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Studies of atomic systems in electric fields are challenging because of the diverging 
perturbation series. However, physically meaningful Stark shifts and ionization rates can 
be found by analytical continuation of the series using appropriate branch cut functions. 
We apply this approach to low-dimensional hydrogen atoms in order to study the effects 
of reduced dimensionality. We find that modifications by the electric field are strongly 
suppressed in reduced dimensions. This finding is explained from a Landau-type WKB 
analysis of the ionization process. 
 

1. Introduction 

Atomic systems placed in electrostatic fields have played a central role in applications of 
quantum mechanics and semi-classical physics. For the hydrogen atom, early work 
demonstrated that a finite order perturbation analysis provides well-defined (hyper-) 
polarizabilities of a given initial state [1,2]. However, the perturbation series reached by 
expansion in powers of the field strength has, in fact, zero radius of convergence [3-5]. 
Hence, the unboundedness of the perturbation makes a non-perturbative mathematical 
analysis challenging. Physically, a strong electric field manifests itself in the form of 
ionization and energy (Stark) shifts. This may be viewed mathematically as replacing real-
valued energies by complex resonances, in which the imaginary part determines the 
ionization rate [5]. Such resonances can be found non-perturbatively by matching the 
wave function to the proper asymptotic solution far from the atom [6-8]. In spite of the 
diverging series, physically meaningful ionization rates and energy shifts can be obtained 
from the perturbation expansions using Borel-Padé resummation [4,5,9-11]. However, 
Borel-Padé resummation for this problem requires a large number of terms of the 
divergent perturbative series as an input. Recently [12], we have proposed a very efficient 
alternative based on matching a class of analytical continuations functions to the first few 
terms in the perturbation expansion. In practice, this class was taken to be Gauss 
hypergeometric functions that have branch cuts and, thereby, may produce a complex 
result even if a real-value field is supplied as input. The imaginary part is then the 
ionization rate. Choosing the 2 1F  class of hypergeometric functions, only the four lowest 
terms in the expansion are required. Nevertheless, excellent agreement with highly 
accurate, but much more demanding, approaches was demonstrated.  
 
In the present work, we aim at applying this approach to evaluate Stark shifts and 
ionization rates of a broader class of quantum systems, viz. hydrogen-like systems in 
arbitrary dimensional space. One- and two-dimensional hydrogen atoms have been 
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studied in different contexts [13-15] and used to highlight the effects of reduced 
dimensionality. In fact, low-dimensional hydrogenic systems are realized in nature in the 
form of electron-hole pairs (“excitons”) in low-dimensional quantum structures such as 
quantum wells, quantum wires, and carbon nanotubes [16-19]. For such nanostructures, 
non-integer dimensions α  are often considered [16-18] in order to describe quantum wells 
of finite thickness ( 2 3α< < ) and nanowires or –tubes of finite cross section ( 1 2α< < ). 
Thus, α -dimensional hydrogenic models have experimental relevance as well.  
 
The question we ask in the following is: What is the effect of reduced dimensionality on 
Stark shifts and ionization rates? We clearly expect tighter confinement to counteract the 
electric field but precisely by how much is not known. By formulating our model system 
as a hydrogenic system with an arbitrary reduced dimensionality, we can quite generally 
compute the dependence of e.g. ionization rates on dimension. Hence, the above question 
can be given a precise, quantitative answer. In the process of the analysis, we will enlarge 
the class of analytical continuation functions. The low-order perturbation expansion 
required to fix these functions is obtained using an extension of the work of Privman [3]. 
Hence, we formulate the α - dimensional eigenvalue problem in the presence of an 
electrostatic field in terms of parabolic coordinates [3] and solve order by order through 
iteration. We restrict the analysis to the ground state but extension to excited states is 
certainly possible. 
 

2. Model and Perturbation Analysis 

A hydrogenic atom placed in an electrostatic field ẑ=E �E� in an α - dimensional space is 
described by the eigenvalue problem 
 

 21 1
2

z E
rα ψ ψ

⎧ ⎫⎪ ⎪⎪ ⎪− ∇ − + =⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
E . (1) 

 
Here, 2

α∇  is the α - dimensional Laplacian and natural units are adopted throughout the 
paper using the reduced mass μ  of the two-particle system as the unit of mass: 

04 1re πε ε μ= = = =  with rε  the relative dielectric constant of the ambient medium. We 
are assuming translational invariance along at least one extended dimension and, hence, 
only 1α≥  makes sense. In the presence of the field, parabolic coordinates are the natural 
choice. We take the field along the z axis and restrict the analysis to states that depend 
only on z and the “radial” coordinate r. The Laplacian for arbitrary integer-dimensional 
space was derived in Ref. [20]. However, starting from the usual α - dimensional 
Laplacian in spherical coordinates [16-18], it is readily demonstrated that the expression is 
valid in non-integer dimensions as well. Hence, we introduce r zξ= +  and r zη= −  and 
with 1

2p α−=  find 
 

 2
1 1

4 1 1p p
p pα ξ η

ξ η ξ ξ ξ η η η− −

⎧ ⎫⎪ ⎪∂ ∂ ∂ ∂⎪ ⎪∇ = +⎨ ⎬⎪ ⎪+ ∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭
. (2) 
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Similarly, the potential energy terms are 1/ 2 /( )r ξ η− =− +  for the Coulomb potential 
and 1

2 ( )z ξ η= −E E  for the electrostatic potential. This allows us to reformulate the 
eigenvalue problem as 
 

 
2 2

1 1
1 1 1 0

4 2
p p

p p Eξ η ξ η
ξ η ψ

ξ ξ ξ η η η− −

⎧ ⎫⎪ ⎪∂ ∂ ∂ ∂ − +⎪ ⎪+ − + + =⎨ ⎬⎪ ⎪∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭
E . (3) 

  
We now follow Privman [3] in that we apply logarithmic perturbation theory [21] and an 
appropriate scaling. In line with previous work for the two and three dimensional Stark 
problem [14,22] we introduce (i) the inverse length scale 1/ 2Eβ = −  and parabolic 
coordinates xξ β=  and yη β= , (ii) a scaled field strength 3 /4F β= E , and (iii) a set of 
separation constants 1β  and 2β  satisfying 1 2β β β+ = .  Thus, writing ( ) ( )f x g yψ=  we find 
two decoupled eigenvalue problems 
 

 

2
11

2
21

1 0,
4

1 0.
4

p
p

p
p

xx Fx f
x x x

yy Fy g
y y y

β

β

−

−

⎧ ⎫∂ ∂⎪ ⎪⎪ ⎪+ − − =⎨ ⎬⎪ ⎪∂ ∂⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪∂ ∂⎪ ⎪+ + − =⎨ ⎬⎪ ⎪∂ ∂⎪ ⎪⎩ ⎭

 (4) 

 
As in the 3D case, these only differ mathematically by the sign of the field term. In fact, the 
equations are mathematically identical to the 3D case, if the m quantum number is 
identified with (1 )p± −  [22] and, so, many known results from the 3D problem are 
directly applicable here as well. Thus, with this substitution, the results of Ref. [22] 
provide the first seven coefficients of the asymptotic series for the field-dependent energy. 
This is, however, insufficient for the present purpose requiring the 8th order coefficient as 
well to provide the four lowest energy corrections for the ground state needed in the 
hypergeometric resummation technique [12]. We therefore briefly explain how the 
eigenvalue equations Eq.(4) are solved using logarithmic perturbation techniques. 
Focusing on the first of these, we then define ( ) ln /z x d f dx≡  and expand in Taylor series 
 

 1
0 0

, ( ) ( )n n
n n

n n
a F z x z x Fβ

∞ ∞

= =

= =∑ ∑ . (5) 

 
The rest of the calculation proceeds by solving order by order, keeping z regular at the 
origin. In α - dimensional space, the unperturbed ground state is 0( ) exp( /2)f x N x= −  
with energy 2

0 1/(2 )E p=− . Hence, 0( ) 1/2z x =−  and one easily shows that 0 /2a p= . To 
illustrate the general approach, we note that upon collecting first order terms, 1( )z x  obeys 
the condition 

 1 1
0 1

( )2 ( ) ( )p dz x az x z x x
x dx x

⎧ ⎫⎪ ⎪⎪ ⎪+ + =− +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
. (6) 
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Requiring regularity at infinity leads to a solution of the form 
 

 1 2 2
1 0 12

0

( ) ( )( )
( )

p
p

x

xz x t f t a t dt
f x

∞−
−= −∫ . (7) 

 
Clearly, the normalization constant N of 0f  is of no importance and may be set to unity. 

Hence, if we require regularity at the origin as well and utilize 1 2
00

( ) ( )px f x dx p
∞

− =Γ∫ , it 

follows that the unknown 1a  must be given by 1 ( 2)/ ( ) ( 1)a p p p p=Γ + Γ = + . Continuing 
to successively higher orders, we find for 1k >  
 

 
1

2
0

10

1 ( ) ( ) ( )
( )

k
p

k i k i
i

a x f x z x z x dx
p

∞ −

−
=

=−
Γ ∑∫ . (8) 

 
A similar approach can be followed to compute 2 0

n
nn

b Fβ
∞

=
=∑ . However, as the 

equations Eq.(4) for f and g only differ by the sign of F it follows immediately that 
( 1)n

n nb a= − . Eventually, the condition for the separation constants then becomes 
2

20
2 n

nn
a Fβ

∞

=
= ∑ . Computing the series to sufficiently high order and solving for the 

energy 21/(2 )E β=−  produces the desired perturbation series for the energy in powers of 

the electrostatic field 2
20

( ) n
nn

E E∞

=
=∑E E . The coefficients follow the form 

6 2
2 2( 1)(( 1)/4) ( )n

n nE Fα α α−=− + −  with 2 ( )nF α  a polynomial of degree 2 1n− . For 1n =  to 
4, these are given in Tab. 1. It is readily verified that the general result agrees with the 
known cases 3α=  [3] and 2α=  [14,15]. Moreover, for arbitrary α  the result for 

4
2 ( 1)(( 1)/4) (2 3)E α α α=− + − +  agrees with the polarizability found in Ref. [18]. Note 

that all terms vanish if 1α=  as a consequence of the pathological nature of the strictly 
one-dimensional Coulomb problem [13,19], for which the delta-function localized ground 
state is not polarizable. 
 

n 2 ( )nF α  
1 2 3α+
2 3 296 645 1522 1257α α α+ + +
3 2 5 4 3 2(5888 79573 453872 1361778 2139416 1399473)α α α α α+ + + + +  
4 7 6 5 4

3 2

2031616 43604973 423670118 2410476263
8642479892 19432592955 25222378022 14478766161

α α α α

α α α

+ + + +

+ + +
 

 
Table 1. First four polynomials in the perturbation series for the α - dimensional Stark 
problem. 
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3. Hypergeometric Resummation 

We wish to exploit our recently developed resummation technique to extract physical 
properties like resonances at arbitrary field strength from low-order perturbations series 
generated assuming weak electric fields. As detailed in Ref. [12], the fundamental idea is 
that the low-order series is regarded as the first few terms in a Taylor series of an analytic 
continuation function with a suitable branch cut. This property ensures that the imaginary 
part of the resonance, i.e. the ionization rate, is obtained following the continuation 
procedure. Gauss hypergeometric functions 2 1F  were selected for this purpose and shown 
to lead to good agreement with existing approaches for, e.g., the 3D hydrogen Stark 
problem. We therefore aim to apply the hypergeometric resummation technique to the 
low-dimensional case in the present work.  
 
Before turning to this application, we wish to address a particular issue related to the 
branch cut structure of 2 1F , however. When expanded around 0z = , the function is 
defined by 
 

 
2 3

1 1 2 2 1 1 1 2 2 21 2

3 3 3
2 1

3 3
1 2 3

3

( , (1 ) (1 ) (1 )(2 ) (1 )(2 )1 ...
2 (1 ) 6 (1 )(2

, , )
)

h h h h z h h h h h h zh h z
h h h h h

F h z
h

h h + + + + + +
+ + +

+ +
= +

+
(9) 

 
The approach in Ref. [12] was based on writing 2

4( /4)z h= E  and determining the four 
coefficients 1 4h −  by matching to the fourth order perturbation series. While this leads to a 
well-behaved and accurate result for intermediate field strengths it is bound to fail for 
small fields, however. The reason is that the branch cut runs between 1z =  and z =∞  
and, therefore, necessarily produces a real-valued result when the function is evaluated at 
an argument 0 1z≤ < . The field strengths within this range are tiny as the value of the 4h  
coefficient is found to be very large [12]. Hence, while the form Eq.(9) may be acceptable 
physically, because the actual imaginary part is exceedingly small for 1z< , it is 
nevertheless not entirely satisfactory. Thus, it is tempting to consider instead the slightly 
modified class of functions 2 1 1 2 3( , , ,1 )F h h h z+  defined with a shifted argument. This class 
would ensure a finite imaginary part at all field strengths. Unfortunately, this class of 
functions does not have a simple Taylor series when expanded around 0z = . Rather, 
powers of the form 3 1 2h h h mz − − + , with m a non-negative integer, appear in addition to a 
regular series. To ensure the correct low-z behavior, we consequently require 

3 1 2h h h l= + + , where l is a fixed integer. In this manner, one finds 
 

 { }2 1 1
2

1
1

1

2
2 02

(( , , ,1 ) ) ( ) ( )
( ) ( ) l

l h hF h h h h l F z F z
l h l h

z Γ + +
+

Γ + Γ +
+ + + = , (10) 

 
where  
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 2
1 2 1 10 2 2

1( ) ( 1) (1 ) (1 ) ( 2) .
2

( ) ..lF z h h l z h h h h l zΓ + Γ − + + + Γ= +−  (11) 

 
and the lowest power found in the Taylor expansion of ( )lF z  is lz . It follows that only the 
normal series 0( )F z  needs to be considered when matching to the fourth order 
perturbation series provided a power 4l>  is used. In fact, provided this condition is 
obeyed, l does not have to be integer. In practice, we find that the form 
 

 0 2 1
1 2

4 1 2 1 2 3
1 2

( ) 1 ( , ,( ) ( ) ,1 ,
( )

)E E Fl h l hh z h h h h l h
l h h

z
⎧ ⎫⎪ ⎪⎪ ⎪= + + + +⎨ ⎬⎪

Γ + Γ +
Γ +⎪ + ⎪⎪⎩ ⎭

E  (12) 

 
with 2( /4)z= E , is highly suited for the present purpose. Note that upon separating out 
the 0E  term and factoring out 4h z  in the remainder, we obtain the desired form having 
precisely four unknowns 1 4h −  as before. This is the form we match to the perturbation 
series below.  
 
We separate the complex resonance Eq.(12) into real and imaginary parts. These are, 
respectively, the Stark energy Δ  and half the ionization decay rate Γ , i.e. 

( ) /2E i=Δ− ΓE . The results are relatively insensitive to the value of l as long as 4l . As 
a practical strategy, we use known exact data for the 3D case [8] to select the best value 
and, in this manner, a value of 30l =  has been selected for the numerical routine. A 
comparison between the hypergeometric result and exact data is shown in Fig. 1. 
Throughout the entire range of field strengths 0 1≤ ≤E , a remarkable agreement is 
observed. Note, that the minimum in Stark energy around 0.7≈E  is reproduced. Hence, 
in addition to the non-vanishing decay rate at all field strengths ensured by our modified 
hypergeometric ansatz, we also improve overall agreement for large fields as compared to 
our original approach [12]. For extremely large fields, the hypergeometric approximation 
breaks down. In fact, the large-field limit of Eq.(12) is 
 

 
1 2

1 20

2(1 ) 2(1 )
2 1 1 1 2

4
3 3

2

2 1

( ) ( ) ( ) ( ) .
4 ( ) ( ) 4 ( ) ( )

lim ( )
h h

h h
h h h l h h h lh

h h
E E

h h

−

∞

−

→

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞Γ − Γ + Γ − Γ +⎪ ⎪⎟ ⎟⎜ ⎜+⎟ ⎟⎨ ⎬⎜ ⎜⎟ ⎟⎜ ⎜⎪ ⎪⎝ ⎠ ⎝ ⎠− Γ − Γ⎪ ⎪⎩
=

⎭
E

E E
E  (13) 

 
The power dependencies of the two terms are linked by the fact that 2 1h h∗= . However, 
this form disagrees with the known exact limits [23,24] lim arg ( ) /3E π

→∞
=−

E
E  and 

2/3 5/3lim| ( )| ( ln ) 2E −

→∞
=

E
E E E . 
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Figure 1. Stark energy (red curve and dots, left axis) and decay rate (blue curve and dots, 
right axis) of three dimensional hydrogen in the present approach and in comparison to 
exact values from Ref. [8]. 
 
In Fig. 2, we plot results for the Stark energy and decay rate for a range of integer and 
fractional dimensions 3, 2.5, 2,  and 1.5α=  corresponding to 1, 0.75, 0.5,  and 0.25p = . As 
expected, the zero-field limit coincides with the unperturbed result 2

1
0 2 p

E =− . At 

increased field strengths, the Stark energy decreases and develops a “knee” structure, 
beyond which the slope decreases. The decay rate is highly suppressed at low fields but 
increases nearly linearly with field strength above a certain critical point. Fitting the slope, 
it is found to vary approximately as pγ  with 1.4γ ≈ . Obviously, the decay rate decreases 
rapidly as the dimensionality is reduced. The intersection of the linear approximation with 
the field axis provides a measure of the critical turn-on field strength. For the four cases 
studied, the critical fields are 0.12, 0.33, 1.3, and 10.2, respectively. Thus, upon reducing 
the dimension from 3 to 1.5, the field required to effectively ionize the atom increases by 
nearly two orders of magnitude. The validity of the computed decay rates can be 
ascertained using the connection between field dependent decay rate ( )Γ E  and the 
original perturbation coefficients 2nE  [10] 
 

 2 2 1
0

( )1
n nE d

π

∞

+

Γ
=− ∫

E
E

E
, (14) 

 
valid for 1n> . For all dimensionalities studied here, we find that this condition is obeyed 
to a very high degree of accuracy. This testifies further to the soundness of the approach. 
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Figure 2. Energy (red curves, left axes) and decay rate (blue curves, right axes) as a 
function of field strength for a range of integer and non-integer dimensions. Note the 
different field scales. The dashed lines are linear fits to the high-field decay rates. 
 
A simple analytical estimate of the decay rate can be obtained using a modified Landau 
approach [25]. To this end, we inspect the y-equation in Eq.(4). Writing /2( ) ( )pg y y yχ−=  
we find ( ) ( ) 0y U yχ χ′′− + =  with  
 

 3
2

2 (2 )1( ) 1
4

p p pU y p y
y y

⎛ ⎞− ⎟⎜ ⎟≈− + − +⎜ ⎟⎜ ⎟⎜⎝ ⎠
E , (15) 

 
where the low-field limit 2 /2pβ ≈  and pβ ≈  is assumed. We now compute the WKB 

transmittance 
2

1

exp{ 2 }
y

y
T Udy= − −∫  between the classical turning points 1,2y . Adapting 

the Landau approach [25] to the α - dimensional case then yields 
 

 1
3 3

1

4 2exp
3

p
yT e

p y p
⎛ ⎞ ⎧ ⎫⎪ ⎪⎟ ⎪ ⎪⎜ ⎟≈ −⎜ ⎨ ⎬⎟⎜ ⎟ ⎪ ⎪⎜⎝ ⎠ ⎪ ⎪⎩ ⎭E E

. (16) 

 
This result agrees with the usual 3D case as is easily seen by taking 1p = . In fact, Eq.(16) 
agrees with the general 3D result in Ref. [7] if the identification 1m p= −  is again applied. 
The result means that we generally expect the low-field ionization rate to vary with 
dimension as { }3( )exp 2 /(3 ) / pC p pΓ= − E E , where C is a dimension-dependent constant. 
This prefactor cannot reliably be determined from the Landau approach. However, the 
asymptotic 3D results of Ref.[7] find { }3( 1)( ) 4 / ( )p pC p p p += Γ , which we adopt here. The 3p  
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factor in the exponential is readily explained by the general field factor [26] 
{ }3/2exp 2(2 ) /(3 )PI− E , with a modified ionization potential 2

1
2P p

I = . In Fig. 3, this 

predicted dependence on dimension is indeed observed. There, the decay rate is plotted 
on a logarithmic scale and compared to the Landau-type expression using the ( )C p  
prefactor. In particular, good agreement is found for low field strengths. For larger fields, 
the Landau result tends to overestimate the decay rate. The discrepancy, however, is quite 
small for the reduced dimensions 2 and 1.5α= . The agreement with the Landau 
expression allows us to quantify the suppressed decay rate with reduced dimension. Thus, 
the dominant factor is the exponential, from which it appears that the effective field in 
low-dimensional geometries is reduced from E  to 3p E . Consequently, going from 3α=  
to 1.5α=  effectively reduces the field strength by a factor 34 64=  in good agreement 
with the nearly two orders of magnitude increase in the critical field found above. The p-
dependent decay rate can be inserted back into Eq.(14) to determine the large-n limit of the 
energy coefficients with the result  
 

 
23

2 3

6 (2 ) 3
( ) 2

np

n
n p pE

p pπ

⎛ ⎞Γ + ⎟⎜ ⎟≈− ⎜ ⎟⎜ ⎟⎜Γ ⎝ ⎠
. (17) 

 
It is readily checked that, indeed, the analytical coefficients generated using perturbation 
theory approach this limit for large n.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Field dependence of the decay rate for various dimensions. The solid red lines 
are the hypergeometric resummation results and the dashed black lines are Landau-type 
expressions. 
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4. Summary 
 
In summary, we have applied a recently proposed hypergeometric resummation 
technique to the study of low-dimensional hydrogen atoms in strong electrostatic fields. In 
this way, the effect of reduced dimensionality on Stark shifts and ionization decay rates 
has been identified. We have introduced an enlarged class of analytical continuation 
functions that ensure a non-vanishing decay rate at arbitrarily small field strengths. For 
the three-dimensional case, excellent agreement with exact results is demonstrated. Upon 
reducing the dimension from 3 to 1.5, the critical field required for strong ionization is 
increased by nearly two orders of magnitude. This finding is explained by a Landau-type 
WKB analysis adapted to the low-dimensional geometry. 
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