of k re-
siding in the one-sided first Brillouin zone [0, 1/2] have
been computed. Again, depending on the magnitude of
|V0| the spectrum can be completely real, partially com-
plex, or fully complex. A summary of our findings is
shown in Fig. 2. The parameter value |V0| = 1 repre-
sents the exceptional point: for |V0| > 1 the eigenvalues
are all real, and otherwise are complex. We note that for
the well-known PT -potential V (x) = cos(x) + iV1 sin(x)
(see [3, 5, 6]) the spectrum is real only when |V1| < 1.
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FIG. 2. Dependence of the linear spectrum λ(k), where k is
the Bloch momentum lying in the first Brillouin zone, as a
function of V0. Circles indicate regimes where the linear spec-
trum is purely real (max Im λ(k) ≤ 10−8) and the crosses
denote the zone where the spectrum is fully or partially com-
plex.

To further characterize the spectral properties of our
potential and highlight its novel structure we next turn
our attention to the band structure. To this end, we
show in Fig. 3 the real and imaginary parts of the first
two Floquet-Bloch bands corresponding to various values
of V0 below, at, and above the exceptional point. The
geometric structure of the bands can be put into four
distinct categories: (i) full overlap of the real part of the
bands and opening of a global gap for their respective
imaginary components (Fig. 3(a)), (ii) partial overlap of
both real and imaginary bands as shown in Fig. 3(b).
Both of these scenarios occur at potential strengths V0
well below the exceptional point. (iii) The transition or
exceptional point where the real bands intersect only at
the edge of the Brillouin zone, whereas the corresponding
imaginary parts coalesce to zero (Fig. 3(c)), and (iv) the
opening of a global gap (Fig. 3(d)) above the exceptional
point for which the entire spectrum is purely real.
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FIG. 3. The first (solid line) and second (dashed line) spectral
bands corresponding to different values of V0 below, at, and
above the exceptional point. The top (bottom) row depicts
the real (imaginary) part of the propagation constant λ as
a function of the Bloch momentum k restricted to the first
Brillouin zone. The depth of the potential V0 is (a) 0.2, (b)
0.5, (c) 0.999, and (d) 1.5.

One can intuitively explain the numerically observed

spectral properties of H by using the imaginary shift re-
lation [49, 50]. By rewriting the potential V (x) in the
equivalent form

eiW (x) =


ei
√

1−V 2
0 cos(x−i tanh−1(V0)), |V0| < 1

eie
ix

, |V0| = 1

e−
√
V 2
0 −1 sin(x−i tanh−1(1/V0)), |V0| > 1

,

(11)
one can show that H is similar to

H =
d2

dx2
+ exp

(
−
√
V 2
0 − 1 sin (x)

)
, (12)

when |V0| > 1 i.e. H = exp (−θp)H exp (θp) , where
θ = − tanh−1(1/V0) and p = −id/dx. This result can be
obtained by using the fact that e−θpxeθp = x+ iθ. Since
the spectrum of H is real it implies, through the above
similarity relation, that the spectrum of H is the same
and also real. Note that at the exceptional point |V0| =
1, the potential is described by the double exponential
function V (x) = exp (i exp(ix)). We remark that in the
case of a single exponential function i.e. V (x) = exp(ix)
the eigenfunctions φ of Eq. (6) are exactly the Bessel
beams [32].

B. Beam diffraction dynamics

In this section we are interested in exploring the lin-
ear dynamic behavior of various input Gaussian beams
in the presence of a doubly-exponential lattice with un-
broken PT -symmetry. In this regard, we shall consider
two important cases, V0 = 1 and V0 = 2. In the latter,
the lattice is relatively large, corresponding to a high re-
fractive index and well separated potential wells. Thus,
the dynamics of a narrow input Gaussian beam centered
at x = −π/2 (a global maximum point of the lattice)
yield a wave pattern which is well confined. On the other
hand, the same input wave would diffract if the refractive
index were lowered, as one can see from Figs. 4(a) and
(b). The situation is different when one instead considers
wide input Gaussian beams. For example, in the shallow
lattice limit, a double refraction pattern is observed (see
Fig. 4(c)), whereas for higher lattice potentials power os-
cillations occur over many sites.

At this point, we note that for the cases of a broad
input Gaussian beam (Figs. 4 (c) and (d)) the diffraction
pattern is less sensitive to the location of the beam’s cen-
ter because the distribution of its projection coefficients
is less localized in the Brillouin zone. On the other hand,
for a narrow Gaussian profile (Figs. 4(a) and (b)), the
diffraction patterns are different depending on the loca-
tion of the beam’s center (x = 0 or π/2 or −π/2). In
particular, the asymmetries of the diffraction patterns
in Fig. 4 can be further analyzed and explained by pro-
jecting the initial beam at z = 0 [6]. By using the bi-
orthogonality relations of the non-orthogonal Floquet-
Bloch modes one can understand from the distribution
of the beam’s projection coefficients over all the bands
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in the Brillouin zone, the resulting diffraction pattern.
Another factor that one has to take into account is the
dependence of coupling on the parameter V0. The differ-
ence between the two cases is that in Fig. 4(a) (V0 = 1)
the wave coupling is higher than that shown in Fig. 4(b)
(V0 = 2). Therefore in the first case there is coupling
between adjacent channels (asymmetric diffraction to the
left), while in the latter case the light is trapped mostly in
one waveguide by losing energy to radiation losses. Since
the modes of any individual waveguide have tilted phase
fronts (from left to right) the diffraction pattern would
be asymmetric to the right, as one can see in Fig. 4.

FIG. 4. Linear evolution of optical field |ψ(x, z)| obtained

from Eq. (1) subject to initial conditions ψ(x, 0) = e−(x+π/2)2

(top row) and ψ(x, 0) = e−.01(x+π/2)
2

(bottom row) with po-
tential parameters V0 = 1 (left column) and V0 = 2 (right
column).

Many of the diffraction characteristics (double refrac-
tion, power oscillations, etc) of wide Gaussian beams are
generic in parity-time symmetric periodic potentials and
are a direct outcome of the mode non-orthogonality. In
particular, since there is gain and loss in the refractive
index transverse modulation, the phase fronts of the FB
modes are tilted. This phase front tilt is related to the
non-zero transverse Poynting vector flow and has observ-
able consequences in the beam’s diffraction. In order to
better understand this factor, we examine (see Fig. 5) the
wave dynamics of a wide Gaussian beam in the presence
of a doubly exponential PT -lattice which is turned off af-
ter the beam has propagated some finite distance Z (here
Z = 30). Thus for z ≥ Z there is no optical potential
and the beam diffracts in free space. More specifically,
we consider a tilted incident beam on the left (Fig. 5(a))
and on the right (Fig. 5(b)) of the lattice at z = 0. Due
to the skewness of the involved FB-modes, the beam un-
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FIG. 5. Intensity diffraction pattern of an incident wide
Gaussian beam subject to initial conditions ψ(x, 0) =

e−(x/15)2−i0.8x (a) and ψ(x, 0) = e−(x/15)2+i0.8x (b) with po-
tential parameter V0 = 1.01. Note that, in both (a) and (b),
the lattice is switched off at z = 30 and the beam propagates
in free space for z > 30.

dergoes a“negative” type of refraction (breaking Snell’s
law) that is directly observable in the case of incidence
from the left side (Fig. 5(a)).

At this point, we note that Figs. 4 and 5 highlight dif-
ferent physical phenomena. The former figure displays
the double refraction and power oscillations inside the
medium, while the latter figure shows what happens to
a beam at the interface between lattice and free space
(negative refraction). Furthermore, the beams in Fig. 4
propagate at normal incidence, while those in Fig. 5 are
coupled to the lattice on an angle (oblique incidence).
The effect of the beam width and centering on the tilted
beam diffraction dynamics is a nontrivial issue, however
it can be systematically understood by projecting the
initial Gaussian beam to the bi-orthogonal FB eigenbasis
[6]. Moreover, the closer the value V0 is to the exceptional
point, the higher the degree of non-hermiticity becomes.
This non-hermitian character (combined with the inter-
ference between non-orthogonal FB-modes) leads to the
complex diffraction patterns described in Figs. 4 and 5
i.e. power oscillations, asymmetric wave transport and
negative refraction.

IV. NONLINEAR COHERENT STRUCTURES
IN DOUBLY EXPONENTIAL POTENTIALS

A. Power-eigenvalue curves and lattice solitons

Having studied the linear properties of the potential
and linear wave dynamics, we next focus our attention on
nonlinear wave propagation in the presence of a doubly
exponential lattice. The governing equation is the one-
dimensional normalized nonlinear Schrödinger equation

iψz + ψxx + V (x)ψ + |ψ|2ψ = 0 . (13)

In particular, we are interested in the structure of lattice
solitons and their nonlinear dynamics subject to pertur-
bative noise. To this end, we consider stationary waveg-



5

uide solutions of the form ψ(x, z) = φ(x) exp(iλz) which
yield

φxx + V (x)φ+ |φ|2φ = λφ , (14)

for the complex localized eigenmode φ and real propaga-
tion constant λ. Since Eq. (14) admits two PT -symmetry
points x = ±π/2, this in turn induces two different fam-
ilies of solutions which here we refer to as φ±. Further-
more, they satisfy the PT -symmetry condition∫ ∞

−∞
Im{V (x)} |φ±(x)|2 dx = 0 . (15)

We shall only consider nonlinear localized modes whose
propagation constants λ are real and reside in the semi-
infinite gap, as well as potential parameters correspond-
ing to both broken and unbroken PT -symmetries. Band
gap lattice solitons in a single exponential PT -symmetric
potential have been studied along with with their stabil-
ity properties [32]. We note that when the PT -symmetry
is no longer exact the linear spectrum can be partially
complex, in which case, lattice solitons still exist. Such a
scenario has been reported in [5] for a single exponential
potential. Typical soliton solutions obtained by the spec-
tral renormalization method [51] or Newton conjugate-
gradient scheme [52] are shown in Fig. 6 along with the
guiding index potential. The φ− family is centered at
a global lattice maximum (high refractive index) with a
dominant peak as well as all remaining humps located
at global maxima of the index profile. The solution de-
picted in Fig. 6(a) is obtained for V0 = 0.5 where the PT -
symmetry is broken, whereas the one shown in Fig. 6(c)
corresponds to an exact linear PT -symmetry. In both
cases, the real and imaginary parts of the wave function
φ− are even and odd, respectively, around x = −π/2. To
further characterize this family, we have computed the
power curves defined by

P (λ, V0) =

∫ ∞
−∞
|φ±(x, λ, V0)|2dx , (16)

for a wide range of potential values and soliton propa-
gation constants, both when the PT -symmetry is bro-
ken and exact. The results are summarized in Fig. 7(a).
In the shallow lattice limit, there is a minimum opti-
cal power necessary to generate a fundamental lattice
soliton. Increasing the potential amplitude produces a
higher effective refractive index at the left symmetry
point, thus decreasing the amount of power needed to
support the formation of such nonlinear modes.

Next we study the other localized family φ+ which
could be centered around either a local lattice maximum
or minimum depending on the value of |V0|. Prototypical
soliton examples are shown in Figs. 6(b) and 6(d) with
main peaks located at the right PT -symmetry point and
remaining humps at adjacent potential maxima. The cor-
responding existence curves for several V0 are shown in
Fig. 7(b). Interestingly enough, for a fixed real soliton
eigenvalue, solutions have larger power as |V0| increases
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FIG. 6. Gap solitons obtained from Eq. (14) (solid line) along
with the real part of the lattice potential (dashed line). Top
row corresponds to parameters V0 = 0.5 and λ = 0.76(a),
1.36(b). Bottom row: V0 = 1.5 and λ = 2.04(c), 2.71(d).

(the opposite of the scenario encountered in the φ− fam-
ily). This is due to the fact that as |V0| increases the
potential shape changes, which in turn forces the soli-
ton to center at a potential minima, rather than at a
local maxima. Moreover, each of these solutions display
a power threshold necessary to generate a fundamental
lattice soliton.

Up until now we have considered the φ± families indi-
vidually i.e. they were grouped according to their sym-
metry points. Now we examine their structural proper-
ties from a different point of view, namely we fix the po-
tential depth V0 and examine the soliton power for both
families as λ is varied. The results are shown in Figs. 7(c)
and 7(d). The solutions centered at the global maxima
are observed to have lower power than their counterparts
(the φ+ solutions) and, at a fixed eigenvalue λ, the dif-
ference in the soliton power curves grow with increasing
|V0|. We note that in the higher refractive index regime,
the lower branch continues all the way to the (real) lin-
ear spectral boundary (see Fig. 7(d)). Finally, we point
out that lattice solitons with power thresholds have been
previously studied and identified in another context, that
of the so-called surface solitons [53, 54]. In this case, the
optical potential is hermitian and the soliton solutions
exist at the boundary between the lattice and the bulk.
The existence of a termination surface leads to a power
threshold.

B. Linear and Nonlinear Stability Analysis

In this section, we turn our attention to study linear
and nonlinear stability properties of the φ± lattice soli-
tons found above. Our approach is based on numerically
solving the corresponding linear stability equation com-
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FIG. 7. Power curves (see Eq. (16)) for solitons with eigen-
values located in the semi-infinite gap centered at x = −π/2
(a) and x = π/2 (b). For comparison, the existence curves
of both families at fixed potential depths V0 = 0.5(c), 1.5(d)
are shown along side each other. The dashed and solid lines
represent the φ+ and φ− families, respectively.

bined with direct numerical simulations. To do so, we
consider perturbations on solutions to Eq. (13) of the
form

ψ(x, z) =
[
φ±(x) + η(x, z)

]
eiλz , (17)

where the perturbation η is assumed to be small in com-
parison to the soliton size. With this in mind, linearizing
around the solutions φ±(x) gives

iηz − λη + ηxx + V (x)η + φ2±η
∗ + 2 |φ±|2 η = 0 . (18)

Equation (18) governs the evolution of the perturbation
η(x, z) subject to localized initial and boundary condi-
tions. To fully address the linear stability problem we
consider two approaches, each of which provide its own
insight into the linear stability properties. First, we in-
tegrate Eq. (18) directly for some noisy initial data and
monitor the field intensity over many realizations. Phys-
ically speaking, this scenario is commonly encountered
in experiments where localized noise serves as the main
source of perturbations. Second, we assume that the
perturbation grows exponentially in the propagation dis-
tance and obtain a spectral linear stability problem which
is then numerically solved for the perturbation eigenval-
ues. The latter gives a global picture of the stability
development.

To this end, the soliton is initially perturbed by a wide
Gaussian beam seeded with random amplitude of the
form

η(x, z = 0) = Ar(x)e−x
2/10 , (19)

where A is a constant chosen to gauge the perturbation
magnitude relative to the soliton peak. The function r(x)
is a complex-valued random field constructed using spec-
tral filtering [55] i.e.

r(x) = F−1
[
e

−ξ2
4 F [r̃1(x) + ir̃2(x)] (ξ)

]
, (20)

where r̃1,2(x) are real random fields normally distributed
on the whole real line with mean zero and unit standard
deviation. The forward and inverse Fourier transforms
are given, respectively, by

F [f ] =
1√
2π

∫ ∞
−∞

f(x)e−iξxdx , (21)

F−1
[
f̂
]

=
1√
2π

∫ ∞
−∞

f̂(ξ)eiξxdξ . (22)

Throughout the rest of the paper, the amplitude is
fixed to be A = 0.05 max |φ±| /max |r|. Equation (18)
is numerically integrated using a spectral Runge-Kutta
scheme.

We first comment on the φ− family. The numeri-
cal simulations shown in Fig. 8(a) reveal that when the
linear PT -symmetry is broken perturbations grow un-
boundedly, driving the soliton to become unstable. In
some sense, this result is expected since the linear spec-
trum of eigenvalue problem (6) is now partially or fully
complex. The situation is drastically different for soli-
tons whose propagation constants correspond to exact
PT -symmetry. As one sees from Fig. 8(c), the soliton
develops a very weak instability. The stability proper-
ties of the φ+ family share many common features with
those of the φ− one. That is to say, below the exceptional
point, the instability develops at a growth rate compara-
ble to that of the φ− family (see Fig. 8(b)). The main
distinction, as shown in Fig. 8(d), happens above the
exceptional point, where now the instability is orders of
magnitude larger than the one observed in the φ− mode.
Thus, semi-infinite gap modes centered at x = −π/2,
or at a global potential maxima, corresponding to real
soliton propagation constants are less unstable (against
the random perturbation given in Eq. (19)) than those
centered at x = π/2.

To supplement the above linear stability findings, we
next consider a specific type of perturbations that grow
exponentially in z i.e.

η(x, z) = F (x)eµz +G∗(x)eµ
∗z , (23)

where F and G are complex-valued eigenfunctions as-
sumed to be localized in space. Substituting this ansatz
into Eq. (18) yields the eigenvalue system

i

(
L̂ φ2

−(φ∗)2 −L̂∗

)(
F
G

)
= µ

(
F
G

)
, (24)

where L̂ = −λ + d2/dx2 + V (x) + 2|φ|2 and L̂∗ is the

adjoint of L̂ in the space of square-integrable functions.
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FIG. 8. Evolution of the maximum value of the perturbation
averaged over 10 realizations of randomness obtained from
Eq. (18) with initial condition (19). The grey area designates
the standard deviation away from the mean. Left and right
columns correspond, respectively, to the φ− and φ+ families.
Parameters are: V0 = 0.5 (top row) for λ = 0.76(a), 1.36(b)
and V0 = 1.5 (bottom row) for λ = 2.04(c), 2.71(d).
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FIG. 9. Spectrum of eigenvalue problem (24). Left and right
columns correspond, respectively, to the φ− and φ+ families.
Parameters are: V0 = 0.5 (top row) with λ = 0.76(a), 1.36(b)
and V0 = 1.5 (bottom row) for λ = 2.04(c), 2.71(d).

Solutions corresponding to eigenvalue problem (24) with
Re(µ) 6= 0 are said to be linearly unstable. To determine
the unstable spectrum, we solve eigenvalue system (24)
using Fourier [57] collocation methods and differentiation
matrices [56]. The resulting stability spectra are shown in
Fig. 9. Regardless of the soliton symmetry point, nonlin-

ear modes obtained in the broken PT -symmetry regime
are found to be linearly unstable (see Figs. 9(a) and 9(b)).
These findings are consistent with the results obtained in
Figs. 8(a) and 8(b). On the other hand, the linearized
stability spectrum for the φ− family is located entirely on
the imaginary axis (see Fig. 9(c)) for V0 values above the
exceptional point, hence they are neutrally stable. It is
worth mentioning that the very same soliton solution de-
veloped weak instabilities against random localized per-
turbations over very long distances in Fig. 8(c). We note
that the stability properties for the φ− family resembles
that of the fundamental solutions considered in [5, 32].
Finally, the φ+ representatives are also observed to be
unstable since the stability eigenvalues µ are complex.
This scenario concurs with the numerical linear stability
problem encountered in Fig. 8(d).

FIG. 10. Soliton nonlinear dynamics obtained from Eq. (13)
subject to the initial condition given by Eq. (25). Panels (a)
and (c) represent the evolution profile of the wave amplitude
as a function of x and z for the φ− family. Similarly, (b)
and (d) for the φ+ family. Parameters are: V0 = 0.5 (top
row) with λ = 0.76(a), 1.36(b) and V0 = 1.5 (middle row) for
λ = 2.04(c), 2.71(d).

Up until now, we have studied the stability properties
of localized modes against small random localized pertur-
bations as well as exponentially growing (in z) perturba-
tion eigenfunctions. To deviate from that linear regime,
we next examine the nonlinear dynamics of lattice soli-
tons under the action of a localized random perturba-
tion. Equation (13) is numerically solved using a spectral
fourth-order Runge-Kutta method with localized bound-
ary conditions and an input beam given by

ψ(x, z = 0) = φ±(x) +Ar(x)e−x
2/10 , (25)
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FIG. 11. Dynamic evolution of the maximum peak and to-
tal power corresponding to the direct numerical simulations
shown in Fig. 10.

where A and r(x) are the same as in Eq. (19). Typi-
cal numerical results are shown in Fig. 10. Overall, the
nonlinear stage of the perturbation evolution seems to
preserve the stability picture reported earlier. That is to
say, the φ+ family is nonlinearly unstable regardless of
the guiding index depth. To visualize the development
(or lack thereof) of the nonlinear instability we present
in Figs. 11(a) and 11(b) the maximum peak and total
power of the beam as a function of z. The measured
soliton peak amplitude and power exhibit growing oscil-
latory behavior. The story with the φ− family is quite
different. In the unbroken PT phase, the solitons are
dynamically stable over long propagation distances with
small and controlled oscillations superimposed on top of
the beam (see Fig. 10(c)). We would like to point out
that, in this parameter regime, a low-amplitude Gaussian
input beam was also found to support an almost diffrac-
tion free propagation for sufficiently large lattice depth
(see Fig. 4(b)). Recall as well that in the linear regime
only the φ− family with |V0| > 1 grew at a less than
exponential rate with linear stability spectrum (obtained
from Eq. (24)) lying entirely on the imaginary axis (see
Fig. 9(c)). However, for different members of the same

family, the peak amplitude grows rapidly with z when
|V0| < 1 (Fig. 10(a)).

V. CONCLUSIONS

In the context of PT -symmetric optics, we examined
the spectral properties of a new class of non-hermitian
periodic potentials, namely that of coupled waveguides,
represented by a double exponential periodic function.
In particular, the complex refractive index distributions
are given by V (x) = eiW (x), where W (x) = cos(x) +
iV0 sin(x). Unlike most optical PT refractive indicies,
whose PT -symmetry is usually given at one point, this
class of optical structures satisfies a shifted two-fold PT -
symmetry around x = ±π/2. It is found that the lin-
ear spectrum associated with these potentials are entirely
real for |V0| > 1 and exceptional points characterize this
abrupt phase transition from broken to unbroken shifted
PT -symmetry. The effect of FB-mode phase front tilt in
the diffraction dynamics was also examined. Our analy-
sis was extended to the nonlinear (self-focusing) regime
where lattice solitons were found to exist above a spe-
cific power threshold for certain parameters. The center
of spatial symmetry of such solitons coincides with the
shifted PT -symmetry points. The linear and nonlinear
dynamic stability of these lattice solitons were investi-
gated by direct numerical simulations and by solving a
stability eigenvalue problem. The solitons in the unbro-
ken PT -symmetry regime can be stable depending on
their spatial point of symmetry.
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ishchukov, D. N. Christodoulides, and U. Peschel, Phys.
Rev. Lett. 110, 223902 (2013).

[27] P. G. Kevrekidis, D. E. Pelinovsky, and D. Tyugin, SIAM
J. Appl. Dyn. Syst., 12, 1210 (2013).

[28] O. Bendix, R. Fleischmann, T. Kottos, B. Shapiro, Phys.
Rev. Lett. 103, 030402 (2009).

[29] M. Turduev, M. Botey, I. Giden, R. Herrero, H. Kurt,
E. Ozbay, and K. Staliunas, Phys. Rev. A 91, 023825
(2015).

[30] S. Nixon, Y. Zhu, and J. Yang Opt. Lett. 37, 4874 (2012).
[31] I. V. Barashenkov, L. Baker, and N. V. Alexeeva, Phys.

Rev. A, 87, 033819 (2013).
[32] S. Nixon, L. Ge, and J. Yang, Phys. Rev. A 85, 023822

(2012).
[33] K. Li and P. G. Kevrekidis, Phys. Rev. E 83, 066608

(2011).
[34] F. Kh. Abdullaev, Y. V. Kartashov, V. V. Konotop, D.

A. Zezyulin, Phys. Rev. A, 83, 041805(R) (2011).

[35] N. V. Alexeeva, I. V. Barashenkov, A. A. Sukhorukov,
and Y. S. Kivshar, Phys. Rev. A, 85, 063837 (2012).

[36] S. Longhi, Phys. Rev. Lett. 103, 123601 (2009).
[37] S. Longhi, Phys. Rev. B 80, 165125 (2009).
[38] C.T. West, T. Kottos, T. Prosen, Phys. Rev. Lett. 104,

054102 (2010).
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