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We calculate how correlations in a Bose lattice gas grow during a finite speed ramp from the
Mott to the Superfluid regime. We use an interacting doublon-holon model, applying a mean-field
approach for implementing hard-core constraints between these degrees of freedom. Our solutions
are valid in any dimension, and agree with experimental results and with DMRG calculations in
one dimension. We find that the final energy density of the system drops quickly with increased
ramp time for ramps shorter than one hopping time, J7ramp < 1. For longer ramps, the final energy
density depends only weakly on ramp speed. We calculate the effects of inelastic light scattering

during such ramps.

PACS numbers:
I. INTRODUCTION

The dynamics of systems driven through a phase tran-
sition are a source of rich physics [I]. The phenomenol-
ogy is particularly interesting in zero-temperature sys-
tems driven through a quantum phase transition [2, B].
In recent years, breakthrough experimental techniques
in atomic physics have given us a direct probe of such
transitions [4H8]. In particular, a recent experiment [9]
has probed the transition of a bosonic lattice system
driven from a Mott insulator state to into the superfluid
regime. The Bose-Hubbard model [I0], which describes
the physics of such experiments, is one of the fundamen-
tal models of many body quantum mechanics, but the
dynamics of its phase transition is not entirely under-
stood. In this paper, we attempt to provide insight into
this transition by introducing a novel mean-field theory,
building on commonly used doublon-holon models [I1].
We calculate how correlations develop during a lattice
ramp through the phase transition.

The phase diagram of bosonic lattice systems has been
explored thoroughly [10, MT2HTI5]. In the strongly inter-
acting regime, at commensurate filling, lattice bosons
form an incompressible Mott insulator. Conversely, for
weak interactions the ground state is a superfluid Bose-
Einstein condensate with long range order. When the
system begins in a Mott insulator state and interactions
are turned off, correlations grow as quasiparticles propa-
gate across the system [16] [17].

The Mott and superfluid phases can be approximated
by distinct mean-field quasiparticle models. The excita-
tions in the superfluid phase are well described by Bogoli-
ubov quasiparticles made up of superpositions of parti-
cles and holes [I8]. In the Mott insulator regime, on-site
number fluctuations are small and the occupation of each
site can be truncated to a small number of possibilities
[11], the “doublon-holon” model. At strong coupling, the
doublons and holons can be approximated as noninter-
acting bosons. These two descriptions are incompatible,

making it challenge to model the dynamics across the
phase boundary.

Previous work has produced partial understanding of
this transition [19, 20]. Product state methods such
as the Gutzwiller ansatz cannot calculate correlations
[21, 22]. Other approaches have included calculations
on small lattices [23], field theory calculations for large
particle density [24H27] and various numerical techniques,
which work well in one dimension but are otherwise more
limited [28H30]. There has also been significant work
on sudden quenches [31] 32]. Approaches based on the
Schwinger-Keldysh technique, which also produce equa-
tions of motion for relevant observables, have a long his-
tory in other fields [33]. More recently such approaches
have been used to explore the phase diagram and order
parameter behavior in the Bose Hubbard model [34] 35].

Here, we provide an analytical model that is partic-
ularly suitable for the small mean occupation numbers
common in atomic experiments, provides access to co-
herence data, and is applicable in any number of dimen-
sions. We are able to see the growth of coherence as
interactions are turned off, and how the rate at which
they are turned off affects the correlations and final en-
ergy density of the system. We also model the effects of
decoherence on such experiments, providing insights into
the trade offs of experimental systems.

II. MODEL

The physics of atoms trapped in an optical lattice is
well-approximated by the Bose Hubbard model [13], de-
fined by the Hamiltonian.

fpy = =7y (ala; +ala) + § 3wt —1) ()
(1,9) i

Here d; (a) is the annihilation (creation) operator for a

boson on site i, while n; = d;rdi is the number density
operator at site ¢. The sums are over nearest-neighbor



pairs (i, j) and over all sites ¢. The hopping energy J and
interaction energy U are parameters of the model.

We perform our calculation within an approximation
called the doublon-holon model. We restrict the state
of each site ¢ to the subspace of occupations [i) €
{|n+1),|7), |7 — 1)}, where 7 is the median number of
particles per site. The system can then be thought of in
terms of a mean-occupation background and hard-core
quasiparticle excitations of “holons” (an 7 — 1 occupa-
tion) and “doublons” (72 + 1 occupation). The annihi-
lation operators at site for these quasiparti(iles are de-
ﬁAned by di|ﬁA>z. = di|n—1), = hiln+1), = hi|n), = 0,

Under this approximation, the Hamiltonian is

i — Z[ it k} (dha + B

§5k (dek — il;rjlk> + Jney (Cikil_k + }ALT_de};)

(2)

5o 1 ik-r; J ; g
Here, dj, = o o€ d;, summing over all sites 7, and

similar for hy, while e, = =25, cos(k - A), summing
over lattice basis vectors, A = AZ, Ay, AZ in three di-
mensions, or a subset of those in lower dimensions. These
represent a cubic lattice with lattice constant A. U and
J are the interaction and hopping strength, respectively,
and n = y/n(7+1). N; is the number of sites in the
lattice.

The doublon-holon model is an approximation for the
single-band Bose-Hubbard model [10, 36]. It is most ac-
curate in the low-temperature, strongly-interacting limit,
as the energy of a state increases quadratically with the
deviation from the mean particle number. However, for
low occupation numbers 7, it can be a good approxima-
tion in the weakly-interacting limit as well. In a non-
interacting superfluid gas with 7 = 1, the probability of
finding more than two particles on a given site is less than
10%. We do all our calculations in this regime, taking,
iy = 7+ {didi ) — (hlh

We calculate the time evolution of the two-point corre-
lation functions, <dek> <hT hk> and <c2kﬁ_k> using

d<X>:iPLX]'HmhM¢

)=n=1

the Heisenberg equation, 7

core constraints for d;, h; imply nontrivial commutation
relations, and the resulting equations of motion involve
four-point correlation functions such as

Crpa = <dlﬁtpfqil—k—qdk>~ (3)

We can characterize CY; , 4 by writing it in the form

Chopg = pk<h ke q><didk> "

+ 94,0 <d;hip><iL,kCzk> — al}:\,}p,q <Ci£cik>
This  equation  defines the function @,
We make a mean-field approximation,  tak-
ing Ap kg X o <hT_p qh_p_q><d;cip>, where
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FIG. 1: (Color Online) Equilibrium properties of the hard-

core doublon-holon model discussed in the text for a cubic
lattice with mean filling 7 = 1. Shown as a function of the
interaction strength U/J, above: the equilibrium condensate
fraction, below: the average energy per particle in the ground
state.

nd =

<d£dk> is the doublon density. This approx-

imation enforces the hard-core constraint ), Cj , 4 = 0,
and becomes exact in the deep Mott regime. We make
similar approximation for the other four-point correla-
tion functions, as detailed in Appendix [A] We arrive at
a closed set of non-linear, coupled differential equations
that we numerically integrate to find all quasiparticle
two-point correlation functions at any time. From these
we can easily extract the correlation functions for real

particles, <djdj> and <akak>

III. EQUILIBRIUM STATE

We find the equilibrium state under this model by
minimizing the expectation value <ﬁ > of the Hamilto-

nian of Eq. . ) while requiring the equations of motions

Eq. - ) to vanish.

We show the equlhbrium properties of the model as
we vary U/J in Fig. [l The superfluid order parameter

is the condensate density, ~ ~ <a£ak> . We find a phase
transition at a critical value of U, /J = 10 4,21.8,33.4 in
one-, two- and three-dimensions. These are similar to
the standard mean-field values of U./J = 11.6,23.2,34.8
[12,[37] and somewhat higher than numerically calculated
values U./J = 3.6,16.9,29.3 [38H43]. We also plot the
behavior of the ground state energy dens1ty, N <H > At

U = 0, the Bose Hubbard model in D dimensions has
a ground state energy density of —2DJ. In our model



FIG. 2: (Color Online) Evolution of the momentum density

distribution function <d£dk> as the interaction strength is

slowly ramped down, U = U; (U /U;)"/™ in a one-dimensional
lattice. Here U; = 47J,Uy = 2J,J1. = 2.

the energy density reaches a small but finite value above
these values.

IV. INTERACTION RAMPS

We use the model above to explore the behavior of a
gas subject to a non-adiabatic ramp of the interaction
through the phase transition. We perform an interaction
ramp of the form

U =U;(U; U™, (5)

where the ground state of the system is a Mott insulator
for U = U; and superfluid for U = Uy. The time scale
7, sets the speed of the ramp. This form approximates
the relation U/J in an optical lattice experiment if the
scattering length is fixed and the lattice depth is ramped
down [13].

We initialize the system in the ground state at the
initial lattice depth, in the Mott regime, and perform a
finite-element time integration of the evolution equations
as the interaction strength is reduced. We calculate the
momentum space density throughout this evolution for
various values of 7,.. Figure |2| shows the behavior for a
typical ramp, with J7,. = 2. We have full access to all
two-point observables at any time along the ramp.

We first characterize the behavior of the system at
the end of the ramp. We define an effective correlation

length, &, by comparing correlations in the system to the
form <dzdj> = ne~mi~Til/€. We calculate & by fitting to
the width of the momentum distribution, as defined by
the first moment, yielding

gz _1/1oglizz<é2&k>]~ (6)

Though it is infinite for an equilibrium superfluid system,
& remains finite at any finite time for a system that is not
initially superfluid [16].

Figure [3] shows the effective correlation length at the
end of the ramp for varying ramp times. Our calculation
agrees with the experimental results and, in one dimen-
sion, DMRG results of [9]. In one dimension, we also
compare our calculation to the results of an exact diago-
nalization of the Hamiltonian of Eq. on a non-periodic
lattice with Ny = 11. The results agree well with our ap-
proximate calculation.

¢IA

FIG. 3: (Color Ounline) Effective correlation length & (see
Eq. @), normalized by the lattice constant A, at the
end of a ramp of the interaction strength of the form
U =Ui(Us/U,)"™. Here U; = 47J,U; = 2J. The red dots
are the result of an exact diagonalization calculation for an
11-site one-dimensional lattice.

V. FINAL ENERGY DENSITY

After the ramp has ended, the system continues to
evolve, and the correlation length continues to grow.
However, the energy of the system is now conserved. At
long times after the ramp we expect the state of the sys-
tem to resemble a thermal state at a temperature deter-

mined by the energy density U = - {<1€I> - <H’> },
. 9s
here { H
where < >gs

system with its final parameters.

We plot U as a function of the ramp time 7, in Fig. [
For ramp times much shorter than the hopping time
scale, J7,. < 0.2, the final energy density varies slowly
with 7,.. Such ramps are indistinguishable from instan-
taneous quenches, and the final state of the system, if
allowed to equilibrate, would be similar for any 7, in this
regime. For J7, = 0.2, the system’s energy depends more
strongly on the length of the ramp.

Figure [4] also shows the critical energy density U, cor-
responding to the energy density of of a Bose lattice gas
with U = Uy at the critical temperature of the superfluid-

is the energy of the ground state of the



normal gas phase transition [41l 42]. We expect a gas
with U > U, to equilibrate to a normal-gas state with
finite correlation length &, while a gas at U < U, would
equilibrate to a superfluid state with long-range order.
In two dimensions, we expect short ramps, J7,. < 0.6,
to lead to a normal state, while longer ramps lead to a
superfluid gas. In three dimensions, the energy density
is always below U,, even for an instantaneous quench. In
one dimension there is no condensed phase.

UrJ

0 L I ]
0.05 0.10 0.50 1 5

Jt,

FIG. 4: (Color Online) The energy density U following an
interaction ramp of the form U = U;(Us/U:)"™. Here
U; =47J, Uy = 2J. Horizontal lines show the energy den-
sity, U./J = 0,2.1,5.1, at the superfluid critical temperature
T./J = 0,1.7,5.9, for U = Uy = 2J, in one, two and three
dimensions [41], 42].

VI. DECOHERENCE

In an ideal, closed, quantum system, all evolu-
tion is unitary. The final energy of the system rises
monotonously with the rate of the ramp in such systems.
Conversely, any real system suffers from heating, atom
loss and other impacts from the environment. As a re-
sult, experimental dynamic systems always face a com-
petition between the system’s reaction time and external
processes.

The physics of such decoherence has been explored
in detail [44H49]. Here, we return to a mechanism we
have previously used to described the effect of density
measurement by light scattering [50]. The same formal-
ism describes inelastic light scattering, where an external
photon scatters off of a trapped atom. This is one of the
major sources of decoherence in atomic experiments.

As in [B0], we neglect out of band effects, which cause
particle loss. We focus on in-band scattering, which
would directly decrease the coherence of the remaining
gas and reduce the correlation length measured above.
In an ensemble description, this leads to a nonunitary

evolution term of the form
=] (80
) = b ) ()

where ~ is proportional to the frequency of light scatter-
ing per site.

We calculate the effect of this decoherence on the be-
havior of the correlation length &, as shown in Fig.
As expected, no effect is seen at time scales shorter than
1/~. At longer time scales, inelastic processes cause the
correlation length to decay. The overall effect is similar
to experimental observations in [9]. We thus find the op-
timal ramp time depends on the interplay of adiabaticity
and decoherence. For decoherence rates typical to atomic
experiments, v ~ 10~2U, this optimal time is on the scale
of Jr. ~ 1.

(7)
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FIG. 5: (Color Online) Effective correlation length &, at the
end of a ramp of the interaction strength, in a system cou-
pled to the environment in the form shown in Eq. @ Here
Uy = 47J,U; = 2J, in a three-dimensional cubic lattice. In
an optical lattice setup, the rate of inelastic light scattering
events changes with lattice depth similarly to the interaction
strength [I3] [49]. In atomic experiments a typical value is
v~ 10720 [44].

VII. OUTLOOK

The physics of ultracold atomic systems involves multi-
ple energy scales. In driven experimental systems, these
include the relaxation time of the system, the driving
time scale and the rate of decoherence imposed by inter-
action with the environment. Here, we have quantified
the effect of the quench rate in Bose-Hubbard systems
crossing the phase boundary. We find that there are two
regimes. For sweeps which are much shorter than the typ-
ical hopping time, J7,. < 0.2, the ramp time has no effect
on the final state and the ramp is indistinguishable from
an instantaneous quench. For longer ramps, the final en-
ergy density of the state and therefore its correlations at



equilibrium, depend on the length of the ramp. In two
dimensions, shorter ramps lead to a normal gas state,
while longer ramps lead to a superfluid state. We have
also demonstrated that inelastic light scattering can be
quite destructive on longer time scale, underscoring the
usefulness of shorter experimental runs.
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Appendix A: Detailed derivation of the mean field
approximation

1. TUnderlying Model

We perform our calculation within an approximate
“doublon-holon” model. The state of each site i can be
given in terms of a spinor in the allowed occupation states
|n+1),,|n);, |7 — 1), where 7 is the median number of
particles per site. We define the quasiparticle annihila-
tion operators, d; = |a) (7 + 1|;, by = |2) (A — 1|,

Under this approximation, the Hamiltonian is

(4 + /2 + Ler) (dlde + hfn )
+%5k (CZLCZ/C — il;rjlk>
iy (dyhoy o+ b d])

Here,

R

1 ik-r;7
VN, Z iy (A2)
summing over all sites ¢, and
Ek = —2 Z COS(kZ . A) (A3)
A

summing over lattice basis vectors. We perform our
calculation on a cubic lattice with lattice spacing A,

A = Az, Ay, AZ in three dimensions, or a subset of those
in lower dimensions. U and J are the interaction and
hopping strength, respectively, and n = y/7(7 + 1). Ng
is the number of sites in the lattice.

We do all our calculations for a density of one particle
per site, (i;) =i + <(i;rd1> — <EIBZ> =n=1.

The hard-core constraints on the operators ci, h trans-
late into non-trivial commutation relations,

pm@]:@g_mgk_nwm

[Ek, ﬁg] = Gpg — A, — 20, "
[dhy] = o0 [BLd,] =0,
(e = [ ] = [dishg| =0,

(A5)

We write ngp = ﬁg’h, the density of doublons and
holons, respectively. In the Mott equilibrium limit, the
operators in Eq. can be neglected and the quasipar-
ticles can be treated as noninteracting bosons. This is
not true in the superfluid regime.

2. Equations of Motion

Equations of motion can be derived from the Hamilto-
nian, Eq. (A1), via the Heisenberg equation,

d /o~ L
— =9 . A6
7 %) =ilx] (9
We focus on the two-point observables, <d2dk>,

<iLULk>, cfkﬁ,k>. Their full equations of motion are

given in Eq. (A7).



(Wt o) = i ((duhoi) = (dlRL,))
_ ( 1+ gz — ;) (Wt il + Al )ho)
*Uﬁzq:gq +< 14 g + o= <aigaiq,,jz_k> —h.c o
_+<(2ﬁ2_k + ﬁq_k)ciqh_k> + <z>iq_ki}_qi}_k>
%<c2kﬁ,k> —ZU< > iJfien(1 — 3ng — 3n)
i ( -3 { T ke dghoy) + (dld,) + <?ﬁ_qﬁq>]

(1+ 2+ ) ((hoa (20 + 20, i) + (dgpgdi)) ]
(1 k= ) ((da (A + 200 )hoi )+ (hogt! o))
+iJi Y e +(t, (20d_, + ﬁgk; how )+ {dit o) :
! +<de Ag,q +2Aﬁ,q di ) + <ilT_q1>—q—kCzk>
= (2 + ) (3 + 200 g) = 3 (0L gt 0l )

Here h. c. stands for the Hermitian conjugate.

3. Hard-Core Coherent Approximation

To perform the time evolution, we must make approx-
imations for the quartic terms, such as

Ch = 25q<d;ﬁgfqd}c> = NLS quck’q’p' (A8)

q p.q
Written out explicitly, we have
C,i = Ni Z sk<czyzik,pfl—k—pdk>
P
+ Ni Z sq< A:;iliqil—kdk>
o (A9)

_ 1\1/S gk<d£ht_kh_kdk>
+ Z sq<cigfzip_qﬁ_k—qdk>-

The first two sums on the right hand side add up coher-
ently, and we expect them to dominate. The third term

is inversely proportional to the system size, and is there-
fore negligible. For bosonic operators, one may expect
the final summation term to add up incoherently, as in

the Hartree-Fock-Bogoliubov approximation [I8]. This
suggests the form
Cl~Cl = (& St kpﬁ_k_p>>ek<ci;czk>
g (A10)
+ (N S e (it q>> (i)
q
This intuition fails in the hard-core case. This can be
seen by summing over the momenta,
St = 3 el diht, hopod)
k p,q,k
= Nis z @ipri5q<d2ht_p_qhidi> =0 (All)
Psq,1

Zé;% = <ﬁh> (Zk €k<CZLCZk>) 7é 0
k



To account for the hard core constraints, we expand We then find

Ckmq <dth—p qh—P—kCZk>

S s pa (A14)
- 6k’q<h7p7qh_p_k><dkdk> (A12) <ﬁh> (Ek - Eo*) <dJr dk> + eom <c2 h_ k>
gt t > 7 A>_°‘k,p,q<ATA>
+ o (diit ) (hoydy) — 252 (dfdy ). here
Formally, Eq. (A12)) defines oy, p 4. We approximate this .4 o en /5t 5
function with the hard core constraint in mind, na=(n%), &= N ; a<d’“dk>
_ n . wlih (A15)
Vg ~ <ﬁ—d><h_p dp-a)(dhdy ), (A13) n= % Zk: 2 (dyhi ).
so that ), C,i’p’ =0 We make similar approximations for the other terms,

(s + a0 oy o) - o ey Wb M) (o)

ai\lide) =i i) = ALA_k — i) - i —h.c.
c(ljt< dk> ansk(<dkh k> <d it >> 7 3( k d<dkh k> 5077<dkdk>)

9wy = i {dyh ) — e (1 6ma + 90— €3) + 6l
_ 2z’Jﬁ{M(<dA hog) —n) + (dLdi) - gd}
L 9iTR \/ﬁ( (( <62kﬁ—k> - 8077<CZ£62]¢>) + 260£d<cikfz_k>>

3(exng — 505d)<d;r€dk> + 35077*<dkil—k>

(A17)

(

with <iﬁ_,jl,k> = <JLJ;€> We integrate these equations  to get the results in the main paper.
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