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The two-centre convergent close-coupling method is used to calculate antihydrogen (H̄) formation
via positronium (Ps) scattering on antiprotons (p̄) at near threshold energies. For excited Ps of
energy ε, the 1/ε behavior of the H̄ formation cross sections is valid strictly only at the respective
threshold, as is the 1/

√
ε behaviour for Ps in the ground state. Simple equations are given for the

H̄(n ≤ 4) formation cross sections from Ps(n ≤ 3) from zero to around 0.1 eV above threshold.
Some of the implications of using p̄-Ps collisions to form antihydrogen in beams, and held in traps,
are discussed.

PACS numbers:

I. INTRODUCTION

The study of antimatter has been of great interest for
several decades, and typically involves comparisons of the
properties of particles and antiparticles as tests of sym-
metry (see e.g., [1]). More recently antihydrogen, the
positron-antiproton bound state, has become available
for study (see [2] for a topical review). While some mat-
ter/antimatter properties are well known, such as certain
charge-to-mass ratios [1], the quest to understand the ap-
parent asymmetry implied by the predominance of mat-
ter over antimatter in the Universe has motivated con-
tinued study. In particular, spectroscopic investigations
of H̄ promise to provide sensitive tests of the CPT sym-
metry [2–5], and there are also current efforts to probe
the gravitational properties of antimatter, including H̄
[6–11]. Within the framework of General Relativity, the
weak equivalence principle states that if a particle is only
submitted to gravity then the trajectory of that particle
is independent of its charge and internal structure [6].
Thus, it is assumed that the gravitational behaviour of
matter and antimatter are equivalent, but this has never
been directly tested by experiment. Since the strength of
gravitational interaction is much lower than that of elec-
tromagnetism the weak equivalence principle for antimat-
ter can only be accurately tested using neutral species,
with the simplest case being H̄. It is thus timely to con-
sider mechanisms by which H̄ may be produced in the
laboratory in a manner conducive to investigations of its
properties.
One such mechanism arises from the interaction be-

tween antiprotons and positronium (Ps, the e+-e− bound
state) atoms. A possible result of their interaction is the
production of H̄ by the reaction [3, 12, 13]

p̄+ Ps → H̄ + e−. (1)

From the point of view of theory this is entirely equiva-
lent to p+Ps→H+e+, and so cross sections are obtainable
from positron-hydrogen scattering.

The AEgIS H̄ group at CERN have plans to pro-
duce the anti-atom in Rydberg states by this method
[9, 10, 14]. This is largely because it is generally believed
that the cross section for this process scales by n4

Ps where
nPs is the principal quantum number of the Ps [13, 15],
implying that the use of Ps in a Rydberg state in reac-
tion 1 would efficiently produce antihydrogen in a Ryd-
berg state. Use of reaction 1 was also proposed by Walz
and Hänsch [16] with the resultant H̄ to undergo further
collisions with the Ps target to produce the antimatter
equivalent of the hydride ion, namely H̄+. The ions are
then held in an ion trap where they are sympathetically
cooled (using co-trapped laser cooled ions), before the
positron is removed by photoionisation, thereby allowing
the remaining H̄ to fall freely in the Earth’s gravitational
field. This is the aim of the GBAR group [7, 8, 17].

Both the AEgIS and GBAR experiments pose signifi-
cant technical challenges. Thus, it is useful to have accu-
rate scattering cross sections available for reaction 1 over
as wide an energy range, and for as many initial Ps and
final H̄ states, as possible. The exothermic nature of the
reaction implies that the H̄ formation cross sections for
this mechanism increase as the energy of the Ps atom is
lowered. Therefore, if near-zero energy Ps could be used
for scattering on cold, trapped antiprotons then the yield
of cold H̄ would be enhanced. According to Wigner [18]
the cross sections for such a process behave as 1/

√
ε as

ε → 0 where ε is the energy of the Ps projectile, and this
is observed for the case of Ps(1s). However, for excited
Ps states, owing to the degeneracy of their energy levels,
the low energy behavior is modified to 1/ε [19, 20]. This
behavior was confirmed in our recent work [21]. Further-
more, it was found that the concomitant dramatic rise in
the cross sections for reaction 1 occurred within an exper-
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imentally viable range, thus motivating a more detailed
presentation of our data (see section III).

A theory for determining the cross sections for energies
where the 1/ε relationship is valid must be developed to
produce reliable guideline data for experiment. An ideal
starting point would be the scattering of positrons on
hydrogen atoms, since Ps formation by this method is,
as mentioned above, simply the reverse of hydrogen for-
mation by scattering positronium on protons [22]. Vari-
ous theoretical methods have been used to determine the
cross sections for (anti)hydrogen formation by the reac-
tion (1). Benchmark results at low energies involving
only ground states were obtained using a variational ap-
proach by Humberston et al. [23], and reported in full
by Kadyrov et al. [21]. Several other approaches in-
volve expanding the total wave function in terms of H
and Ps states. There are time-independent close-coupling
(CC) approaches [24–28], time-dependent close-coupling
(TDCC) [29] and the Continuum Distorted Wave - Final
State (CDW-FS) method [30] to name a few. Mitroy [24]
implemented both centres into a close-coupling method
for positron scattering on hydrogen and later positronium
scattering on protons [27]. Work was also done on for-
mation of antihydrogen [25, 28] using a Unitarised Born
Approximation (UBA). The TDCC solves the scattering
wave function with a wave packet time dependently. The
CDW-FS method describes the states using Coulomb
wave functions with exact boundary conditions. Nev-
ertheless, the challenge of yielding accurate results for
various initial states at low energies of interest in exper-
iment remains to be met.

The two-centre convergent close-coupling (CCC)
method of Kadyrov and Bray [31] expands the total wave-
function in terms of Laguerre-based atomic and Ps states

of negative and positive energies ǫ
(H)
n and ǫ

(Ps)
n , respec-

tively (where here n denotes, as appropriate, the Ps or
H principal quantum number). The key idea is to obtain
convergence with systematic increase of the size of the
bases NPs

l and NH
l for l ≤ lmax. One of the remarkable

aspects of the formulation is the capacity to check for
internal validation by ensuring consistency between one-
and two-center results for every partial wave of the to-
tal orbital angular momentum [32]. Briefly, if we define
the “extended Ore gap” to be between the Ps formation
and the ionization thresholds, then for incident positron
energies E0 outside this gap the two approaches should
yield the same results. This is because the one-center cal-
culation is formally valid outside the extended Ore gap,
with the positive-energy atomic states corresponding to
both the (inseparable in this approach) Ps formation and
break-up collision processes. Specifically, denoting the

corresponding calculated cross sections as σ
(1)
fi and σ

(2)
fi ,

for E0 < 6.8 eV

σ
(1)
ii = σ

(2)
ii , (2)

and for E0 > 13.6 eV

σ
(1)
fi = σ

(2)
fi , where ǫ

(H)
f < 0, and (3)

∑

ǫ
(H)
f

>0

σ
(1)
fi =

∑

ǫ
(H)
f

>0

σ
(2)
fi +

∑

ǫ
(Ps)
f

<0

σ
(2)
fi +

∑

ǫ
(Ps)
f

>0

σ
(2)
fi .

The latter is the statement that electron-loss (ioniza-
tion) cross sections in the one-state calculation should
be the same as those obtained in the two-center calcu-
lations, which are composed of the three specified com-

ponents. The first (ǫ
(H)
f > 0) and the third (ǫ

(Ps)
f > 0)

components correspond to the break-up processes in two-
center calculations. Nevertheless, due to the unitarity of
the close-coupling formalism there is no double counting.
However, as bases sizes increase, the two-center equations
become particularly ill-conditioned.
Checking the elastic, excitation and electron-loss cross

sections for each partial wave at energies outside the ex-
tended Ore gap is a very valuable validation of both im-
plementations. It tells us when the one-center approach
may be used to yield accurate results such as given in
[33–37], where the effect of Ps formation (virtual or real)
manifests itself with slow convergence with increasing
lmax. However, either within the extended Ore gap, or
whenever explicit Ps-formation results are required, only
the two-center calculations are capable of yielding the
required cross sections.
Here we are interested in the rearrangement collision

process, and so only two-center CCC calculations are ap-
plicable. From the self-consistency checks [32] we know
that they should be valid at all energies. Such calcu-
lations produce accurate results down to 10−5eV above
the Ps(1s) threshold for H(1s) formation using a rela-
tively small basis [38], and also for excited states requir-
ing larger bases [21]. For brevity of presentation, the
latter gave results for the summed (anti)hydrogen for-
mation. We now take the opportunity to present the full
state-to-state cross sections, and provide simple fitting
formulae for ease of use at low energies.

II. THEORY

Details for positron scattering on atoms using the two-
center CCC method are given by Kadyrov and Bray [31].
Briefly, to represent the atomic and Ps states indepen-
dently the complete Laguerre basis

ξkl(r) =

(

λl(k − 1)!

(2l+ 1 + k)!

)1/2

(4)

× (λlr)
l+1 exp(−λlr/2)L

2l+2
k−1 (λlr)

is utilised, where L2l+2
k−1 (λlr) are the associated Laguerre

polynomials, l ≤ lmax is the orbital angular momentum
of the target (H or Ps) state, λl is the exponential factor
and k ranges from 1 to the basis size Nl. A linear combi-
nation of the basis functions is then used to diagonalize
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the target Hamiltonian HT

〈φ(T)
f |HT|φ(T)

i 〉 = ǫ
(T)
f 〈φ(T)

f |φ(T)
i 〉 = ǫ

(T)
f δfi. (5)

This is done for both H and Ps targets to obtain the
pseudostates used to expand the total wave function of
the scattering system. With increasing Nl the negative-
energy states converge to the true discrete eigenstates,
while the positive-energy states provide an increasingly
dense discretization of the continuum.
Using these pseudostates, a set of momentum-space

coupled Lippmann-Schwinger equations are solved to de-
termine the transition matrix elements

Tγ′,γ(qγ′ , qγ) =Vγ′,γ(qγ′ , qγ) +

NH+NPs
∑

γ′′

∫

dq
γ

′′

(2π)3

×
Vγ′,γ′′(qγ′ , qγ′′)Tγ′′,γ(qγ′′ , qγ)

E + i0− ǫγ′′ − q2γ′′/(2Mγ′′)
, (6)

where E is the total energy, qγ is the momentum of the
free particle γ with respect to the centre of mass of the
bound pair in channel γ (H or Ps), ǫγ is the energy of
the bound pair, Mγ is its reduced mass and Vγ′,γ is the
effective potential. The coupled equations are solved us-
ing the partial-wave expansion in total orbital angular
momentum.
The convergence of the results is checked against in-

creasing Nl and lmax for both H and Ps. With explicit
Ps included large lmax are not required, as they are in

one-center calculations. Here we have taken l
(H)
max = 3

and l
(Ps)
max = 2 (see below). Since the Ps and H expansions

are non-orthogonal, with a clear overlap for the breakup
process, the problem becomes highly ill-conditioned as
the number of states increases. Hence, arbitrarily high
bases cannot be taken. To systematically check the con-

vergence we fixed λ
(H)
l = 1 and λ

(Ps)
l = 0.5, and set

Nl = N0 − l with N
(H)
l = N

(Ps)
l , leaving only one pa-

rameter (N0) to vary. Calculations were performed with
N0 = 10, 11, 12, with the energies for the latter case pre-
sented in Fig. 1.
For Nl = 12 − l, with above-mentioned λ, the H and

Ps states are accurate for n ≤ 5. Our initial states are
denoted as Ps(nl). For Ps(1s) as the initial state we
require a positron energy in excess of 6.8 eV, leading to
the Ps energy ε > 0. At threshold, formation of only the
lower energy H(1s) state is possible. At the threshold of
the Ps(n = 2) states only formation of H(n ≤ 2) states
are possible, whilst for Ps(n = 3) states formation of
H(n ≤ 4) are energetically allowed. The additional H n-
level arises (see figure 1) due to the interplay of the H and
Ps eigenenergies, which vary, as is well-known, according
to n−2 and n−2/2, respectively. For this reason we chose

l
(H)
max = 3 and l

(Ps)
max = 2 so that we could achieve accurate

Ps(n ≤ 3) to H(n ≤ 4) cross sections whilst keeping
the size of the calculations manageable to minimize ill-
conditioning.
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FIG. 1: (Color online) Energy levels of the positronium and
hydrogen states used in the two-center CCC calculations.
They were obtained by solving Eq. (5) for both H and Ps
with Nl = 12− l, see text.

III. RESULTS

The data for (anti)hydrogen formation in the scatter-
ing of Ps(1s) on (anti)protons are presented in figure 2
where, as is evident from figure 1, the only hydrogen state
available near zero energy is H(1s). The remaining states
do not open up until around 5 eV of Ps kinetic energy.
The excellent agreement with the variational calculations
of Humberston et al. [23] (which are not shown in fig-
ure 1) has already been discussed by Kadyrov et al. [21].
Here we concentrate on establishing a simple formula to
fit the low-energy data. As discussed in section I, the
cross sections for H(1s) near threshold behave as 1/

√
ε,

in accordance with Wigner [18]. This is represented by
the solid line over the data points, obtained from a least
squares fit to the function σH(nl) = ε−1/2(a+ bε1/2 + cε)
from zero to 0.01 eV, with the values of a, b and c given
in table I. The fact that b is comparable to a indicates
that the threshold law is valid strictly only at threshold.
Nevertheless, the simple formula can be used across the
three orders of magnitude of the presented low energies.
Whereas H(1s) formation from Ps(1s) is an exother-

mic reaction, and so the cross section tends to infin-
ity at threshold, the formation of H(n > 1) requires a
loss of Ps kinetic energy. Consequently, their respective
thresholds are non-zero and the cross sections typically
rise rapidly from zero to a maximum, and then slowly
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FIG. 2: (Color online) The cross sections for positronium in the 1s state scattering on (anti)protons to form (anti)hydrogen.
The data presented are for transitions open near zero energies (top left), and then transitions across the full energy range of
the calculation into s-states (top right), p-states (bottom left) and d- and f -states (bottom right). The solid line for the near
zero energy results is a least squares fit of the data up to 0.01eV (see text) with the fitting parameters given in table I.

fall again. Whereas we expect the actual cross sections
to vary smoothly as a function of energy we occasion-
ally find outlying points. This is a manifestation of the
ill-conditioned nature of the problem. Data obtained us-
ing smaller values of N0 contain fewer examples of this
behavior, but show somewhat greater pseudoresonance
structure. The present results are generally at the ±5%
level of convergence.

The data for Ps(2s) initial state are presented in Fig. 3.
For Ps(n = 2) the channels for formation of H(n ≤ 2) are
open at zero energy. The H(n = 2) formation cross sec-
tions (top and bottom left) are massively increased com-
pared to the Ps(1s) case of figure 2. Formation of H(1s) is
two orders of magnitude less likely than H(2s) and H(2p),
which are broadly similar. These enhancements can be
attributed to a number of sources: (i) the increased size
and polarizability of the Ps and H states, (ii) the lower

energy difference between Ps(n = 2) and H(n = 2) lev-
els and (iii) the emergence of the 1/ε threshold behavior.
The Ps(1s) data exhibited the 1/

√
ε behavior at low en-

ergies, however this is altered by the introduction of the
degenerate H(n = 2) states to 1/ε in agreement with
Fabrikant [19]. Accordingly, the solid lines in Fig. 3 are a
least squares fit of the function σH(nl) = ε−1(a+bε+cε2)
to the data from zero to 0.1eV, with the fitted coefficients
given in table II. The quantitative similarity is imme-
diately evident for the H(2s) and H(2p) cross sections.
Once more, the magnitude of the b coefficients indicates
that the laws are only strictly valid at threshold.

The (anti)hydrogen formation cross sections for the
Ps(2p) initial state are given in Fig. 4, with the cor-
responding least square fits given in Table III. There
are only quantitative differences with the results for the
Ps(2s) case. The low-energy cross sections are somewhat
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FIG. 3: (Color online) The cross sections for positronium in the 2s state scattering on (anti)protons to form (anti)hydrogen.
The left side data are for scattering near zero energies for formation of hydrogen in an s (top) or p state (bottom). The right
side data are across a larger energy range for formation in s (top) or p, d or f states (bottom). The solid lines for the near
zero energy results are least squares fits of the data up to 0.1eV with the fitted parameters given in table II.

TABLE I: Cross sections σH(nl) = ε−1/2(a+bε1/2+cε) (a.u.)
for near zero energy ε (eV) Ps(1s) incident on (anti)protons,
as shown by the solid line in figure 2. These values were
obtained by a least squares fit of the data up to 0.01eV. The
numbers in brackets indicate the power of 10.

a b c
σH(1s) 7.087[−1] −1.958[+0] 7.926[+0]

smaller, as can be seen when comparing the a coefficients
in tables II and III. Thus, the overall qualitative behav-
ior of the data for the Ps(n = 2) initial states appears
to be quite similar, being dominated by the effects of the
degenerate n = 2 energies.

The results for Ps(n = 3) are considerably more de-
tailed. In these cases all of the H(n ≤ 4) states are open

TABLE II: Cross sections σH(nl) = ε−1(a + bε + cε2) (a.u.)
for near zero energy ε (eV) Ps(2s) incident on (anti)protons,
as shown by the solid lines in figure 3. These values were
obtained by a least squares fit of the data up to 0.1eV. The
numbers in brackets indicate the power of 10.

a b c
σH(1s) 1.429[−1] 4.528[−1] −7.623[−1]
σH(2s) 1.154[+1] 2.452[+2] −2.197[+3]
σH(2p) 1.120[+1] 2.417[+2] −1.992[+3]

at zero incident energy. We begin with Ps(3s) given in
Fig. 5, with the formulae for the fitted data shown in
table IV. We see that there is another order of magni-
tude increase in the largest cross sections, this time to
the H(n = 4) states. From Fig. 1, it is evident that the
Ps(n = 3) energies are only marginally higher than those
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FIG. 4: (Color online) The cross sections for positronium in the 2p state scattering on (anti)protons to form (anti)hydrogen.
The left side data are for scattering near zero energies for formation of hydrogen in an s (top) or p state (bottom). The right
side data are across a larger energy range for formation in s (top) or p, d or f states (bottom). The solid lines for the near
zero energy results are least squares fits of the data up to 0.1eV with the fitted parameters given in table III.

TABLE III: Cross sections σH(nl) = ε−1(a+ bε+ cε2) (a.u.)
for near zero energy ε (eV) Ps(2p) incident on (anti)protons,
as shown by the solid lines in figure 4. These values were
obtained by a least squares fit of the data up to 0.1eV. The
numbers in brackets indicate the power of 10.

a b c
σH(1s) 4.927[−2] 6.586[−1] −3.663[+0]
σH(2s) 3.849[+0] 2.215[+2] −1.953[+3]
σH(2p) 3.772[+0] 2.672[+2] −2.188[+3]

for H(n = 4). Such a small difference contributes to the
enhanced cross sections, as well as the increased size and
polarizability of the incident Ps. There are only minor
quantitative differences between the cross sections for the
formation of H(n = 4) states, with those for H(4s) be-
ing somewhat smaller than the others. Interestingly, the

H(4d) and H(4f) cross sections are barely distinguishable
at the low energies, as is also apparent from table IV. The
threshold relationships hold strictly at threshold, and the
given formulae are accurate up to 0.1 eV. The H(n = 3)
cross sections are an order of magnitude lower than those
for H(n = 4), and those for lower values of n seem to drop
by a further order of magnitude.

Figure 6 shows the H(n ≤ 4) formation cross sections
for the Ps(3p) initial state, with details of the fitted for-
mulae given in table V. The qualitative behavior of the
data is much the same as for the Ps(3s) results. Quan-
titative differences may be readily extracted using the a
coefficients in the corresponding tables.

Finally, the cross sections for H(n ≤ 4) formation for
the case of the Ps(3d) initial state are presented in Fig. 7,
with the corresponding formulae from least-square fits
given in table VI. We see no qualitative change from the
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TABLE IV: Cross sections σH(nl) = ε−1(a + bε+ cε2) (a.u.)
for near zero energy ε (eV) Ps(3s) incident on (anti)protons,
as shown by the solid lines in figure 5. These values were
obtained by a least squares fit of the data up to 0.1eV. The
numbers in brackets indicate the power of 10.

a b c
σH(1s) 7.724[−3] −4.788[−2] 7.442[−1]
σH(2s) 3.218[−1] 3.566[+0] −2.728[+1]
σH(2p) 4.437[−1] 1.026[+0] 1.584[+1]
σH(3s) 5.220[+0] 4.519[+1] −4.769[+2]
σH(3p) 8.626[+0] 1.066[+2] −1.310[+3]
σH(3d) 3.664[+0] 4.252[+1] −2.182[+2]
σH(4s) 3.892[+1] −2.019[+2] 4.573[+3]
σH(4p) 1.178[+2] −7.584[+2] 1.164[+4]
σH(4d) 1.097[+2] 1.235[+3] −1.174[+4]
σH(4f) 8.713[+1] 1.650[+3] 1.167[+4]

TABLE V: Cross sections σH(nl) = ε−1(a + bε + cε2) (a.u.)
for near zero energy ε (eV) Ps(3p) incident on (anti)protons,
as shown by the solid lines in figure 6. These values were
obtained by a least squares fit of the data up to 0.1eV. The
numbers in brackets indicate the power of 10.

a b c
σH(1s) 3.892[−3] 5.562[−3] 1.994[−1]
σH(2s) 2.829[−1] 2.184[+0] −9.661[+0]
σH(2p) 4.027[−1] 2.522[+0] 1.377[+0]
σH(3s) 3.628[+0] 1.289[+1] 6.323[+1]
σH(3p) 7.433[+0] 5.333[+1] −5.490[+1]
σH(3d) 4.759[+0] 2.311[+1] 1.052[+2]
σH(4s) 2.382[+1] 1.104[+2] −3.021[+2]
σH(4p) 7.705[+1] 8.548[+1] −3.670[+2]
σH(4d) 7.906[+1] 4.618[+2] 1.262[+2]
σH(4f) 8.257[+1] 2.160[+3] 3.257[+3]

other n = 3 cases, though quantitatively the cross sec-
tions are somewhat lower in magnitude.

This completes our presentation of H(n ≤ 4) forma-
tion cross sections from Ps(n ≤ 3) initial states inci-
dent on (anti)protons at the lower energies of interest

TABLE VI: Cross sections σH(nl) = ε−1(a + bε+ cε2) (a.u.)
for near zero energy ε (eV) Ps(3d) incident on (anti)protons,
as shown by the solid lines in figure 7. These values were
obtained by a least squares fit of the data up to 0.1eV. The
numbers in brackets indicate the power of 10.

a b c
σH(1s) 1.048[−3] 5.107[−3] 7.025[−2]
σH(2s) 1.214[−1] 2.821[−1] 8.805[+0]
σH(2p) 1.813[−1] 1.274[+0] 4.103[+0]
σH(3s) 1.213[+0] 2.412[+0] 2.570[+2]
σH(3p) 2.733[+0] 1.364[+1] 5.353[+2]
σH(3d) 2.343[+0] 3.535[+1] −2.597[+1]
σH(4s) 8.463[+0] 7.395[+1] −5.959[+2]
σH(4p) 2.722[+1] 1.443[+2] −4.255[+2]
σH(4d) 2.662[+1] 2.549[+2] 3.892[+3]
σH(4f) 3.996[+1] 2.852[+3] −6.547[+3]

to experiment. It is clear from the trends exhibited in
our data that transitions between Ps and H states with
near-matching energies for as high values of n as possible
will yield the largest cross sections. However, the en-
ergy interplay makes extrapolation procedures problem-
atic. Clearly there is incentive to increase the size of the
calculations. It would be particularly interesting to allow
for Ps(n = 5) with H(n = 7). In this case the energy dif-
ference is very small (0.0056 eV), and so should yield par-
ticularly large cross sections. To achieve this we have to
run with N0 ≈ 20. This is not practical with the present
implementation of the CCC code, however there are cur-
rently two developments that should assist in address-
ing this issue. First, following the successful analytical
treatment of the singularities in the CCC equations in a
model problem [39], we expect to reduce ill-conditioning
when implemented for the full (present) problem. The
requirement to yield results close to thresholds requires
treatment of principal-value singularities very close to
zero. Eliminating them would be advantageous. Sec-
ondly, implementation of arbitrary precision numerical
approaches [40], as has been done for proton-hydrogen
scattering [41], will also assist in that regard.

IV. DISCUSSION

In this section we present analyses in which our calcu-
lated cross sections are used to estimate the yields of H̄
atoms from reaction 1 in geometries which result, broadly
speaking, in the production of (i) an H̄ beam, and (ii)
trapped H̄. In both cases the most relevant starting Ps
states are the 1s, 2p, 3p, and 3d states. The 2p and 3p
states can be reached efficiently from the ground state by
single photon transitions at 243 nm (see e.g., [42, 43]) and
205 nm [44, 45] respectively, whilst the 3d level can be
accessed via a transition involving two 410 nm photons.

A. Antihydrogen Beams

Atomic and molecular beams have had an important
role in the development of physics (see e.g., [46, 47]).
Nowadays they are used routinely for many purposes,
including the population of optical and magneto-optical
traps found in a wide variety of investigations in contem-
porary atomic/molecular physics. By contrast, in antihy-
drogen work to date there have been no physics studies
using directed fluxes of the anti-atom, though progress
towards this goal is ongoing (see below). Currently, H̄
atoms are created in Penning trap-like environments in
which strong (typically of the order of tesla in magnitude)
magnetic fields are present to confine the constituent an-
tiparticles. Given the well-known effects of such fields on
the spectral properties of atomic species (see e.g., [48])
a major motivation to produce H̄ beams is to facilitate
measurements of its properties in a field-free region to
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FIG. 5: (Color online) The cross sections for positronium in the 3s state scattering on (anti)protons to form (anti)hydrogen.
The left side data are for scattering near zero energies for formation of hydrogen in s (top), p (middle) d or f states (bottom).
The right side data are across a larger energy range. The solid lines for the near zero energy results are the least squares fits
to the data up to 0.1eV with the fitted parameters given in table IV.
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FIG. 6: (Color online) The cross sections for positronium in the 3p state scattering on (anti)protons to form (anti)hydrogen.
The left side data are for scattering near zero energies for formation of hydrogen in s (top), p (middle) d or f states (bottom).
The right side data cover a larger energy range. The solid lines for the near zero energy results are the least squares fits to the
data up to 0.1eV with the fitted parameters given in table V.



10

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 

 

Ps(3d)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0 2 4 6 8 10 12 14

 

 

(anti)hydrogen 
  formation

H(1s)
H(2s)
H(3s)
H(4s)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

c
r
o
s
s
 
s
e
c
t
i
o
n
 
(
a
.
u
.
)

 

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0 2 4 6 8 10 12 14

 

 

(anti)hydrogen 
 formation

H(2p)
H(3p)
H(4p)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 

Ps(3d) energy ε (eV)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0 2 4 6 8 10 12 14

 

Ps(3d) energy ε (eV)

(anti)hydrogen 
 formation

H(3d)
H(4d)
H(4f)

FIG. 7: (Color online) The cross sections for positronium in the 3d state scattering on (anti)protons to form (anti)hydrogen.
The left side data are for scattering near zero energies for formation of hydrogen in s (top), p (middle) d or f states (bottom).
The right side data are across a larger energy range. The solid lines for the near zero energy results are least squares fits of the
data up to 0.1eV with the fitted parameters given in table VI.
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aid in mitigating, for instance, motionally-induced com-
plexities.

Currently, at least two groups (see e.g., [49, 50]) envis-
age using H̄ beams for studies of its gravitational proper-
ties, and for hyperfine spectroscopy, respectively. In par-
ticular, ASACUSA requires directed fluxes of low energy
ground state H̄ for their intended measurements of the
hyperfine splitting interval. Recent work by this group
([51]) has shown that a modest yield (80 H̄ atoms in to-
tal, at a rate of about 25 per hour and determined to be
in a quantum state below n = 29) can be detected 2.7 m
downstream of their cusp trap arrangement [52] for e+-
p̄ mixing cycles of 15 minutes duration, each involving
around 3× 105 p̄ and 3× 107 e+. In this experiment the
H̄ was produced at low (antiparticle cloud) temperatures
to exploit the three-body reaction e+ + e+ + p̄ → H̄ + e+

and the cusp trap magnetic field configuration resulted
in beam-like emission from the production region by al-
lowing low-field seeking H̄ to escape (and to some extent
focussing it) along the axis of the system.

As mentioned earlier, an alternative method to pro-
duce an H̄ beam is to exploit reaction 1 by passing an
antiproton beam through a Ps target. This reaction
will, due to momentum considerations, be peaked in the
original direction of the heavy projectile such that the
angular properties of the H̄ beam will be governed by
those of the incoming p̄. In this respect, the cross sec-
tion data presented in figures 2-7 span the Ps kinetic
energy range from 10−5 eV to just over 10 eV, corre-
sponding to an equivalent p̄ kinetic energy from around
10 meV to about 13 keV. The latter spans the range over
which it should be feasible to produce controlled, vir-
tually mono-energetic, p̄ beams extracted from trapped
clouds and plasmas. This field has been pioneered by the
ASACUSA collaboration that has developed techniques
to manipulate p̄, currently down as far as the 100-200
eV range [53–55], with applications in the keV region in
atomic/molecular collision physics [56, 57]. In what fol-
lows we will consider cross sections at a single fixed Ps
kinetic energy of 100 meV, which corresponds to an effec-
tive p̄ kinetic energy of just under 100 eV, with a speed of
just over 105 ms−1, for an idealised stationary Ps target.
Thus we envision a collision geometry in which a near-
mono-energetic p̄ beam crosses a Ps target in a confined
gas-cell arrangement (see e.g. [8] for further details). Our
work can be used to produce estimates of the intensity of
H̄ beams derived from reaction 1. The examples we give
are illustrative, and meant to offer guidance to experi-
ment, rather than an attempt to predict the outcomes of
what are likely to be complex experimental systems.

The first point to note from figure 2 is that for the Ps
1s state, formation into H̄(1s) is the only open channel at
100 meV, where it has a collision cross section of around
6 a.u.. The cross sections for Ps(2p), Ps(3p) and Ps(3d)
are given in figures 4, 6 and 7, from which three trends
are apparent: (i) the cross sections for direct formation
into the H(1s) state become depressed for the excited Ps
targets; (ii) the production cross sections for excited H̄

states increase dramatically with increasing Ps principal
quantum number, and (iii) so does the number of dif-
ferent final H̄ states. Thus, it is apparent, in a gas cell
arrangement in which p̄ collide with excited Ps atoms,
that the yield of H̄(1s) will be dominated by the rapid
population enhancement due to radiative decay of the
excited H̄ states. For instance at the H̄ kinetic energy
of 100 eV, a flight path of around 1 m is sufficient to
ensure that almost all of the H̄ produced will be in the
ground state. Indeed the only unavoidable losses are due
to direct production of H̄ in the metastable 2s state, and
decays to this level directly from the 4p and 3p states,
and indirectly via 4s-3p-2s and 4d-3p-2s cascades. From
the known lifetimes of the relevant transitions [58], it is
straightforward to compute branching ratios for these,
such that around 12% of each of the 4p and 3p popula-
tions are lost, together with 5% of the 4s and 3% of the
4d. For instance, for the cross sections for the 3p Ps state
shown in figure 6, this amounts to about a 4% loss from
an overall production cross section of around 6000 a.u..

The production of excited state positronium atoms
with principal quantum numbers in the range n = 2-
20 has been achieved recently in several laboratories
[42, 43, 45, 59, 60]. Whilst absolute production efficien-
cies are difficult to extract, the measurements are consis-
tent with yields in the region of 20% of the ground state
population, and higher conversion rates (above around
30%) have been postulated [61]. Assuming the latter, it
might then be feasible to create, using a gas cell geometry
of the type envisaged by GBAR ([6–8]), an excited state
(3p) Ps cloud with an effective density of around 1017

m−3 over a length of 1 cm. In this scenario, around 1.5%
of the p̄ flux crossing such a target (obviously in a pulse
to coincide with the Ps and its finite lifetime against an-
nihilation and radiative decay) can be converted into a
beam of 1s H̄ which, to first order, will retain the prop-
erties of the incident antiprotons. Incidentally, a 2s H̄
flux of around 0.07% of the incident p̄s will be present
in this beam. It is worth noting that it may be possi-
ble to obtain even higher yields using higher Ps principal
quantum numbers, though there may be a trade-off with
the length of the flight path required to ensure that the
anti-atoms have reached the ground state.

The ASACUSA collaboration [50] is hoping to perform
hyperfine spectroscopy on the 1s state of H̄ (which has
a splitting of approximately 1420 MHz [62]) to obtain a
linewidth of around 10 kHz, limited by the transit time
of a 50 K beam (equivalent to around 5 meV) across a
10 cm long cavity. In fact this transit time broadening
linewidth limit is given (in kHz) by ∆ft ≈ 14

√
V /d for a

beam of kinetic energy (eV ) and a cavity length, d. In the
case discussed above, and assuming the 10 cm ASACUSA
cavity length, we find ∆ft ≈ 1.4 MHz. This is similar to
the precision already achieved by ALPHA [62], however,
the intensity of the H̄ beam would likely be much higher
than can be achieved from the cusp trap arrangement (see
above), with the prospect of finer line splitting leading to
a more precise determination. Furthermore, if the p̄ (and
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thus the H̄) beam kinetic energy could be reduced, there
would be a double gain of a reduction in the broadening
of the transition coupled with an enhancement in the H̄
flux, which should result in better line splitting.
The possibility, currently pursued by the GBAR col-

laboration ([6–8]), to study the gravitational interaction
of antihydrogen by exploiting the free-fall of ultra-cold
anti-atoms was already briefly mentioned in section I. In
their scheme it is envisaged that the H̄ will be produced
via a charge exchange scheme involving reaction (1) fol-
lowed by the creation of the positive antihydrogen ion
via,

H̄ + Ps → H̄+ + e−, (7)

with the H̄+ then captured and cooled before the positron
is photoionized [16]. Due to the energetics of reaction
(7) and the fact that H̄+ is expected to have only one
state (as does its matter counterpart H−) that is bound
by around 0.75 eV with respect to e+ + H̄, reaction (7)
is only probable when the colliding H̄ is in the ground
state. The cross sections we have presented here can be
used to derive estimates for the H̄+ yield (also given cross
sections for reaction (7)), and in principle a full analysis
of various scenarios can be undertaken in the manner
described by Comini and co-workers [63], though this is
beyond the scope of the present work. What we do point
out is that if the enhanced rates of ground state H̄ are
to be exploited by lowering the p̄ kinetic energy (from
that currently envisaged in the few keV range), then due
to threshold effects in heavy particle collisions (see e.g.
[64]), the H̄ should collide with Ps in the n = 3 state,
a variant of reaction (7) which is borderline exothermic.
Thus, there is an urgent need for accurate cross sections
for reaction (7) for excited Ps states, especially in the
lower energy range covered by the present work.

B. Trapped Antihydrogen

In other experiments (for example ALPHA and
ATRAP), a major goal is to hold H̄ in a magnetic min-
imum neutral atom trap to promote the detailed study
of its properties. To date anti-atoms have been held,
typically singly or in very low numbers [65, 66], in traps
around 0.5 K deep and in some instances for time peri-
ods in excess of 1,000 s [67], which is more than enough
time to ensure that any H̄ formed in an excited state
from the aforementioned three-body reaction decays to
the ground state. Major challenges to increase the yield
of trapped H̄ are to cool the positrons and antiprotons
to temperatures as low as possible (preferably to a level
comparable to the neutral trap depth) before they are
mixed to form the anti-atoms and to ensure that the low
antiparticle temperatures are maintained during mixing
(i.e., that the electrical manipulations required to overlap
the species do not result in heating). Use of reaction (1)

may reduce the level of difficulty, as only cold antipro-
tons are required. In this respect the issue then becomes
whether the resulting antihydrogen kinetic energy is low
enough to allow trapping.
Experimentally, the H̄ must be formed, as at present,

in a Penning-type charged particle trap which has a mag-
netic minimum neutral atom trap superimposed. Cur-
rently the Penning trap electrodes are cylindrical in na-
ture and with a typical radius of 1-2 cm. To exploit
reaction (1) the Ps should be formed at a surface as close
as possible to the trapped antiproton cloud, with atten-
dant laser access to provide for photo-excitation of the Ps
prior to interaction. This is by no means a trivial prob-
lem, as specialised structures (e.g., porous silica [68]) are
often used to create low energy (typically sub-100 meV)
Ps and these must be integrated into the Penning trap
structure.
In what follows, we have assumed that this can be

achieved with modest losses of Ps flux such that useful
yields of H̄ can be obtained. It is noteworthy that, for
trapping, only the total H̄ formation cross section (i.e.,
not state-specific) is needed, as the trapped H̄ lifetime is
sufficient to ensure that the ground state will be reached,
if the anti-atom is held. In our previous work [21] we
made estimates of H̄ yields for the Ps(3p) case, finding a
few tens of antihydrogen atoms could be produced for a
Ps density of 1015 m−3 and for Ps kinetic energies (with
the p̄ assumed stationary) in the 10-100 meV range. It
is clear from that work, and the data presented herein,
that going to higher Ps principal quantum numbers will
dramatically increase the H̄ production cross section, and
hence the overall anti-atom yield. Indeed, if the factor
of approximately 40 increase in cross section when going
from the 2p to the 3p state is maintained to n = 10 Ps
and above, then essentially all p̄ will interact to produce
H̄.
However, of paramount importance is not just the yield

of H̄ , but also its kinetic energy, since this must be below
the neutral trap depth if it is to be held. In this respect
we have made some estimates of the H̄ recoil as a result
of the p̄-Ps reaction. We assume that the p̄ is stationary,
and in one (ideal) limit that so too is the Ps. In this case
the recoil of the H̄ is a result of the energy difference
between the relevant Ps and H̄ energy levels, which we
denote as Q = ǫH̄nl − ǫPs

nl . It is easy to show that, in this
limit the effective H̄ recoil temperature, TH̄, is given by
[15]

TH̄ =
2Qme

3mH̄kB
=

2meR

3mH̄kB

(

1

n2
H̄

− 1

2n2
Ps

)

. (8)

Here me and mH̄ are the electron/positron and H̄ masses
respectively, kB is Boltzmann’s constant and R the Ry-
dberg, with nH̄ and nPs now explicitly distinguished by
notation as the H̄ and Ps principal quantum numbers.
For the antihydrogen to be held in a trap of effective
wall temperature, TW , clearly TH̄ ≤ TW . From this re-
quirement, and substituting values for the constants, it
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can be shown that the antihydrogen state constraint is
given by

nH̄ ≥
√
2nPs

(

1 +
n2
PsTW

28.7

)

−1/2

, (9)

with TW in degrees K. The ALPHA neutral atom trap is
around 0.5 K deep [65], and inserting this value into equa-
tion 9 it is easy to show that for nPs = 3, antihydrogen
states with nH̄ ≥ 4 will be trapped. If more highly ex-
cited states of Ps can be produced then a larger selection
of energy-allowed H̄ states can be trapped: as an exam-
ple, all states with nH̄ ≥ 9 will be trapped for nPs = 10.
Bearing in mind that the H̄ states most likely to be pop-
ulated are those that are as close to energy-degenerate
with the starting Ps states as possible (formally satis-

fied when nH̄ =
√
2nPs), then it is clear that, as nPs is

increased, a progressively larger fraction of the H̄ pro-
duced has a low enough kinetic energy to allow trapping,
when only the magnitude of Q is considered.
Another limit is to presume that the Ps possesses a

kinetic energy, KPs, but that Q = 0; i.e., for the latter
that the H̄ and Ps binding energy difference can be ig-
nored, which will become an approachable limit as nPs is
increased. Here the classical equations for the conserva-
tion of momentum and energy yield somewhat cumber-
some expressions that depend upon the angle between the
initial Ps velocity and that of the H̄ in the final state (or
that of the ejected electron). However, it is straightfor-
ward to show that the maximum H̄ recoil kinetic energy,
KH̄, is of the order of 10 × meKPs/mH̄ [15]. Equating
KH̄ = 3kBTW /2, the effective value of KPs which results
in H̄ with a kinetic energy low enough to be trapped
is given, approximately, by KPs = 3kBTWmH̄/20eme,
with e the elementary charge. Again taking TW = 0.5 K
and inserting values for the constants, we find KPs ≈ 12
meV, or an approximate temperature equivalent of 180
K. Though this requires positronium at energies lower
than room temperature, Ps sources that operate in the
cryogenic environments typical of Penning traps have

been developed [69–71], however it is likely that further
work is required, perhaps involving laser cooling [72], to
ensure that the Ps interacts at correspondingly low ki-
netic energies. When both TPs 6= 0 and Q 6= 0 the sit-
uation is more involved, though the kinematics of the
collision outcome can be simulated [73], if the relevant
differential cross sections are known.

V. CONCLUSIONS

We have performed calculations of positronium scat-
tering on (anti)protons to produce (anti)hydrogen for
various initial n ≤ 3 states to final n ≤ 4 states. The
largest cross sections are obtained for the 3 → 4 transi-
tions, with minor variation across the different l. Thresh-
old laws have been found to be strictly valid at threshold,
with simple formulae given to yield accurate (±5%) re-
sults from zero to about 0.1 eV incident Ps energy, which
is of practical value to experiments attempting to form
antihydrogen, both in beams and held in traps. We have
discussed aspects of the impact of the present work on
those endeavours.
Presently, we are developing novel approaches to the

solution of the two-center CCC equations that will reduce
the ill-conditioning, and also implementing numerical ap-
proaches that will manage even more ill-conditioned sys-
tems. If successful, we hope to extend the calculations to
states with higher principal quantum numbers.
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