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Non-perturbative B-spline R-matrix with pseudostates calculations for
electron-impact ionization-excitation of helium to the n = 3 states of He+

Oleg Zatsarinny∗ and Klaus Bartschat†

Department of Physics and Astronomy, Drake University, Des Moines, Iowa, 50311, USA

We present fully-differential cross-section ratios for electron-impact ionization of helium without
excitation and with simultaneous excitation of the residual ion. The results are obtained from a
nonperturbative close-coupling formalism, with the resulting equations being solved by a B-spline
R-matrix with pseudostates approach. Very encouraging agreement is obtained with directly mea-
sured cross-section ratios for ionization leaving the residual He+ ion in either the 1s ground state
or the n = 3 (3s + 3p + 3d) excited states.

PACS numbers: 34.80.Bm, 34.80.Dp

I. INTRODUCTION

Electron-impact ionization with simultaneous excita-
tion is a highly challenging problem, both experimentally
and theoretically. Taking e − He as the prototype colli-
sion system, the challenges are due to the fact that all
three electrons (the projectile and both target electrons)
undergo significant changes in their respective quantum
states. Hence the problem cannot be simplified further
by effectively treating one of the target electrons as a
“spectator” that remains in the 1s orbital.

In recent years, we have further developed a fully
nonperturbative B-spline R-matrix (close-coupling) with
pseudostates (BSRMPS) method and applied it to both
direct ionization [1] and ionization with excitation prob-
lems [2, 3]. Despite the success achieved in employ-
ing a projection approach to obtain the cross sections
from excitation amplitudes of the positive-energy discrete
(i.e., finite-range) pseudostates, some skepticism remains
about the validity of the approach. The method is indeed
not exact [4], but it appears to provide a practical scheme
that should systematically improve when the density of
the pseudostate spectrum is increased.

To check this hypothesis, we further optimized our par-
allelized BSR codes. This allowed us to increase the
number of pseudostates to 1,254 and thereby also con-
sider ionization with excitation to the n = 3 states of
He+. Some details of the method and the specific calcula-
tion are provided in Sect. II, followed by the presentation
and discussion of the results in Sect. III. Unless indicated
otherwise, atomic units (a.u.) are used throughout this
manuscript.

II. COMPUTATIONAL DETAILS

∗Electronic Address: oleg.zatsarinny@drake.edu
†Electronic Address: klaus.bartschat@drake.edu

The spectroscopic bound states and continuum
pseudostates were generated by the B-spline box-based
close-coupling method [5]. The structure of the multi-
channel target expansion was chosen as

Φ(n`, n′`′, LS) = A
∑
i,j

aij {φ(ni`i)P (nj`j)}L,S+bΦ(1s2).

(1)
The functions φ(n`) are the hydrogen-like orbitals
1s, 2s, 2p, 3s, 3p, 3d for a nuclear charge Z = 2, while
the P (nj`j) are the “outer” orbitals that are expanded
in the B-spline basis. We use a nonrelativistic model,
with L and S denoting the total orbital and spin angu-
lar momenta, respectively. Furthermore, A is the anti-
symmetrization operator. A multi-configuration expan-
sion for the 1s2 state was included as a correlation func-
tion.

The number of physical states that can be generated by
this method depends on the radius a of the B-spline box.
We chose a = 25 a0 (where a0 = 0.529 × 10−10 m is the
Bohr radius) and employed 74 B-splines of order 8 with a
semi-exponential grid of knots. This yielded 29 physical
and 1,226 target pseudostates that covered the energy
region up to 100 eV with S, P , D, and F symmetries of
both even and odd parity. The set of pseudostates con-
tained the configurations 1sn′`′, 2`n′`′, and 3`n′`′, with
the latter two sets describing doubly excited autoionizing
states as well as the ionization-excitation process. Note
that the increase of the principal quantum of the “core”
electron from n = 2 [2, 3] to n = 3 in the present work
rapidly increased the number of states in the calculation,
thereby limiting the highest pseudostate energy that we
could handle.

We then obtained the scattering amplitudes for excita-
tion of all pseudostates using a fully parallelized version
of the BSR complex [6] for electron collisions. Contribu-
tions from all symmetries for total orbital angular mo-
menta LT ≤ 25 were included in the partial-wave expan-
sion. The present model contained up to 3,027 scattering
channels, leading to generalized eigenvalue problems with
matrix dimension up to 200,000 in the B-spline basis.

Since it is the key step in our method, we now briefly
repeat how the physical ionization cross sections are ob-
tained from the excitation amplitudes for the pseudo-
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states [2, 3]. Recall that we are interested in the ioniza-
tion amplitude

f(L0M0S0MS0
,k0µ0 → LfMfSfMSf

,k1µ1,k2µ2) (2)

for an initial target state with orbital angular momen-
tum L0 and spin S0 (with projections M0 and MS0 , re-
spectively) leading to a final ionic state with correspond-
ing quantum numbers labeled by the subscript f , by an
electron with initial linear momentum k0 and spin pro-
jection µ0 resulting in two outgoing electrons described
by k1, µ1 and k2, µ2. We obtain this ionization amplitude
by projecting the excitation amplitudes for the pseudo-
states (superscript p)

fp(L0M0S0MS0 ,k0µ0 → LMSMS ,k1µ1)

=

√
π

k0k1

∑
l0,l1,LT ,ST ,ΠT ,MLT

,MST

i(l0−l1)
√

(2l0 + 1)

×(L0M0, l00|LTMLT
)(LM, l1m1|LTMLT

)

×(S0MS0
,

1

2
µ0|STMST

)(SMS ,
1

2
µ1|STMST

)

×TLTST ΠT

l0l1
(α0L0S0 → αLS) Yl1m1(θ1, ϕ1), (3)

to the true continuum functions for electron scattering

from the residual ion, Ψ
k2µ2(−)
LfMfSfMSf

, and summing over

all energetically accessible pseudostates using the ansatz

f(L0M0S0MS0 ,k0µ0 → LfMfSfMSf
,k1µ1,k2µ2)

=
∑
p

〈Ψk2µ2(−)
LfMfSfMSf

|Φp(nln′l′, LS)〉fp(L0M0S0MS0 ,k0µ0 → LMSMS ,k1µ1). (4)

In this multichannel generalization of Eq. (15) proposed

by Bray and Fursa [7], TLTST ΠT

l0l1
(α0L0S0 → α1L1S1) is

an element of the T -matrix for a given LT , total spin ST ,
and parity ΠT of the collision system. Choosing the
z-axis along the direction of the incident beam simplifies
the formula to m0 = 0 for the orbital angular momentum
projection of the incident electron.

As seen from Eq. (4), the above procedure requires the

overlap factors 〈Ψf,k2(−)
LfMfSfMSf

|Φp(nln′l′, LS)〉 between

the true continuum states and the corresponding pseudo-
states. The continuum states, which describe electron

scattering from the residual ion, are once again obtained
using the R-matrix method, with the same close-coupling
expansion that is employed for generating the bound
pseudostates. This is a critical issue, since it allows
for the preservation of the crucial channel information
through the projection. For the present work, we used a
six-state expansion coupling the 1s, 2s, 2p, 3s, 3p, and 3d
states of He+.

Finally, the fully differential cross section (FDCS) is
given by

dσ

dΩ1dE1dΩ2dE2
=
k1k2

k0

∣∣f(L0M0S0MS0
,k0µ0 → LfMfSfMSf

,k1µ1,k2µ2)
∣∣2 , (5)

where Ei,Ωi (i = 1, 2) denote the energy and the solid angle element for detection of the two electrons.

III. RESULTS Before we show results for ionization with excitation of
the n = 3 ionic states, it seemed appropriate to investi-
gate the stability of earlier predictions against significant
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FIG. 1: (Color online) Cross-section ratio for electron impact ionization of helium, leaving the residual ion either in the 1s
ground state or the n = 2 (2s, 2p) excited states. The two ejected electrons have fixed energies of 200 eV and 44 eV (left panel),
150 eV and 20 eV (center panel), or 44 eV both(right panel), hence requiring incident projectile energies of 269 eV, 195 eV,
or 113 eV to leave He+ in the ground state, and correspondingly 309 eV, 235 eV, or 153 eV to leave He+ in n = 2. Results
from the previous BSR-525 model (including ionic states up to n = 2) and the present BSR-1255 model are compared with the
experimental data of Bellm et al. [8] for a detection angle of 52◦ for the faster of the two outgoing electrons.

changes of the model, in this particular case to more than
doubling the number of states in the close-coupling ex-
pansion. Figure 1 shows earlier results [2] for ionization
of He(1s2)1S with simultaneous excitation of the resid-
ual ion to the n = 2 manifold. We chose the same three
sets of energies for the two outgoing electrons that will be
used below for ionization with excitation of n = 3. The
results are for a detection angle of 52◦ for the faster of
the two outgoing electrons, but the comparison between
the previous predictions from a 525-state BSR model [2]
and the present one with 1255 states is similar for other
detection angles. Hence we conclude that both the nu-
merics and the interpretation of the results are stable.

Figures 2-4 depict the present results for the ioniza-
tion with excitation to the n = 3 manifold of He+.
For all three cases, two with different asymmetric en-
ergy sharings and the third for the same energy of
both outgoing electrons, the agreement between the
BSR-1255 predictions and experiment is not perfect
but certainly very encouraging. For comparison, we
also show hybrid DW2-RMPS results, which were ob-
tained by describing the projectile-target interaction by
a second-order distorted-wave (DW2) approach, while
the ejected-electron–residual-ion interaction as well as
the initial bound state were treated by a convergent
R-matrix (close-coupling) with pseudostates (RMPS) ex-
pansion [9, 10]. Such an unequal treatment of the two
electrons can be appropriate if they are essentially dis-
tinguishable, i.e., for sufficiently high incident projectile
energies and highly asymmetric energy sharing between
the two free electrons in the final state. In such cases,
neglecting exchange and also channel coupling for the
fast electron may be a good approximation [11]. We also
emphasize that the hybrid model does not account for
post-collision interaction, while the BSR model includes
the effect within the R-matrix box.

It should be noted that both the experimental and the-
oretical results for the cross-section ratios can be trans-

formed into absolute cross sections for ionization with
excitation by normalizing to the well-known results for
ionization without excitation [12], where the agreement
between experiment and several theories, most notably
convergent close-coupling (CCC) [7, 13], time-dependent
close-coupling (TDCC) [14, 15], and BSRMPS has been
shown to be excellent on a number of occasions [1, 16].

We finish this paper with a comparison between exper-
iment and theory for the angle-integrated cross section
for ionization of He(1s2)1S with simultaneous excitation
of the residual ion to the He+(3p) state. The theoreti-
cal cross section was obtained for a number of incident
projectile energies by numerically integrating the FDCS
over a suitable grid of angles and energy sharings for the
two outgoing electrons. In contrast to ionization with
excitation to the 2p state [3], the much simpler alter-
native procedure of decomposing each pseudostate into
the various ni`inj`j components and obtaining the 3p
results by weighting the contribution from excitation of
each pseudostate by its admixture from the 3pnj`j con-
figuration turned out to be less suitable in this case.

The results are shown in Fig. 5. The energy depen-
dence of the cross section can be determined experimen-
tally by observing the radiation emitted in the subse-
quent optical decay to He+(1s). As discussed in de-
tail for the corresponding He+(2p) case [3], the abso-
lute value of the cross section was the subject of a long-
standing debate due to the difficulties associated with
the required experimental normalization procedure. For
the 2p case, our recent calculations [3] strongly supported
the early normalizations suggested by Bloemen et al. [17]
and Forand et al. [18] over a later attempt by Merabet
et al. [22]. Furthermore, we found that hybrid models
as well as fully perturbative calculations underestimated
the cross section significantly.

In contrast to what one might expect from the above
discussion, Fig. 5 shows good agreement between two ex-
perimental datasets [20, 21], the present BSR-1255 pre-
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FIG. 2: (Color online) Cross-section ratio for electron impact ionization of helium, leaving the residual ion either in the 1s
ground state or the n = 3 (3s, 3p, 3d) excited states. The two ejected electrons have fixed energies of 200 eV and 44 eV,
respectively, hence requiring incident projectile energies of 269 eV (to leave He+ in the ground state) or 317 eV (to leave He+

in n = 3). The experimental data and the predictions from the DW2-RMPS hybrid theory are from Bellm et al. [8].

dictions, and the hybrid DW-RM6 results of Raeker et
al. [19], which were obtained with a first-order distorted-
wave description of the projectile and a six-state close-
coupling model for the e−He+ collision process involving
the ejected electron. Since the model did not do very well
for ionization with excitation to n = 2 [3], we believe that
the good performance of the DW-RM6 approach is fortu-
itous in the present case. This example shows that care
should be taken when evaluating the quality and reliabil-
ity of a theoretical approach based on a very small set of
data.

IV. SUMMARY

We have presented a detailed comparison of results for
ionization of helium in its ground state with simultaneous
excitation to the n = 3 manifold of the residual He+ ion.
The good agreement between the experimental data and
the theoretical predictions lends further support to the
method used to extract the ionization-excitation cross

sections via a two-step process of first calculating the
excitation of positive-energy discrete pseudostates be-
fore mapping the results to the true continuum states
by weighting the contributions from various scattering
amplitudes with appropriate overlap integrals.
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FIG. 3: (Color online) Same as Fig. 2, except that the two ejected electrons have energies of 150 eV and 20 eV, respectively,
hence requiring incident projectile energies of 195 eV or 243 eV. Also shown are the hybrid calculations (multiplied by 0.5 to
improve visibility) given in Bellm et al. [8].
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FIG. 4: (Color online) Same as Fig. 2, except that the two ejected electrons have both an energy of 44 eV, hence requiring
incident projectile energies of 113 eV or 161 eV. No hybrid results are given, since the asymmetric treatment of the two electrons
is inappropriate.
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FIG. 5: (Color online) Angle-integrated cross sections for
electron impact ionization of helium in its ground state with
simultaneous excitation to the 3p final state of the residual
He+ ion. Also shown are the hybrid calculations by Raeker
et al. [19] and the absolute experimental data are of Fuelling
et al. [20] and Bailey et al. [21].
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