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Differential measurements using simultaneous atom interferometers provide unprecedented preci-
sion and stability for explorations on the scientific frontiers. Phase extraction between two atom
interferometers, however, imposes additional limitations on the overall instrument performance due
to nonlinear multi-parameter fit and associated reduced data rate and sensitivity. We propose an
active differential phase extraction method, which is self-calibratable and yields the theoretical per-
formance of differential measurement for uncorrelated errors, and demonstrate the scheme on a
transportable gravity gradiometer. The gravity gradient sensitivity of the instrument is improved
by a factor of 3 with the implementation of the technique, which is in consistent with independently
measured detection noise. We also demonstrate the accuracy and applicability of the scheme to
with 33kg test masses, and achieve 1E uncertainty after 4000s.

PACS numbers: 37.25.+k, 03.75.Dg, 07.87.+v, 91.10.Pp

Multiple light-pulse atom interferometers coupled with
common Bragg or Raman interferometer pulses, so-called
simultaneous atom interferometers (AI), have been devel-
oped worldwide to exploit the accuracy and sensitivity of
atom interferometers, examples include measurements of
gravity gradients [1–4], rotation rates [5], the Gravita-
tional constant G [6, 7], the photon recoil frequency to
measure ~/m [8, 9], gravitational waves [10–14], tests of
Einstein’s equivalence principle [15–21], etc. Thanks to
the commonality between simultaneous AIs, these instru-
ments theoretically have greatly suppressed sensitivity to
common mode noises such as laser phase noise and vibra-
tional noise, which is hard to suppress at low frequen-
cies [22–24]. In practice, the actual performance of these
instruments, in addition to the intrinsic noise of each AI
such as the quantum projection noise (QPN) of the signal
atoms (also known as the atom shot noise [25]), depends
heavily on the ability of phase extraction between two
AIs.

In an AI, each atom traverses two paths in space-
time, thanks to light-pulse matterwave beam splitters
that split, reflect, and recombine wave function between
two states. The phase difference between two paths is
represented by the probability of finding the atom in
one state (ground) or the other (excited) after the AI
sequence. In general, the outputs of two simultaneous
AIs can be expressed in the form:

s1 = a1 + b1 sin (φc + φd) + s1,QPN

s2 = a2 + b2 sin (φc) + s2,QPN, (1)

where si is the normalized excitation fraction (NEF) of
the readout, ai, bi the respective fringe offset and ampli-
tude, φc the common phase, si,QPN the quantum projec-
tion noise [7], and φd the differential phase. φc represents
interferometer sensitivities to, e.g., magnetic fields, grav-
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ity, rotation, vibration, and laser phases that are com-
mon to both, and φd represents signals that are not com-
mon, arising from gradients, systematics, and perturba-
tions local to one AI. Dual AIs are typically designed to
be as similar as possible, including the use of simultane-
ous operation, common interrogation laser pulse, com-
mon retroreflection mirror, common laser wavelength,
etc, while maintaining the sensitivity of φd to the quan-
tity of interest such as gravity gradient and the photon
recoil frequency. It is thus a general scenario that at
high sensitivity in a noisy environment φc varies ran-
domly from shot to shot by at least few radians and φd
remains relatively stationary. Efforts have been made
to precisely and accurately recover φd from two random
but correlated data sets {s1, s2} [26–28]. For instance,
ellipse-specific fitting utilizes trigonometric identities to
eliminate φc in Eq. (1), resulting in an ellipse equation
with its eccentricity determined by φd [26]. Bayesian
analysis estimates the probability of obtaining each data
pair (s1, s2) as a function of φd, considering all possi-
ble φc and noise models [27]. Ellipse fitting yields re-
sults with excessive noise to the instrument noise, φd de-
pendent systematic and noise sensitivity, and demanding
sufficient data to function properly (e.g., 100 points per
ellipse [7]), while Bayesian analysis requires appropriate
noise model and could be computation intensive. Adapt-
ing mechanical accelerometers for φc estimation for in-
terferometer fringe locking or for sinusoidal fringe fitting
is also performed [4, 28–31].

Here we propose and demonstrate a generally applica-
ble active differential phase extraction method to achieve
an overall instrument performance at the level of the
quadrature sum of noise from individually interrogated
AIs. In this method, a differential phase shift between
two AIs is introduced and actively servoed to minimize
the phase difference of the AIs. We show that this
method is immune from offset and amplitude noise and
drifts, thus delivering a sensitivity limited only by the
noise of individual AI itself. The immunity comes from
the identity of noise distribution under dithering of the
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FIG. 1. (Color online) Depiction of the locking scheme. The
sinusoidal curve is the variance σ2

d (in arbitrary units) as a
function of the additional phase φf (in radian) while φd is the
differential phase to be measured (Eq. (5)). φf is controlled
via a physical parameter τ , which in our demonstration is a
pulse duration. At φf = φd, σ2

d is minimum and σ2
d+ = σ2

d−,
thus φd is measured by φf when a servo to τ continuously
minimizes |σ2

d+ − σ2
d−|. Point φf (τ + τcal) = φd + 2π will

be used for self-calibration. Insets on top show parametric
plots of experimental data (blue dots) overlaid with the fitted
ellipses (red figures) at different φf . When φf = φd, the
ellipse is collapsed into a line. The opening of each ellipse is
measued by σ2

d.

servoed phase on the time scale of dither cycle time, re-
sulting in higher noise rejection bandwidth than conven-
tional methods. The scale factor for the differential phase
generation can be self-calibrated to the instrument sen-
sitivity, thus satisfying all operational requirements de-
rived from the instrument sensitivity itself. Moreover,
it can be applied to dynamic signal measurements and
significantly increase the measurement bandwidth as the
method locks two atom interferometers operating near
the zero phase crossing points.

The active phase extraction method works as follows.
Consider ai, bi in Eq. (1) having constant values of āi, b̄i
and fluctuations from measurement (shot) to measure-
ment (shot) aiN , biN (due to technical noises for exam-
ple), so that ai = āi + aiN and bi = b̄i + biN . Defining
normalized outputs of each shot X ≡ (s1 − ā1)/b̄1 and
Y ≡ (s2 − ā2)/b̄2, the variance σ2

d of (X − Y ) is:

X − Y =

(
a1N
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− a2N

b̄2

)
+ cosφc
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)
sinφd

+ sinφc
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, (2)
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, (3)

where 〈·〉φc
is the ensemble average over φc, the noise

terms aiN , biN are uncorrelated with respective variance
σ2
{ai,bi}, ā

′
i = āi+aiN , b̄

′
i = b̄i+biN , and Ni,atom the mean

atom number in each AI. The means aiN , biN account for
deviations of āi, b̄i from the true average values. Note
that if āi, b̄i are the means of ai, bi, then aiN = biN =
0, ā′i = āi, b̄

′
i = b̄i. When φd, aiN , biN are small, Eq. (3)

can be approximated as

σ2
d ≈

2σ2
a1 + σ2

b1

2b̄21
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)
, (4)

where O(· · · ) includes terms dependent on aiN , biN , and
σ2
i,QPN/b̄

2
i = (2ā′i(1− ā′i)− b̄′2i )/2b̄2iNi,atom are the corre-

sponding QPN terms [7]. In our active phase extraction
method, an additional phase shift φf is introduced in
only one of the interferferometers, so that Eqs. (1) and
(4) are modified φd → φd − φf :

σ2
d ≈

2σ2
a1 + σ2

b1

2b̄21
+

2σ2
a2 + σ2

b2

2b̄22
+
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)
. (5)

The phase extraction of dual AI is thus converted from
a data analysis problem to a task of active minimization
of σ2

d by varying φf .
Locking to the minimum of σ2

d is achieved by dithering
φf , as illustrated in Fig. 1, where σ2

d is measured at two
values of φf±δφ. The difference (φd−φf ) is proportional
to (σ2

d+ − σ2
d−):

σ2
d± ≈

2σ2
a1 + σ2

b1

2b̄21
+

2σ2
a2 + σ2

b2

2b̄22
+

(φd − (φf ± δφ))2

2

+
σ2
1,QPN

b̄21
+
σ2
2,QPN

b̄22
+O(· · · )

∆σ2
d ≡ σ2

d+ − σ2
d− ≈ −2(φd − φf )δφ, (6)

assuming both (φd−φf ) and δφ are small. ∆σ2
d serves as

the error signal for the active locking loop. When (φd −
φf ) is large, the approximate expression Eq. (6) does not
hold, however, the algorithm still works as (φd − φf ) is
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Simulation Run A B C D E F G H I J

Fringe amplitude b̄ 0.5 0.25 0.5 0.25 0.25 0.25 0.5 0.25 0.25 0.25

Detection noise σa (10−3) 0 0 3 1 3 10 0 0 0 0

Contrast noise σb (10−3) 0 0 0 0 0 0 3 1 3 10

Fundamental noise at 1s (mrad)
(active phase extraction noise)

1.4 3.7 12 8 24 80 8.5 5.7 17 57

Fit noise at 1s (mrad) 1.8 4.4 16.5 12.0 43.8 122 12.4 11.3 33 121

Ellipse fitting degradation 1.3 1.2 1.4 1.5 1.8 1.5 1.5 2.0 1.9 2.1

TABLE I. Ellipse fitting simulation results. φd = 1.32 rad, 20 points per ellipse. All simulation runs include QPN of 106 atoms
in each AI and 10000 pairs of data. Fringe offset is ā = 0.5. Fundamental noise is the theoretical phase resolution limited only
by the sensitivity to the noise sources. Note that the active phase extraction method reaches this fundamental noise, as shown
in Eq. (8). The ellipse fitting degradation is defined as the ratio of the fit noise to the fundamental noise.

slowly pulled-in towards the lock point. Note that the
error signal in Eq. (6) does not contain the amplitude
and offset deviations (aiN and biN ) and noises (σ2

ai , σ
2
bi

and σ2
i,QPN). The immunity comes from the identity of

noise distribution under dithering of φf , which is valid
so long as the noise characteristics are consistent between
φf±δφ. Similar conclusion can be derived for other noise
sources not captured in Eq. (5).

This noise immunity, however, does not suggest perfor-
mance beyond QPN or any noise source discussed above.
It is understood that sufficient data are required to obtain
accurate measurements of σd±, āi, and b̄i. The accuracy
is expected to improve as 1/

√
NE where NE is the size of

the ensemble, which in practice is minimized to increase
the update rate of φf in order to achieve fast settling and
to be on a timescale that is fast with respect to drifts
in āi, b̄i, even the variation of φd itself. Thus, ∆σ2

d ob-
tained in a limited time has 1/NE suppressed sensitivity
to āi, b̄i, σ

2
ai , σ

2
bi

, and other noises. Additionally, ∆σ2
d car-

ries residuals of cross terms of sinφc, cosφc, sinφc cosφc
in evaluating Eq. (6) from Eq. (2) due to averaging over
finite ensemble, which are proportional to δφ to the lead-
ing order when φf ≈ φd:

∆σ2
d ≈ −2(φd − φf )δφ

+
1

NE

(
2σ2
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2b̄21
+

2σ2
a2 + σ2

b2

2b̄22

)

+
1
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(
σ2
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b̄21
+
σ2
2,QPN

b̄22

)

+
δφ

NE
(· · · ) +

1

NE
O(· · · ). (7)

Note that the sensitivity to amplitude and offset drifts,
captured in aiN and biN , is also suppressed as 1/NE . The
expression of finite ensemble variance in Eq. (7) leads to
a noise figure consistent with the anticipated instrument
performance for independent errors.

To have estimate at times much shorter than the servo
attack time, we define ∆φ ≡

√
2(X − Y ) (X,Y as in

Eq. (2)) as the instantaneous estimate of (φd−(φf±δφ))
for statistics purposes. The variance of ∆φ (following

Eq. (6)) is〈
∆φ2

〉
=

1

NE

∑
∆φ2

NE→∞−−−−−→ 2σ2
d±

≈
2σ2

a1 + σ2
b1

b̄21
+

2σ2
a2 + σ2

b2

b̄22

+
2σ2

1,QPN

b̄21
+

2σ2
2,QPN

b̄22

+ (φd − (φf ± δφ))2. (8)

In the noise free situation,
〈
∆φ2

〉
→ (φd − (φf ± δφ))2,

which justifies the definition of ∆φ. With the pres-
ence of noise, for instance the QPN,

〈
∆φ2

〉
reaches the

sensitivity limited by the standard QPN: On the one
hand, the QPN limits the sensitivity of differential AIs
at
√

2 ×
√

2(σQPN/b̄), where one
√

2 accounts for re-

duced sensitivity from random phase φc, the other
√

2
for taking difference between two AIs, and σQPN/b̄ rep-
resents the QPN-limited phase resolution of each AI on
fringes of amplitude b̄. On the other hand, Eq. (8) yields〈
∆φ2

〉
→ 4σ2

QPN/b̄
2 + δφ2, with σa1 = σa2 = σa, σb1 =

σb2 = 0, b̄1 = b̄2 = b̄, σ1,QPN = σ2,QPN = σQPN, φd = φf .
To compare with the widely used ellipse-specific fit-

ting method, a numerical simulation using ellipse fitting
for phase extraction was performed based on typical ex-
perimental conditions. A set of {s1, s2} is generated ac-
cording to Eq. (1), with φd = 1.32 rad and uniformly
distributed φc. φd is calculated for every 10 or 20 data
pairs using the ellipse-specific fitting algorithm [26], and
the phase uncertainty of this data set is determined by
extrapolating the Allan deviation of the φd series to 1s
(assuming a 1Hz data rate). Table I shows the results of
simulation, where technical noise σa (referred to as detec-
tion noise hereafter) other than a QPN corresponding to
106 atoms is added under various fringe amplitude b̄ and
a fixed mean offset āi = 0.5. The fundamental noise is
the quadrature sum of the detection noise and the QPN

2
√
σ2
a + σ2

b/2 + σ2
QPN/b̄. Fit results of Runs C-F, where

detection noise is introduced, are roughly factor of 1.5
noisier than the fundamental noise. Simulation results
of decreased sensitivity with the ellipse fitting technique
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FIG. 2. (Color online) Schematic of the apparatus. d ≈ 1m.
The retroreflection mirror at the bottom is common to both
AIs. k: the Raman laser wavenumber, a: the acceleration of
the retroreflection mirror, gi: the gravitational acceleration
at each location. T : the pulse separation time of the AIs.
The solenoid in the lower fountain region provides differential
phase φf between AIs to match and thus measure gravity
gradient induced phase φd = 2k(g1 − g2)T 2.

are also reported in Ref. [7]. In the presence of contrast
noise instead of detection noise, Runs G-H, more exces-
sive noise of ellipse fitting further limits the performance
of such an instrument. In contrasting to the performance
of active phase extraction method, which is limited by in-
dividual AI noise as shown in Eq. (8) (also listed as the
fundamental noise in Table I), clearly the active method
is advantageous over the ellipse fitting method, especially
when technical noises dominate the noise budget.

Regarding the size of modulation δφ, Equation (7)
shows that larger modulation amplitude of δφ produces
larger error signal (the first term), but also comes with
larger residual noise (the third term). It is optimal to
choose δφ on the same order as the combined noise.
Moreover, small δφ allows measurements in more dy-
namic environments, such as gravity mapping in space
where every measurement is precious and real-time read-
out is crucial. From Eq. (2) with φd replaced by φd−(φf±
δφ), for |δφ| � |φd−φf | � 1, (X−Y ) ≈ (φd−φf ) cosφc
and (X + Y )/2 ≈ sinφc. With additional partial in-
formation of φc from, e.g., a mechanical accelerometer,
or vibrational noise compensation by interrogation laser
phase manipulation [4, 28–31], cosφc can be estimated
from (X + Y )/2 and thus obtaining φd − φf every single
shot.

We demonstrate the active phase extraction scheme
on a dual cesium fountain apparatus, which is briefly
described as follows (Fig. 2). The apparatus was de-
signed as a transportable quantum gravity gradiome-
ter for a technology development and demonstration for

Earth gravity mapping in space. Two simultaneous Cs
fountains are vertically separated by 1m and are hosted
in a single ultra-high vacuum chamber. Cs atoms are
collected in 3D magneto-optical traps (MOT) fed by 2D
MOTs for about 350ms, and then the clouds are launched
vertically using moving optical molasses. Each AI region
is magnetically shielded and has two layers independent
solenoids wound between the shielding and the cham-
ber for magnetic bias field control. After the clouds en-
ter the shielded regions, three two-photon Raman pulses
are applied to form simultaneous Mach-Zehnder AIs with
the pulse separation time T ≤ 165ms. When the clouds
fall back to the respective trapping regions, AI outputs
are read out using fluorescence detection. Two detection
pulses are applied to detect atoms in the F = 4 state
(N4) and atoms in both the F = 3 and F = 4 states
(N3+4) using a repumping pulse between the detection
pulses. NEF of the upper AI output is s1 = N4/N3+4,
while the NEF of the lower AI output is s2.

The additional phase shift φf is introduced and con-
trolled by a pulse of electric current to the second solenoid
in the lower AI region, while the first solenoids of both
regions are connected in series and fed with a constant
current to supply a common bias magnetic field through-
out the active regions of the atomic fountains [24, 26].
The current pulse is applied 10ms after the first AI pulse,
and is driven by a bipolar operational power supply in
externally controlled constant current mode. The exter-
nal control voltage is provided by a computer controlled
pulse generator with the output set to 2V when activated.
The pulse duration τ , as required in the active method,
is modulated every shot, τ± = τc ± δτ , which is dictated
by a LabVIEW servo routine.

The servo for active phase extraction is implemented
as follows. At the beginning of a run, τc is set at few ms,
either using best known value or an arbitrary number,
and δτ = 100µs. τ = τ± is updated every shot, and s1,2
are measured. After 5 shots on each setting of τ±, σ2

d±
is calculated for respective data set using default values
āi = 0.5, b̄i = 0.2. A correction proportional to σ2

d+−σ2
d−

is added to τc as the new τc for the next 10 shots. The
process then repeats with the updated τc. After the first
100 shots, offsets and amplitudes start to be estimated
from the data themselves: Before τc is to be updated,
previous 100 data pairs of (s1, s2) is taken for estimat-
ing āi, b̄i. For b̄i, we take the mean of top 5% of si as
the fringe maximum, the mean of bottom 5% of si as the
fringe minimum, and 2b̄i = (maxi−mini)/(maxi+mini).
This approach is adapted to mitigate nonuniform distri-
bution of φc (thus si) due to the low vibration environ-
ment, which renders it ineffective to estimate amplitude
from the root-mean-square of a smeared-out fringe. The
āi is similarly estimated as āi = (maxi + mini)/2. Note
that the upper and lower AIs can have different offsets
and amplitudes, while τ± share the same āi, b̄i.

As the process progresses, σ2
d becomes small due to

the locking of the AIs. We program the LabVIEW rou-
tine to reduce δτ from 100µs to 10µs when σd ≤ 0.03 to
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FIG. 3. (Color online) Allan deviation plot of in-loop error
signal ∆φ when lock is acquired. Inset: Parametric plot of
upper and lower NEFs of the same data set. Ellipse fitting
data are a typical data set without active feedback. Note that
the ellipse fitting data start at 20s, corresponding to the time
required to acquire 20 data points for each ellipse. The long
term instability of ellipse fit is due to amplitude and offset
drifts of AI fringes.

facilitate the small modulation scheme discussed earlier.
δτ = 10µs corresponds to δφ ∼ 10mrad, which is compa-
rable to our detection noise and b̄i. When σd > 0.1, on
the other hand, it is switched back to large δτ mode, to
accommodate sudden changes of φd or other disruptions.

The conversion coefficient of τ to φd is critical for the
performance of this scheme. In fact, both the common
static bias field and the pulsed field affect the scale factor
in our approach. We implement a self-calibration method
with sensitivity and accuracy limited by the instrument
itself. The AI phase due to the quadratic Zeeman shift
of magnetic field B is

ΦB = αB2t,

where α = 2π × 427.45Hz/G2 for cesium and t is the
duration of interaction. In our scheme, the differential
phase between two AIs is

φf ≡ ∆ΦB = α
[
(B0 + δB)2 −B2

0

]
τ

≈ 2αB0 δB τ

≡ C τ, (9)

where B0 is the common bias field and δB is the addi-
tional field produced by the second solenoid in the lower
chamber. Instead of directly evaluating the scale factor
C with magnetic field calibrations and precision measure-
ment of α, we experimentally measure it by extending τc
to τc+τcal so that the two AIs are in phase again (Fig. 1):

φf + 2π = C(τc + τcal). (10)

We then have C = 2π/τcal. Using larger multiple of
2π for calibration can further increase the sensitivity in
determining C, which eventually will be limited by the
linearity of Eq. (9) for long τ . The self-calibration is
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FIG. 4. (Color online) Gravity gradient under mass modula-
tion. Blue diamonds indicate data without extra mass, while
red circles for data with lead mass. Each point is an average
of ∼ 300 data points after the system settles to the new test
mass position. Horizontal lines show the weighted average of
all measurements at same position.

easily done with our software implementation: After the
lock is acquired, an impulse of ∼ 6ms is added to τc
manually and the system acquires lock again after few
updates of τc. τcal is then the difference of the two locked
τc, which would have comparable resolution and accuracy
as the instrument itself. In our apparatus, C ≈1rad/ms
at a specific B0 setting. Furthermore, the stability of
the electric currents for generating B0 and δB is also
measured and found better than one part per thousand
over 24 hours under typical operating conditions, which
can be further improved with dedicated electronics when
needed.

With the active phase extraction method, we achieve
a sensitivity of gravity gradient of 40E/

√
Hz (1E =

10−9/s2), with T = 165ms and cycle time ∼1s. Typical
Allan deviation of ∆φ goes down as 1/

√
τ (Fig. 3), and

the value at 1s is taken for the noise spectral density. The
in-loop error signal is representative of short-term stabil-
ity due to limited servo bandwidth. This sensitivity is
consistent with our detection noise limited performance
of 2σN/b̄ × 2500E/rad, where σN ≈ 1.6 × 10−3 [32],
b̄ ≈ 0.2 (equivalent to a fringe contrast of 40%), and
2500E/rad the sensitivity of the 1m baseline gradiome-
ter using 852nm interrogating laser with T = 165ms in
our system. As a comparison, we could at best achieve
120E/

√
Hz with the traditional ellipse-fitting method.

The improvement in instrument sensitivity supports the
claimed immunity of the active phase extraction method
on the fluctuation and slow variation offset and ampli-
tude, which are major limiting factors of differential AIs
using ellipse fitting.

To validate further the calibration and true instrument
sensitivity, we perform proximity modulation of ≈33kg of
test mass while the active locking is engaged, which also
demonstrates the applicability of this method to dynamic
signals. The test mass is constituted of two lead bricks
on top of three lead bricks with minimum gap between
them. After the instrument acquired lock, the test mass
is manually brought to ≈0.5 inches away from the side
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of the 2.5-inch diameter vacuum chamber, at the height
halfway between the two MOT regions. The instrument
starts to respond to the change and settles to a new τc
in ∼ 100s. After sufficient data are taken (∼ 300s) at
this position, the test mass is manually moved away at
least 5m from the vacuum chamber. Another settling
and data taking phases take place afterwards. The relo-
cation of test mass is typically under 60s. Data shown in
Fig. 4 are 7 cycles of mass modulation, where data dur-
ing relocation and settling are removed. We observe clear
modulation of 36.4(1.0)E in 4000s. We model the mass
distribution and estimate a signal of 34.4(4.0)E from the
test mass modulation, uncertainty dominated by ∼1cm
positioning precision. The measured mean and uncer-
tainty are both in agreement with the 40E/

√
τ in-loop

sensitivity.

In summary, we propose and demonstrate an active
differential phase extraction method for dual atom in-
terferometers. The method mitigates the degradation of
precision and accuracy associated with conventional el-
lipse fitting methods from otherwise detection noise lim-
ited performance. It can be implemented by, e.g., dif-

ferential bias magnetic field as we demonstrated, inter-
rogation laser phases for dissimilar AIs such as conju-
gate AIs for ~/m measurements, light shifts, DC Stark
shifts, etc. In addition, the scale factor of this method
can be self-calibrated in-operation with uncertainty down
to the instrument sensitivity, which guarantees the over-
all performance of the instrument. The active differen-
tial phase extraction method is also relatively immune to
instrument performance variations, e.g., offset and con-
trast change, due to environmental causes, and is capable
of capturing dynamic differential signals. This feature
greatly enhances the bandwidth and thus the applicabil-
ity for field applications using differential atom interfer-
ometers.
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