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Abstract

We examine how corrections to S-state energy levels, EnS , in hydrogenic atoms due to the finite

proton size are affected by moments of the proton charge distribution. The corrections to EnS are

computed moment by moment. The results demonstrate that the next-to-leading order term in

the expansion is of order rp/aB times the size of the leading order 〈r2
p〉 term. Our analysis thus

dispels any concern that the larger relative size of this term for muonic hydrogen versus electronic

hydrogen might account for the current discrepancy of proton radius measurements extracted from

the two systems. Furthermore, the next-to-leading order term in powers of rp/aB that we derive

from a dipole proton form factor is proportional to 〈r3
p〉, rather than 〈r4

p〉 as would be expected

from the scalar nature of the form factor. The dependence of the finite-size correction on 〈r3
p〉 and

higher odd-power moments is shown to be a general result for any spherically symmetric proton

charge distribution. A method for computing the moment expansion of the finite-size correction

to arbitrary order is introduced and the results are tabulated for principal quantum numbers up

to n = 7.
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I. INTRODUCTION

The proton radius puzzle concerns the incompatibly different measurements of the proton

radius rp ≡ 〈r2
p〉1/2 resulting from normal hydrogen (ep) spectroscopy and spectroscopy of

muonic hydrogen (µp). The 2010 recommended CODATA value based on hydrogen spec-

troscopy and electron-proton scattering is rp = 0.8775(51) fm, [1] whereas the CREMA

collaboration found rp = 0.84087(39) fm from precision measurements of the Lamb shift in

µp. [2, 3] In atomic spectroscopy, the size of 〈r2
p〉 is calculated from its shift of the S-state

energy levels, which is given to leading order in powers of the proton radius by

∆EnS =
2πα

3
|ψnS(0)|2 〈r2

p〉 =
2α

3n3a3
B

〈r2
p〉. (1)

In scattering experiments, rp is obtained from the Sachs electric form factor GE(Q2) accord-

ing to

〈r2
p〉 = −6

dGE(Q2)

d(Q2)

∣

∣

∣

∣

∣

Q2=0

. (2)

Reviews of the proton radius puzzle by R. Pohl et al. [4] and C. Carlson [5] discuss in detail

the importance of this problem and include various theoretical explanations that have yet

to gain acceptance.

Among the explanations of any discrepancy between theory and experiment, there must

always be included the possibility that the theory was not correctly applied, and in this article

we investigate one particular possibility. We note that Eq. (2) arises from using the Sachs

electric form factor GE(Q2) in a first-order expansion in terms of Q2 = q2. As pointed out

in [6], the proton radius puzzle makes it natural to consider the effects of the q4 and higher-

order terms in this expansion. Retaining such terms in the form-factor and proceeding as

with the first-order calculation leads to the proposal of a lepton-dependent parametrization

of the leading order finite-size energy correction to the nS levels of hydrogenic atoms,

∆EnS,ℓ =
2πα

3
|ψnS,ℓ(0)|2r2

p,ℓ, (3)

where ℓ ∈ {e, µ}. Since the muonic Lamb shift measured by the CREMA collaboration

concerns a 2S-2P transition, we demonstrate that the proposed parametrization [6] of r2
p,ℓ

leads to a divergence in the energy correction of Eq. (3). We go on to examine the argument

of [6] based on continuing the expansion of Eq. (1) in powers of q2 and confirm that the

next term in the series is indeed more significant for µp than for ep. However, as will be
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shown, the effect remains far too small to account for a 4% discrepancy in rp. Our analysis

parallels the work of [7, 8], which reached the same conclusions using numerical methods,

and we generalize those results.

II. DIVERGENCE OF THE PROPOSED CORRECTIONS

The proposed lepton-dependent radius extracted from nS energy levels which appears

in Eq. (3) arises from expanding GE in powers of q2 [6], an idea that is well-motivated.

Keeping terms up to q4 and rearranging the result so as to match the factorization in Eq.

(3) would seem to suggest the reparametrization,

r2
p,ℓ = r2

p − 〈q2〉n,ℓr̃
4
p, (4)

〈q2〉n,ℓ = |ψnS,ℓ(0)|−2

ˆ

d3q

(2π)3
q2

ˆ

d3reiq·r|ψnS,ℓ(r)|2, (5)

with r̃4
p a parameter determined by the second derivative of GE. An explicit expression for

r̃4
p will not be needed. Let us now consider as an example the 2S wavefunction, which is

well-known to be

ψ2S,ℓ(r) =
1√
4π

1
√

2a3
ℓ

(

1 − r

2aℓ

)

e
−

r
2aℓ (6)

where

aℓ ≡ 1

αmred,ℓ
(7)

denotes the Bohr radius of either ep or µp, and we work in center-of-mass coordinates.

Inserting this wavefunction into Eq. (5) yields

〈q2〉2,ℓ = |ψ2S,ℓ(0)|−2

ˆ

d3q

(2π)3
|q|2
ˆ

d3r eiq·r 1

8πa3
ℓ

(

1 − r

2aℓ

)2

e−r/aℓ (8)

Evaluating the q-space integral first leads to an immediate divergence. Equivalently, using

the fact that |q|2eiq·r = −∇2eiq·r and integrating by parts, one finds that this divergence

corresponds to trying to evaluate ∇2|ψ2S,ℓ(r)|2 at the origin, which can be seen to diverge

using the Schrödinger equation. These considerations, which hold for any S-state, show the

proposed finite-size correction is divergent, so the idea given by [6] cannot bring the different

measurements of rp into agreement. Nevertheless, it is worthwhile to pursue the idea that

higher q2n terms might be important for the finite-size correction in muonic hydrogen. This

is done in the following by first evaluating the relevant matrix element as a function of GE
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and then expanding the result in terms of the ratio of the size of the proton to the Bohr

radius. This calculation will therefore show that using the proper order of integration and

series expansion is essential to getting the correct result.

III. EXPANSION OF THE S-STATE FINITE-SIZE CORRECTION

We now examine what the true effect of higher-order moments is on the size of the

nS-level corrections derived from non-relativistic (NR) perturbation theory.

A. Calculation from an approximate NR proton form factor

The perturbation to the Hamiltonian is given in coordinate-space by

δV (r) = −α
ˆ

d3r′

[

ρ(r′) − δ(r′)

|r − r′|

]

, (9)

where ρ describes the electric charge distribution of the proton (normalized to unity). The

corresponding energy correction to the nS level can be written as

δEnS =

ˆ

d3r|ψnS(r)|2
ˆ

d3q

(2π)3
eiq·rδV (q) (10)

where δV (q) is the Fourier transform of Eq. (9),

δV (q) =
4πα

q2
[1 − F (q)] , (11)

with F (q) being the NR form factor. To proceed with analyzing the higher-order terms in

δEnS we first approximate the form factor with what is traditionally known as the dipole

form factor:

GE(q) = Fdipole(q) =

(

1 +
|q|2
Λ2

)−2

, (12)

where Λ2 ≃ 0.71 GeV2. The name dipole arises from the fact that GE has a second order

pole at |q|2 = −Λ2 . Substituting the dipole form factor into Eq. (11) and evaluating the

q-space integral of Eq. (10) leads to

δEnS = α

ˆ ∞

0

dr r2 |Rn0(r)|2
(

Λr + 2

2

)

e−Λr

r
. (13)

In particular, one finds that

δE2S = αΛ

[

4(aℓΛ)−3 + 3(aℓΛ)−5 + (aℓΛ)−6

4(1 + (aℓΛ)−1)5

]

. (14)
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Since (aℓΛ)−1 ≪ 1 for both ep and µp, this quantity can be used as an expansion param-

eter:

δE2S = αΛ
[

(aℓΛ)−3 − 5(aℓΛ)−4 +
63

4
(aℓΛ)−5 − 77

2
(aℓΛ)−6 + 80(aℓΛ)−7 − · · ·

]

. (15)

It will be economic to define ξnS(ρ, ℓ) as the ratio of the second term to the first term in an

expansion of the form in Eq. (15) for δEnS, resulting from the distribution ρ with satellite

ℓ. In order to account for a 4% reduction in the apparent rp (an 8% reduction in r2
p), we

require ξ2S(ρ, µ) ≈ 8%. Using the known values of aℓ and Λ, we calculate

ξ2S(ρ, ℓ) ≈















−4.1 × 10−3, ℓ = µ

−2.2 × 10−5, ℓ = e
(16)

for a dipole form factor. The relative size ξ2S(ρ, µ) = −4.1 × 10−3 therefore shows that

neglecting higher-order moments in Eq. (1) is not to blame for the proton radius discrepancy

(despite the fact that ξnS(ρ, ℓ) is about 200 times greater for µp versus ep). More concretely,

as discussed in [2], any missing terms from the energy difference associated with the muonic

Lamb shift would need to amount to 0.31 meV in order to bring their value of rp into

agreement with the previously accepted CODATA value, and the second term of Eq. (15)

amounts to only a 0.02 meV difference. The conclusions we have reached so far, namely

the inadequacy of higher-order terms in the finite-size correction as a solution to the proton

radius puzzle, will next be substantiated without assuming a specific shape of the proton

form factor.

B. General dependence of E2S on moments of the proton charge distribution

In the preceding section, the assumption of a dipole form factor lead to the expansion in

Eq. (15) for δE2S. However, Eq. (15) can be cast in a more revealing form by trading the

powers of Λ for moments of the proton charge distribution,

〈rn
p 〉 =

ˆ

ρ(r)rn d3r. (17)

The dipole form factor corresponds to a proton distribution function,

ρ(r) = Λ3e−Λr/8π, (18)
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from which one finds that

Λ−n = 2〈rn
p 〉/(n+ 2)!. (19)

Thus, the expansion Eq. (15) reads

δE2S/α =
〈r2

p〉
12a3

ℓ

−
〈r3

p〉
12a4

ℓ

+
7〈r4

p〉
160a5

ℓ

−
11〈r5

p〉
720a6

ℓ

+
〈r6

p〉
252a7

ℓ

− · · · . (20)

At this point we call attention to the peculiar result that all moments of rp higher than

the first appear in the finite-size correction Eq. (20). It is straightforward to show that the

form factor of a spherically symmetric density is given by

F (q)|ρ(r)=ρ(|r|) =
∞
∑

m=0

(−)m〈r2m〉
(2m+ 1)!

q2m, (21)

i.e., the form factor can be written purely in terms of even moments of the coordinate-space

density. In light of Eq. (10) and Eq. (11), the appearance of odd-power moments in Eq. (20)

is surprising. We believe that the form of the series Eq. (21) may have been the motivation

for the lepton-dependent parametrization of Eq. (4). We note that the term proportional to

〈r3
p〉 in Eq. (20) is not at all related to the third Zemach moment [9, 10], which produces a

much larger change to the energy level.

Although we obtained the expansion of Eq. (20) by assuming a dipole form factor, this is

in fact the general result for any spherically symmetric proton charge density. Other models

for the density which can be verified to yield the same expansion as Eq. (20) include

ρG(r) =

[

3

2π〈r2
p〉

]3/2

exp

(

− 3r2

2〈r2
p〉

)

, (22)

ρY(r) =
3

2π〈r2
p〉r exp

(

−
√

6r

〈r2
p〉1/2

)

, (23)

although it should be noted that the values of the moments themselves depend, of course,

on which density is used. (Densities of the above forms were also used in the numerical work

of [7].)

To justify our result in general, we claim that the spherically symmetric density appearing

in Eq. (9)—whatever its particular form may be—can be represented formally by the series

ρ(r) =̇
1

4πr2

∞
∑

j=0

(−)j〈rj
p〉

j!
δ(j)(r), (24)
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where
´∞

0
δ(r)dr = 1 and δ(j)(r) ≡ ( d

dr
)jδ(r). This allows us to express the finite-size

correction to the nS level as

δEnS = −α
∞
∑

j=1

ˆ

dr′ r′2|Rn0(r
′)|2
ˆ

dr
(−)j〈rj

p〉
j! r>

δ(j)(r) (25)

where r> ≡ max(r, r′).

It is not immediately obvious how one should go about evaluating the terms in Eq. (25)

since δ(r) lives on the non-negative real axis rather than the usual entire real line; typical

methods such as integration by parts lead to ambiguous expressions involving, e.g., δ(0) or

δ′(0). One solution in such circumstances is to replace the Dirac delta with a representative

test distribution f(r, ǫ) which becomes δ(r) in the limit ǫ → 0. However, many of the usual

test functions diverge for terms j > 2 when the ǫ → 0 limit is taken.

We find that the following sequence of test functions can reliably be used to evaluate any

term of the series in Eq. (25):

fj(r, ǫ) =
e−r/ǫ

(j + 2)!ǫ

(

r

ǫ

)j+2

. (26)

These test distributions are unit-normalized on the positive real axis for any finite ǫ > 0 and

the jth test function is used to evaluate the jth term of Eq. (25). In contrast to the usual

prototypes used for the entire real line, our test functions peak on the positive real axis and

only reach the origin as ǫ → 0.

Evaluating the terms of Eq. (25) using the test functions described above and taking

ǫ → 0 at the end yields the anticipated expansion for δE2S in moments,

δE2S/α =
〈r2

p〉
12a3

ℓ

− 〈r3
p〉

12a4
ℓ

+
7〈r4

p〉
160a5

ℓ

− 11〈r5
p〉

720a6
ℓ

+
〈r6

p〉
252a7

ℓ

− · · · . (27)

Thus, taking the ratio of the first two terms, we have the general result

ξnS(ρ, ℓ) =
−〈r3

p〉
aℓ〈r2

p〉 ∼ −rp

aℓ
, (28)

as long as ρ has a range much smaller than the Bohr radius aℓ. Note that the generalization

from 2S to nS is inferred from Table I. We are now able to claim—without any assumptions

about the specific shape of the proton charge density or, equivalently, the form factor—that

the inclusion of higher-order moments in Eq. (1) is of negligible impact on the value of 〈r2
p〉

inferred from measurements of the 2S-2P Lamb shift.
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Table I: Numerical coefficients c
(j)
n of the moment expansion for δEnS (cf. Eq. (27)). The coefficients

were calculated according to the method described in section IV. The j=1 column of zeroes is just

the restatement that the finite-size correction to EnS has no dependence on 〈rp〉. The j = 2, 3

columns suggest that c
(3)
n = −c

(2)
n for all n.

c
(j)
n j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=10

n=1 0 2
3

−2
3

2
5

−8
45

4
63

−2
105

2
405

−16
14175

4
17325

n=2 0 1
12

−1
12

7
160

−11
720

1
252

−11
13440

29
207360

−37
1814400

23
8870400

n=3 0 2
81

−2
81

46
3645

−136
32805

404
413343

−122
688905

206
7971615

−7888
2511058725

3004
9207215325

n=4 0 1
96

−1
96

27
5120

−13
7680

11
28672

−113
1720320

1891
212336640

−3679
3715891200

421
4541644800

n=5 0 2
375

−2
375

42
15625

−8
9375

1556
8203125

−1294
41015625

3254
791015625

−60272
138427734375

162556
4229736328125

n=6 0 1
324

−1
324

181
116640

−257
524880

89
826686

−1553
88179840

9161
4081466880

−74143
321415516800

92579
4714094246400

n=7 0 2
1029

−2
1029

82
84035

−232
756315

3476
51883209

−134
12353145

155894
114402475845

−550288
4004086654575

391516
34257185822475

IV. MOMENT DEPENDENCE OF THE FINITE-SIZE CORRECTION FOR n 6= 2

Writing the finite-size correction Eq. (25) in the form

δEnS =
α

aℓ

∞
∑

j=1

c(j)
n

〈rj
p〉
aj

ℓ

, (29)

we can summarize the dependence of EnS on moments of the proton charge distribution via

the dimensionless coefficients c(j)
n . In Table I, we list the coefficients for n = 1, . . . , 7 and

j = 1, . . . , 10 as calculated by the method introduced in the previous section. The tabulated

coefficients suggest that c(3)
n = −c(2)

n for all n, so that Eq. (28) holds for any S-state.
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V. CONCLUSION

We have shown that the proposed parametrization of Eq. (3-5) does not explain the dis-

crepancy in proton radius measurements obtained from electronic versus muonic hydrogen.

Using a typical approximation to the proton form factor as well as a more general coordinate-

space analysis, we have determined the size of the effects of higher-order moments of the

proton charge distribution. The expansion of Eq. (29) combined with the coefficients in

Table I could also be used for nuclear targets for which the sizes of the moments are more

significant, as well as for transitions involving higher S-states in light atoms. Our calcu-

lations Eq. (16) and Eq. (28) show that, while it is true that the next term in a series

expansion for the finite-size correction in powers of rp/aℓ is more important with muonic

hydrogen, the correction cannot be the source of a 4% discrepancy in rp. Furthermore, this

term is not O(〈r4
p〉), but is O(〈r3

p〉). The finite-size correction to EnS depends quite generally

on all moments of the proton charge distribution of at least second-order. This unexpected

result has been verified using several different approaches. We close with the reaffirmation

that truncating the finite-size energy correction Eq. (1) at 〈r2
p〉 can make a difference of no

greater than a few parts in 103 for µp and that the proton radius puzzle remains open in

this regard.
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