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Fast creation of a single vortex in BEC of alkali atoms at a prescribed position and time is still
challenging even though various methods to create single and multiple vortices have been proposed
and demonstrated. Topological vortex formation is advantageous in this respect over other methods
in that the position and the time of vortex formation is highly controllable. This method requires
inversion of the bias magnetic field along the axis of the condensate, which leads to unwanted atom
loss due to non-adiabatic transitions when the bias field crosses zero. It is the purpose of this paper
to propose a scheme that enables a fast creation of a vortex in much shorter time than needed for
adiabatic control time by introducing the counter-diabatic field to avert the atom loss. We further
introduce a gauge transformation so that the required magnetic field is generated by manipulating
the current of the Ioffe bars, which makes our proposal experimentally feasible.

PACS numbers: 02.30.Yy, 37.90.+, 67.85.Fg, 03.75.Lm

I. INTRODUNCTION

Demonstration of quantized vortices in a superfluid
is a manifestation of the nonvanishing order parameter.
Topological structure of vortices often reflects the mani-
fold of the order parameter space. It is, therefore, natu-
ral to seek for the method to experimentally demonstrate
formation of vortices once BEC of alkali metal atoms has
been realized. Topological methods of vortex formation,
which utilize the spinor structure of the order parameter,
have been proposed [1–7], and formations of vortices in
BEC [8–14] as well as other topological defects such as
a skyrmion [15, 16] and a monopole [17, 18] have been
demonstrated by means of phase imprinting. Topolog-
ically created vortices inevitably have multiple winding
number that can be controlled by specifying the hyper-
fine spin of BEC. This opened up a new research sub-
ject in BEC; instability of a vortex with a high winding
number into several vortices with lower winding numbers
[19–28]. Different methods to create BEC vortices have
been proposed, such as the method with stirring of BEC
by a laser beam [29], oscillatory perturbation of trap-
ping potential [30, 31] and synthetic magnetic field [32].
Fast creation of a topological vortex beyond the adiabatic
limit is challenging because of serious loss of atoms due to
unwanted non-adiabatic transitions. We propose a fast
and precisely controlled formation of a single vortex in
BEC by driving the hyperfine spin using the magnetic
field designed to restrain unwanted non-adiabatic tran-
sitions. This counter-diabatic vortex formation scheme
manifests its efficiency in fast creation process with the
manipulation time far shorter than the adiabatic limit.
The necessary magnetic field can be generated by ordi-
nary Ioffe bars, and no annular trapping potential nor
optical plug is required in the creation process.

This paper is organized as follows. In Sec. II, we give

a brief review on topological vortex imprinting to estab-
lish notation and convention. In Sec. III, we obtain the
counter-diabatic field (CDF) to flip the hyperfine spin
with speed beyond the adiabatic limit and introduce an
approximation so that it is physically feasible. In Sec.
IV, we solve the Gross-Pitaevskii equation with the mag-
netic field obtained in Sec. III to show much more atoms
are kept in the trap after the vortex formation with very
short inversion time, compared to those without CDF.
In Sec. V, we introduce a gauge transformation acting
on the hyperfine spin so that the control magnetic field
can be implemented by a usual experiment setup with-
out sacrificing the efficiency. Section VI is devoted to
summary.

II. TOPOLOGICAL VORTEX IMPRINTING

In topological vortex formation process, hyperfine spin
of the condensate is manipulated so that the vortex phase
is imprinted as a Berry phase. Initially, a vortex-free con-
densate in the weak field seeking state (WFSS) is trapped
in a quadrupole magnetic field in the xy-plane with a
uniform bias field Bz along the z-axis and, subsequently,
the bias field is linearly reversed from Bz to −Bz adia-
batically. Then a vortex with the winding number 2F is
formed, where F is the quantum number of the hyper-
fine spin of the condensate. We assume the translational
invariance of the BEC along the z-axis by following the
original scheme developed in Ref. [2].
Consider an atom with hyperfine spin F = (Fx, Fy, Fz)

at a position r at time t. When the atom is under an
external magnetic field B(r, t), the interaction Hamilto-
nian is given by

HB(r, t) = γB(r, t) · F , (1)
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where γ = µBgF , µB is the Bohr magneton and gF is the
g-factor of the hyperfine spin F . We take F = 1 in the
following for definiteness, for which F is the 3-dimensinal
irreducible representaion of su(2). For topological vor-
tex formation, we consider a special form of B, that is,
B(r, t) = B⊥(r) +Bz(t), where

B⊥(r) = B′
⊥(x,−y, 0) (2)

is the static quadrupole field in the Ioffe-Pritchard trap,
for which B′

⊥ = d|B⊥|/dr is approximately constant,
while

Bz(t) = (0, 0, Bz(t)), (3)

with

Bz(t) =

{

Bz

(

1− 2t
T

)

, 0 ≤ t ≤ T
−Bz, t ≥ T

(4)

Namely, Bz(t) is linearly reversed during a time interval
T and kept fixed after t = T . We show below that a
phase with the winding number 2 is imprinted through
this process.
For a given B(r, t), the Hamiltonian (1) has three nor-

malized eigenstates

|WFSS〉 = 1

2B





(B −Bz)e
2iφ

−
√
2B⊥e

iφ

B +Bz



 ,

|NS〉 = 1√
2B





−B⊥e
2iφ

√
2Bze

iφ

B⊥



 , (5)

|SFSS〉 = 1

2B





(B +Bz)e
2iφ

√
2B⊥e

iφ

B −Bz



 ,

where B = |B(r, t)| and φ is the azimuthal angle. The
corresponding eigenvalues are |γ|B, 0, and−|γ|B, respec-
tively, where γ = −µB/2. The WFSS with the highest
energy |γ|B is the only state that can be magnetically
trapped. Note that the relative phase between compo-
nents in Eq. (5) is compleltely fixed by the condition
that the condensate is initially a vortex-free WFSS [3].
The bias field Bz(0) at t = 0 is taken much larger than

the quadrupole field in the domain of interest so that
Bz(0) ≫ |B⊥| holds throughout the condensate. With
this choice, we find

|WFSS(0)〉 ≃





0
0
1



 , (6)

by putting B ≃ Bz. If the condensate is entirely made
of the WFSS at t = 0, the configuration is vortex-free
as remarked above. Subsequently Bz is linearly reversed
during the interval T . At t = T/2, at which Bz(T/2) = 0,
the WFSS takes the form

|WFSS(T/2)〉 = 1

2





e2iφ

−
√
2eiφ

1



 (7)

where we used the equality B = |B⊥| at t = T/2. Later
at t = T , the bias field is completely reversed so that
Bz(T ) = −Bz and ignoring B⊥ we obtain

|WFSS(T )〉 ≃





e2iφ

0
0



 . (8)

Observe that a vortex with the winding number 2 has
been formed at t = T .

Formation of a vortex in our scenario is under-
stood from a slightly different viewpoint. The expec-
tation value of the hyperfine spin vector 〈F (t)〉W ≡
〈WFSS(t)|F |WFSS(t)〉 traverses a meridian of the Bloch
sphere as t is changed from 0 to T , starting from the
South pole and ending up with the North pole. Which
meridian the vector traverses depends on the angle φ. It
is easy to show

〈Fx(t)〉W = −B⊥ cosφ

B
, 〈Fy(t)〉W =

B⊥ sinφ

B
,

〈Fz(t)〉W = −Bz

B
. (9)

For example, a hyperfine spin with φ = 0 traverses a
meridian with φ = π, while one with φ = π/2 traverses
a meridian with φ = π/2. The solid angle subtended
by these two meridians is π, giving the relative phase
difference of π between these two hyperfine spins at t =
T . This is regarded as the Berry phase acquired by the
adiabatic change of the magnetic field [3, 8]. In this way,
as one circumnavigates around the z-axis along a circle
in the xy-plane, one observes that the phase of the order
parameter changes by an amount 4π, resulting in a vortex
with the winding number 2 [3, 8].

Figure 1 shows the trajectories of the combined mag-
netic field B = B⊥ + Bz and 〈F 〉W at φ = 0. For the
parameters used in our numerical solution in Sec. IV,
we obtain |B⊥(r)|/Bz(0) ≃ 2.7 × 10−4 at r = aHO, the
harmonic oscillator length of the trap. For such a small
ratio, the trajectory of B completely overlaps with the
vertical axis. For this reason, the ratio is changed to 0.1
in the figure for purposes of illustration. Observe that
〈F 〉W is always antiparallel to B.

A drawback of this scenerio is that the gap among
WFSS, NS and SFSS disappears at r = 0 when t = T/2 .
This means that atoms at r ≃ 0 flip to NS and SFSS (the
Majorana flops) when t ∼ T/2 and escape from the trap.
In fact, the numerical analysis made in [3] shows that
there is an optimal T = Tmax that gives the maximum
number of atoms at t = T . If T < Tmax, atoms are
lost due to non-adiabatic transitions while if T > Tmax,
the condensate spends a long time while the gap is small
and atoms are lost through slow passage of the small gap
region. It is the purpose of the next section to prevent
non-adiabatic transition by adding the counter-diabatic
field and achieve fast formation of a vortex.
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FIG. 1. (Color online) Trajectories of B (red line) and 〈F 〉W
(red dashed curve) of a hyperfine spin with φ = 0. The verti-
cal axis is the z-axis, while the horizontal axis is the x-axis.
The quadrupole field is made unphysically large compared
to Bz(0) for purposes of illustration, see text. Vectors at
t = 0, T/2 and T are explicitly shown.

III. COUNTER-DIABATIC FIELD

It is certainly desirable to have more atoms left in the
trap after vortex formation. Control of atomic density in
a wide range is essential to study the decay pattern of a
vortex with a multiple winding number into several vor-
tices with lower winding numbers [19–27, 33]. Keeping
higher atom density after vortex formation is also indis-
pensable to successful vortex pumping [5], which requires
phase imprinting several times. In addition, it should
be noted that higher atomic density implies (i) easier
measurement of physical quantities, (ii) fighting against
atom loss due to hyperfine spin changing collision and
(iii) smaller vortex core size, which is advantageous for
forming a vortex in an arbitrary position in the conden-
sate [34].

Motivated by the concept of shortcuts to adiabaticity
[35], we derive a control magnetic field for fast creation
of a single vortex using the counter-diabatic formalism
(or quantum transitionless driving) developed by Demir-
plak and Rice [36] and formulated by Berry [37, 38] and
demonstrated experimentally in [39].

We briefly summarize the counter-diabatic approach
to non-adiabatic quantum control. Let H0(t) be a
time-dependent Hamiltonian and |n(t)〉 be an instanta-
neous eigenvector with the eigenvalue En(t) such that
H0(t)|n(t)〉 = En(t)|n(t)〉. In the adiabatic approxi-
mation, the solution to the time dependent Schrödinger

equation is |ψn(t)〉 = e−iγn(t)|n(t)〉, where

γn(t) =
1

~

∫ t

0

dt′En(t
′)− i

∫ t

0

dt′〈n(t′)|∂t′n(t′)〉. (10)

Let U(t) =
∑

n |ψn(t)〉〈n(0)| be the time-evolution oper-
ator such that U(t) : |n(0)〉 7→ |ψn(t)〉. The operator U(t)
defines a Hamiltonian H(t) = i~(∂tU(t))U †(t) for an ar-
bitrary time evolution, not necessarily adiabatic, namely
|ψn(t)〉 is the exact solution of

i~∂t|ψn(t)〉 = H(t)|ψn(t)〉, (11)

where |ψn(0)〉 = |n(0)〉 is satisfied by definition. If
we write H(t) = H0(t) + HCD(t), the counter-diabatic
Hamiltonian HCD(t) is written as

HCD(t) = i~
∑

n

|∂tn(t)〉〈n(t)|, (12)

when the “parallel” condition, 〈n(t)|∂tn(t)〉 = 0, is satis-
fied.
Let us apply the counter-diabatic scheme to our hy-

perfine spin system by taking H0 and |n〉 as H0(r, t) =
HB(r, t) and the instantaneous eigenstates in Eq. (5),
respectively. Note that the coordinate r here is just
a parameter specifying the position of the atom in the
condensate, and the geometric phase in Eq. (10) van-
ishes. By substituting Eq. (5) into Eq. (12), the counter-
diabatic Hamiltonian is obtained as

HCD = γBCD · F , (13)

where

BCD(r, t) =
2~

γT

Bz(0)B
′
⊥

B2(r, t)
(y, x, 0) (14)

is the CDF. Note that BCD is always orthogonal to B⊥.
An important remark is in order here. When the counter-
diabatic scheme is applied to a quantum system, it pro-
duces a counter-diabatic potential (γBCD ·F in our case)
that prevents the quantum system from escaping from
an adiabatic time evolution. There is no guarantee, how-
ever, that the counter-diabatic potential will be physi-
cally feasible. In fact, BCD in Eq. (14) does not satisfy
div BCD = 0. This is not unexpected since we did not
consider the Maxwell equation while we derived BCD.
The way out of this problem is to fix the coordinate r
to r0 in B2(r, t) in the denominator of BCD(r, t) so that
BCD(r, t) ∝ (y, x, 0) and div BCD vanishes. We numeri-
cally demonstrate below that the CDF in fact increases
the number of atoms left in the trap after the vortex for-
mation in a wide range of the inversion time T by using
several values of r0. BCD can be generated by four Ioffe
bars that are obtained by rotating the confining Ioffe bars
by an angle π/4 around the z-axis. We denote the com-
bined magnetic field as B̄ = B +BCD.
Before we close this section, we comment on the phys-

ical interpretation of BCD. As Bz is reversed fast, atoms
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in |WFSS〉 in Eq. (5) “slip” to |NS〉 and |SFSS〉 by non-
adiabatic transition if there is no CDF. BCD, in a sense,
“catches” those atoms so that their hyperfine spin state
with respect to B̄ remains in |WFSS〉 of Eq. (5) defined
with respect to B. It will be shown later in Figs. 3 and
10 that the total magnetic field with CDF bends asym-
metrically from the meridian so that atoms enjoy being
in |WFSS〉 of Eq. (5) even with fast inversion of Bz(t).
This is confirmed numerically in Sec. IV.

IV. TOPOLOGICAL VORTEX FORMATION

WITH COUTER-DIABATIC FIELD

We numerically solve the Gross-Pitaevskii equation
(GPE) with the designed magnetic field B̄;

i~∂tΨm(r, t) =
{

hmn + gnδmn

∑

p

|Ψp|2

+gs
∑

α

∑

l,p

(Ψl(Fα)lpΨp) (Fα)mn

}

Ψn,

(15)

where l,m, n, p ∈ {−1, 0, 1}, α ∈ {x, y, z},

hmn =
(

− ~
2∇2

2M
− µ

)

δmn + Bmn, B = γB̄ · F ,
(16)

with the mass of the atom M , and the chemical poten-
tial µ (the eigenvalue of the GPE at t = 0). Here gn
is the density-density coupling strength while gs is the
spin-spin coupling strength. To begin with, we need to
find the initial condition to solve the GPE (15). As-
suming that the initial hyperfine state is in the WFSS,
|Ψ(0)〉 = f(r)|WFSS(0)〉, the order parameter is ob-
tained by solving the stationary GPE

− ~
2

2M

[1

r

d

dr

(

r
d

dr

)

− β′2

2
− 1

4r2
(7− 8 cosβ + cos 2β)

]

f(r)

+γB̄(r)f(r) + gf3(r) = µf(r), (17)

where g = gn + gs, B̄(r) = |B̄(r, 0)|,

β = tan−1

[ |B⊥(r) +BCD(r, 0)|
|Bz(0)|

]

(18)

and β′ = dβ/dr. Here we note that f(r) and |B⊥(r) +
BCD(r, 0)| are in fact functions of r only.
The time-dependent GPE is solved numerically and

we summarize the results below. Throughout our calcu-
lation, we have taken the parameters of 23Na atoms [3].
The parameter set used is M = 3.81 × 10−26 kg, gn =
0.0378a3HO~ω, gs = 0, Bz(0) = 1 G and B′

⊥ = 300 G/cm,
where ω = ~/(Ma2HO) and ~ω ∼ 3.49 × 10−24 erg. The
harmonic oscillator length is aHO ∼ 9.14×10−1 µm. The
time scale τ = 2π/ωL ∼ 1.43 µs is a reasonable mea-
sure of adiabaticity, where ωL = γ|B̄(0, 0)|/~ ∼ 4.40 ×
106 rad/s is the Larmor frequency at r = 0, t = 0. The

 0

 4.5

Ttime 0

B
C
D

B

FIG. 2. (Color online) Time dependence of the ratio
|BCD|/|B⊥|, which is independent of r and depends only on
t. Parameters are log10(T/τ ) = 1.4 and r0/aHO = 2. For
the parameters in the text, they amount to T ∼ 36 µs and
r0 ∼ 1.83 µm.

x

y

FIG. 3. (Color online) (a) Schematics of B⊥ (red arrow)
and BCD (green arrow) in the xy-plane. (b) B⊥, BCD and

B⊥ +BCD (blue arrow) for x > 0 and y = 0. B̃⊥ (light blue
arrow) is obtained by rotating B⊥ +BCD by an angle αB so
that it is parallel to B⊥ (see Sec. V). Figures are conceptual
and coordinates and magnetic fields are in arbitrary units.

chemical potential measured with respect to the Zeemen
energy is found to be µ − ~ωL ∼ 3.66 ~ω. The number
of atoms N(0) =

∫∫∞

−∞
|Ψ|2dxdy per unit length in the

z-direction at t = 0 is approximately 1.3 × 103 µm−1,
where |Ψ|2 =

∑

p |Ψp|2. It turns out that BCD is negligi-
bly small at t = 0 and it can be ignored safely in solving
Eq. (17). Figure 2 shows the time dependence of the ra-
tio |BCD|/|B⊥| for log10(T/τ) = 1.4 and r0/aHO = 2,
which is independent of r and depends only on t. Figure
3 shows schematics of B⊥ and BCD in the xy-plane. αB

is the angle between B⊥ and B⊥ + BCD as defined in
Sec. V.

We calculate the number of atoms left in the trap af-
ter the vortex formation takes place. To incorporate
atom loss in the numerical simulation we multiply the
order parameter by h(r) = 0.5[1− tanh((r− r1)/λ)] with
r1 = 30aHO and λ = 2aHO at each time step of the
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FIG. 4. (Color online) Fraction N(t)/N(0) of atoms left in
the trap long time after a vortex is formed. Since t ≫ T , the
condensate is in the pure WFSS. ◦ shows the fraction without
BCD while other symbols show the fractions with BCD for
different r0. Here τ ∼ 1.43 µs.

 0

 18

 1  4log
10

(T/τ)

0.5

1

1.5

2

r
0
a
HO

N
 (

 t 
) 

w
it

h
 C

D
F

N
 (

 t )
 w

it
h
o
u
t 

C
D

F

FIG. 5. (Color online) Ratio of N(t) with the CDF to that
without the CDF for t ≫ T . The unit of time is τ ∼ 1.43 µs.

numerical simulation with the GPE (15) [3]. Figure 4
shows the fraction N(t)/N(0) of atoms left in the trap
at t ≫ T . Most of the atoms left in the trap at t are in
WFSS since t is large enough so that the SFSS and NS
components are wiped out from the domain of interest
by the action of h(r). Since we replaced an unphysical
BCD with a physical BCD satisfying div BCD = 0, the
result depends on the parameter r0 in the denominator
of Eq. (14). Observe the prominent improvement in the
ratio N(t)/N(0) for small T . This is more clearly seen
by plotting N(t) in the control with the CDF normalized
by N(t) in the control without the CDF. Figure 5 shows
the ratios with the same r0 as that in Fig. 4. The ratio
reaches almost 20 for T = 10τ and r0 = 0.5aHO.

Next, we show the CDF really suppresses the transi-
tions WFSS → NS and WFSS → SFSS by looking at
the projected atom numbers. For this purpose, we define
the projection operators ΠW = |WFSS〉〈WFSS|,ΠN =
|NS〉〈NS| and ΠS = |SFSS〉〈SFSS| and evaluate the am-
plitude of the order parameter (the number density) of
respective hyperfine state

|ΨI|2 = 〈Ψ|ΠI|Ψ〉, (19)

 130
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3.7  0

 0
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 0  4.6

3.7

FIG. 6. (Color online) Snapshots of the amplitude of the order
parameter |ΨW|2 are displayed in the left (right) panel for
the control without (with) the CDF with the same parameter
set as in Fig. 2. The thin purple curves are |ΨW|2 plotted
sequentially at the same time interval for T/2−ǫ ≤ t ≤ T/2+ǫ
with ǫ = T/80. The blue dashed curves and the red thick
curves are |ΨW|2 at t = 0 and T , respectively. The inset is
the profile of the condensate f at t = 0, which is obtained by
solving Eq. (17) numerically. In the inset the units of r and

f are µm and µm−3/2, respectively.

where I = {W,N, S}, and the number of atoms per unit
length of these states

NI =

∫∫

dxdy|ΨI|2. (20)

In the left (right) panel of Fig. 6 the snapshots of the am-
plitude |ΨW|2 are displayed for the control without (with)
the CDF for the same parameter set as in Fig. 2. The
amplitude |ΨW|2 is plotted sequentially with equal time
interval for T/2− ǫ ≤ t ≤ T/2 + ǫ where ǫ = T/80. The
dashed blue curves and the thick red curves are |ΨW|2
at t = 0 and T , respectively. The inset shows the bound
state order parameter f(r) obtained by solving Eq. (17)
for 23Na. Vanishing order parameter at r = 0 and t = T
is a manifestation of the formation of a vortex in the
WFSS. The results clearly show that more atoms are
kept in the trap at t = T with the CDF compared to the
case without the CDF. It is also found that the ampli-
tude in the region r > 2 µm does not change very much in
the presence of CDF while considerable diminution takes
place in the case without CDF. Observe that outstanding
change in |ΨW|2 occurs only in the vicinity of t = T/2 at
which Bz changes the sign. It turns out that the number
of atoms in WFSS state is essentially constant for t ≥ T
in both cases. Figure 7 shows the time dependence of
NW(t)/N(0) in the controls without CDF (dashed black
curve) and with CDF (solid red curve) along with the
ratios of other components. It is evident from this figure
that transitions among states take place only at around
t = T/2 and that non-adiabatic transition of WFSS at
t ∼ T/2 is greatly suppressed by CDF. This means that
our approximation introduced in the denominator of (14)
breaks down at t ∼ T/2, when the original BCD in Eq.
(14) diverges at r = 0. Otherwise, our simple approxi-
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FIG. 7. (Color online) Instantaneous fraction of atoms
NW(t)/N(0) (red solid curve), NN(t)/N(0) (green dashed
curve) and NS(t)/N(0) (blue dotted curve) with the CDF dur-
ing the vortex formation for log

10
(T/τ ) = 1.4 and r0 = 2aHO.

The dashed black curve shows NW(t)/N(0) without the CDF.
Here T ∼ 36 µs as before.

mation works reasonably well.
We repeat our analysis for a BEC with a larger num-

ber of atoms. Figure 8 shows the results for f(0) = 20

a
−3/2
HO corresponding to the density

∫∫∞

−∞
|Ψ|2dxdy ∼

2.1× 104 µm−1 at t = 0. Figure 8(a) shows the fraction
N(t)/N(0) of atoms left in the trap at t≫ T for various
r0. The black open circles are for the control without
CDF. The fraction of the lost atoms without CDF is less
than that for f(0) = 10 a

−3/2
HO shown in Fig. 4 since the

initial wave function around r = 0 for f(0) = 20 a
−3/2
HO is

flatter than that for f(0) = 10 a
−3/2
HO due to the positive

coupling strength g. The CDF with r0 = 2.5aHO and
3aHO keep more atoms forming a vortex especially for
small T . Figure 8(b) shows the ratios of N(t≫ T ) with
the CDF to that without the CDF. Prominent improve-
ment in the ratio is seen for small T .

V. MORE EXPERIMENTALLY FEASIBLE

CONTROL

Now an important observation is in order. In our pro-
posal in Sec. IV, we need to prepare two sets of Ioffe
bars, one to produce the confining quadrupole field and
the other to produce the CDF. Clearly this is demanding
for experimentalists. All topological vortex formation ex-
periments so far were conducted with a single confining
magnetic field. Even if one could build a trap with two
sets of Ioffe bars, aligning their centers exactly at the
same place would be practically impossible. To circum-
vent this problem, we introduce time-dependent gauge
transformation so that the combined field B⊥ +BCD is
rotated and the resulting field is parallel to the confining
B⊥. Let

αB = tan−1 |BCD|
|B⊥|

(21)
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FIG. 8. (Color online) (a) Fraction N(t)/N(0) of atoms left
in the trap long time after a vortex is formed for f(0) = 20

a
−3/2
HO

corresponding to
∫∫

∞

−∞
|Ψ|2dxdy ∼ 2.1 × 104 µm−1.

Since t ≫ T , the condensate is in the pure WFSS. ◦ shows the
fraction without BCD while other symbols show the fractions
with BCD for different r0. (b) Ratio of N(t ≫ T ) with the
CDF to that without the CDF.

be the angle between B⊥+BCD and B⊥ (see Fig. 3). If
B⊥ +BCD is rotated by αB, it becomes parallel to B⊥

and hence it can be generated by a single set of Ioffe bars
by controlling the current. This rotation is implemented
by the unitary transformation

U(αB) = e−iαBFz . (22)

Now the Zeeman term of the Hamiltonian is transformed
as

U(αB)γB̄ · FU †(αB) = γ(B̃⊥ +Bz) · F , (23)

where B̃⊥ = U(αB)(B⊥+BCD)U(αB)
† ∝ (x,−y, 0). Of

course, this is not the whole story and there is a price
we need to pay. The Hamiltonian in the rotating frame
acquires a gauge term

−iU∂tU † = α̇BFz . (24)

This term, proportional to Fz , works as a magnetic field
in the z-direction and the bias field Bz(t) = Bz(0)(1 −
2t/T ) is replaced by

B̃z(t) = Bz(0)

(

1− 2t

T

)

+
α̇B~

γ
. (25)
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-0.6
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 4.5
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(a)

(b)

 0

1

T 2

T 2

FIG. 9. (Color online) (a) |B̃⊥(r, t)|/|B⊥(r)| and (b)

B̃z(t)/Bz(0) (solid red curve) and Bz(t)/Bz(0) (dashed black
line) for the same parameters as those used in Fig. 7 with
T ∼ 36 µs. Deviations from the original fields B⊥ and Bz(t)
are promient only when t ∼ T/2.

We denote the combined field as

B̃(r, t) = B̃⊥(r, t) + B̃z(t), (26)

where B̃z(t) = (0, 0, B̃z(t)). Note that αB depends on
time but not on space coordinates. Numerical calucula-
tion shows that the number of atoms in WFSS at t > T
in the control with B̃(r, t) is exactly the same as that
with B̄(r, t) generated by two sets of Ioffe bars. Figure 9

shows |B̃⊥(t)|/|B⊥| and B̃z(t)/Bz(0) for 23Na with the
parameters used in Fig. 7.
Figure 10 shows the schematic picture of the control

magnetic field B̃ obtained in this section. For φ = 0,
the modified magnetic field is always in the xz-plane,
whose trajectory is shown in Fig. 10(a) and (b) in the
solid red curve. Figure 10(b) also shows the trajectory
of the control magnetic field B̄ obtained in Sec. IV and
the trejectories of 〈F (t)〉W in both cases.

VI. SUMMARY

We have proposed a method to suppress non-adiabatic
transitions while topological vortex formation takes place
in BEC of alkali atoms. The counter-diabatic field is
generated by a set of Ioffe bars, which is obtained by
rotating the confining Ioffe bars, producing the confin-
ing quadrupole field, by π/4. Our numerical calcula-
tion demonstrates that non-adiabatic transitions are sup-

x

FIG. 10. (Color online) (a) Trajectory of B̃(r, t) for φ = 0
is shown in a solid red curuve. The trajectory is in the xz-
plane. (b) Trajectories of B̃(r, t) (the solid red curve), B̄(r, t)
(the solid blue curve), 〈F (t)〉W after the gauge transformation
(broken red curve) and 〈F (t)〉W before the gauge transforma-
tion (broken blue curve). |B⊥(0)| is taken unphysically large
as in Fig. 1 for purposes of illustration. The vertical black
line is the axis of the sphere and is given as a guide.

pressed for any inversion time T and, in particular, sup-
pression is most impressive for a small T . We can further
improve this scheme by applying a gauge transformation
to a rotating frame so that the combined field B̃⊥ is
parallel to B⊥. Then, the control magnetic field can
be generated with ordinary Ioffe bars by simply control-
ling the current. This also requires modulation of Bz(t)
from linear time-dependence. We believe our proposal
is experimentally feasible by simple modifications of the
existing setup.

Application of this work to vortex pumping [5] is in
progress and will be reported elsewhere.
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[4] M. Möttönen, N. Matsumoto, M. Nakahara, and T.
Ohmi, J. Phys.: Condens. Matter 14, 13481 (2002).
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