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We present a theoretical analysis of different methods to synthesize entangled states of two quan-
tum mechanical resonators. These methods are inspired by experimentally demonstrated inter-
actions of superconducting resonators with artificial atoms, and offer efficient routes to generate
nonclassical states. Using a two-mode Jaynes-Cummings model, we analyze the theoretical struc-
ture of these algorithms and their average performance for arbitrary states and for deterministically
preparing NOON and maximally entangled states. Using a new state synthesis algorithm, we show
that NOON and maximally entangled states can be prepared in a time linear in the desired photon
number and without any state-selective interactions.
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I. INTRODUCTION

In recent years we have witnessed a dramatic evolution
in the quantum mechanical experiments performed with
superconducting circuits. Initially, the challenge was to
fabricate, prepare, and isolate signatures of quantum be-
havior of the coupled motion of Cooper pairs through
Josephson junctions and electrodynamic oscillations in
superconducting devices [1–4]. This has now become rou-
tine in the field of circuit QED [5], and the frontier is de-
signing and manipulating the quantum states of coupled
superconducting qubits (quantum bits) and resonators to
achieve quantum-enhanced information processing [6, 7].

When embarking on this new journey, the quantum
mechanical engineer must decide on which degrees of free-
dom does she wish to manipulate: the electronic (qubit)
or electromagnetic (resonator)? There are important ad-
vantages on both sides, but, until recently [8], the co-
herence (or quality factor) of superconducting resonators
(or cavities) could be significantly greater than the qubit
circuits utilizing Josephson junctions. Thus, one should
consider what coherent operations can be performed with
superconducting resonators as opposed to qubit circuits.
Such studies include high-fidelity measurement [9, 10],
computation [11], and error correction [12, 13], which
all attempt to utilize the larger state space afforded by
the harmonic oscillator states of a resonator to achieve
greater efficiency.

There are many other systems in nature which have
harmonic oscillator modes that can be accessed at the
quantum level. These include the photon states in cavity
QED, which can be selectively excited by laser-controlled
atoms, or the motional states of trapped ions when driven
by sideband transitions [14]. The collective quantum
states of atomic or spin ensembles also have harmonic os-
cillator modes that could be controlled [15, 16]. Finally,
mechanical oscillators can be prepared and manipulated
at the quantum level [17, 18]. For all of these systems, a
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theoretical understanding of methods to manipulate their
quantum states is an important topic.

In this paper, we consider how to perform “digital”
state synthesis of superconducting resonators, where the
desired state is a superposition of Fock states [19, 20].
In particular, we continue the development of theoreti-
cal methods [21–24] to synthesize an entangled superpo-
sition of the Fock states between two resonators. This
complements the many recent studies [11, 25–28] of how
to perform quantum computation using such systems as
qudits [29], in which d levels are used as a quantum digit.
An alternative “analog” approach uses superpositions of
coherent states to store quantum information [30]. We
expect that many of the issues encountered in the digi-
tal regime will have counterparts in the analog regime,
but both warrant detailed study. Finally, we note that
there have been a number of other studies of interesting
interactions that can be used to generate entanglement
between superconducting or nanomechanical resonators
[31–35]. While our results are primarily theoretical, we
expect that the methods and ideas presented here will in-
form the control of these and other quantum oscillators.

The general state synthesis problem concerns how one
can prepare, with high fidelity, an arbitrarily chosen
quantum state. A state synthesis algorithm is a proce-
dure, given a description of the target state, to identify
the appropriate set of Hamiltonian controls (such as am-
plitudes and frequencies of control fields) that will pre-
pare the target state from a fixed initial state. Note that
there are two senses in which the state synthesis problem
is solved algorithmically. First, the algorithm is typically
implemented as a computer program and run on classi-
cal hardware. Second, the output of this program is a
list of operations to be applied to quantum hardware to
prepare the desired state. Thus, the state synthesis al-
gorithms presented here can be used to program future
quantum machines.

In this paper we consider scenarios such as those de-
picted in Fig. 1, in which a qubit is used to couple two
resonant cavities A and B, the latter with Fock states
|na〉 ⊗ |nb〉. We will analyze algorithms that determinis-
tically and exactly produce an arbitrarily chosen state of
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FIG. 1: Schematic scenario for entangled state synthesis problems, in which two cavities A and B are coupled by a qubit,
using (a) a planar coplanar waveguide circuit, or (b) two three-dimensional cavities. The qubit can be controlled to effect qubit
rotations or swaps between the qubit and each cavity.

two resonators, of the form

|ψtarget〉 = |0〉qubit ⊗
Na∑
na=0

Nb∑
nb=0

cna,nb
|na〉 ⊗ |nb〉. (1)

In fact, we will provide a detailed performance analysis
of two such algorithms, one a “photon subtraction” algo-
rithm based on previous work [21, 36], and a second “pho-
ton swapping” algorithm new to this work. In the spirit
of Law and Eberly’s classic study of controlling a qubit-
resonator system [37], we explore a simplified model of
two resonators coupled to a qubit, here called the driven
two-mode Jaynes-Cummings Hamiltonian:

H/~ = ωaa
†a+ ωbb

†b+ ωq(t)σ
†σ + F (t)σx

+ ga(t)
(
σ†a+ σa†

)
+ gb(t)

(
σ†b+ σb†

)
.(2)

Here a, b, and σ = |0〉〈1| are the annihiliation opera-
tors for the two resonators and qubit, respectively, and
σx = σ + σ†. The resonator frequencies are ωa and ωb,
while the qubit frequency ωq(t), the driving field F (t),
and the couplings ga(t) and gb(t) are all treated as possi-
ble control parameters. By turning these parameters on
and off according to the state synthesis algorithm, one
can evolve the initial ground state |0〉qubit ⊗ |0〉 ⊗ |0〉 to
the desired target state |ψtarget〉.

While our state synthesis algorithms are based on the
above model, implementing the algorithms using a spe-
cific Hamiltonian appropriate to experimental implemen-
tations in circuit QED, and the expected fidelity in the
presence of decoherence, have been discussed in previous
work [36]. In this context, it is important to note that
time-dependent control of the qubit frequency ωq(t) and
driving field F (t) was used to experimentally synthesize
Fock states and their superpositions in a single coplanar
waveguide resonator using a phase qubit [19, 20]. This
approach was extended to a system similar to that in Fig.
1(a) and used to controllably swap excitations between

[7] and to prepare entangled states of two resonators [38].
However, it was argued [21] that, for an arbitrary target
state, the algorithm must use state-selective interactions,
such as the number-state-dependent qubit transitions
found in experiments with a transmon qubit coupled
to a resonator [39–43]. Although these experiments in-
volved planar circuits, there has also significant progress
toward tunable devices coupled to three-dimensional cav-
ities [44, 45]. Furthermore, while the state-synthesis al-
gorithms discussed here can be adapted to systems with
fixed couplings, our final results may be most relevant for
systems with controllable couplings. Controllable cou-
plings between qubits and resonators [46–49], between
high-coherence qubits [50], and between planar [51] and
three-dimensional [52] cavities have also been experimen-
tally demonstrated. This last experiment used a system
very similar to that in Fig. 1(b).

The results obtained here can be used both as a guide
to future experiments using advanced circuit QED cir-
cuits, and as a theoretical benchmark for alternative pro-
cedures to prepare such states. These alternatives include
using other interactions (such as sideband transitions
[53–55]), numerical optimization methods [56], closed-
loop control [57], or other measurement-based methods
for state preparation [58]. In this work, we will identify
how physical resources, such as the number and type of
controls and the average time required, scale with the size
of the desired target state. In particular, we apply our
new algorithm to NOON-state preparation, for which a
special-purpose algorithm using a multilevel device [22]
was previously demonstrated [38]. We go beyond our pre-
vious work [21, 36] to find that our new algorithm can
synthesize the following class of entangled states (with
Na = Nb = N) in a time linear in the state size and
without state-selective interactions:

|ψtarget〉 = |0〉qubit ⊗
N∑
n=0

cn|n〉 ⊗ |N − n〉 (3)
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As state-selective interactions are often weaker than di-
rect qubit-resonator interactions [9, 26], we expect these
results will aid future demonstrations of entanglement in
superconducting or other qubit-resonator systems.

This paper is organized as follows. In Section II, we
introduce the general state synthesis problem by study-
ing how to prepare a general state of a d-level quantum
system (i.e., a qudit). This is followed in Section III by
a presentation of the Law-Eberly algorithm for a single
resonator coupled to a qubit, before addressing in Sec-
tion IV the two entangled-state synthesis algorithms for
two resonators coupled by a qubit. Finally, Section V
compares these algorithms for the preparation of NOON
and maximally entangled states. We conclude in Sec-
tion VI by summarizing our work and open questions.
The Appendix details how to generate the appropriate
interactions from the driven two-mode Jaynes-Cummings
Hamiltonian.

II. QUDIT STATE SYNTHESIS

Before focusing on state synthesis problems for qubit-
resonator systems, it is useful to start with a simpler
problem. Thus, we begin by considering the synthesis of
an arbitrary state of a d-level system known as a qudit
(a quantum digit) [29]. Such systems are universal for
computation [59, 60], and much is known about the con-
struction of logic operations [61–64] and error correcting
codes [29, 65] using such systems. A superconducting
qudit could be a nonlinear oscillator driven directly by
control fields with frequencies tuned to distinct transi-
tions (as in the phase qudit experiment [66]), or a driven
qubit-resonator system with either resonant or dispersive
coupling to a qubit [26].

Our task is to prepare the quantum state

|ψtarget〉 =

d−1∑
n=0

cn|n〉 (4)

starting from the initial state |0〉. For ease of analysis, we
write the coefficients of the target state |ψ〉 in terms of d
phases and d-dimensional spherical polar coordinates

c0 = cos θ0e
iφ0

c1 = sin θ0 cos θ1e
iφ1

...

cd−2 = sin θ0 sin θ1 · · · sin θd−3 cos θd−2e
iφd−2

cd−1 = sin θ0 sin θ1 · · · sin θd−3 sin θd−2e
iφd−1 , (5)

where the angles have the ranges 0 ≤ θj ≤ π/2 and
−π < φj ≤ π. Note that the first phase φ0 could be set
to zero without changing the physical problem.

The quantum state can be generated by two natural
single-qudit operations: the two-level rotations

Rn,n+1(θ) = exp

[
−iθ

2
(|n〉〈n+ 1|+ |n+ 1〉〈n|)

]
, (6)

and the single-level phase shifts

Zn(φ) = exp (iφ|n〉〈n|) . (7)

In terms of these operations, a solution to the state syn-
thesis problem is the following

|ψ〉 = Zd−1(φd−1)

×

(
d−2∏
k=0

Zk(φk)Zk+1(π/2)Rk,k+1(2θk)

)
|0〉,

(8)

where we are using a “time-ordered” product notation,
e.g.

d−1∏
j=1

Uj = Ud−1Ud−2 · · ·U1. (9)

For a qubit (d = 2), this reduces to Z0(φ0)Z1(φ1 +
π/2)R0,1(2θ0), which can be combined into the product
of two spin rotations (about the x and z axes, respec-
tively). This is the number of rotations required to map
an arbitrary qubit state’s Bloch vector from the north
pole to any point on the Bloch sphere. Similarly, this
solution is a minimal approach to controlling a qudit, us-
ing a fixed set of operations for an arbitrary state of the
form Eq. (4).

While this solution can be verified by inspection, an al-
ternative approach, the prototype for the state synthesis
algorithms to be described below, is to find the rotations
by reversing the time evolution, that is, to choose a set

of operations U†j such that

1∏
j=d−1

U†j |ψ〉 = U†1 · · ·U
†
d−1|ψ〉 = |0〉. (10)

By simple inversion of this sequence of operations, we
can use this solution to the inverse evolution equation
to find a solution of the state synthesis problem given
by Eq. (8). The algorithmic approach is to choose each
operation to “zero out” an amplitude of the target state.
Once all of the amplitudes have been removed, save that
for state |0〉, a solution to Eq. (10) is obtained. To see
this in more detail, we index the steps of the algorithm
and define the quantum state

|ψj〉 = U†j |ψj+1〉, (11)

where |ψd〉 = |ψ〉 and j = d− 1→ 0. The operator U†j is
then chosen to remove the corresponding state ampitude,
so that

〈j|ψj〉 = 0. (12)

Using the rotations specified above, we can set

U†j = R†j−1,j(γj)Z
†
j (βj)Z†j−1(αj). (13)
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The amplitude in Eq. (12) is then “zeroed” with the
solution

αj = arg (〈j − 1|ψj+1〉)

βj =
π

2
+ arg (〈j|ψj+1〉)

γj = 2 arctan

(∣∣∣∣ 〈j|ψj+1〉
〈j − 1|ψj+1〉

∣∣∣∣) . (14)

Before verifying that this produces the same solution

as Eq. (8), let us consider the first rotation U†d−1 in Eq.
(10) (the last rotation of the forward sequence). This
is chosen to remove the highest state |d − 1〉 from the
superposition in |ψd〉. Using Eqs. (4) and (13) we have

〈d− 1|U†d−1|ψ〉 = e−iβd−1 cos(γd−1/2)cd−1

+ ie−iαd−1 sin(γd−1/2)cd−2. (15)

Using the spherical coordinates for cd−2 and cd−1 from
Eq. (5) (and cancelling common terms), we thus require

cos(γd−1/2) sin θd−2e
−iβd−1eiφd−1

+ i sin(γd−1/2) cos θd−2e
−iαd−1eiφd−2 = 0, (16)

which is satisfied by

αd−1 = φd−2

βd−1 =
π

2
+ φd−1

γd−1 = 2θd−2, (17)

in complete agreement with Eq. (14).

The same procedure works for each U†j . However, the

choice of αj ensures that the phase of 〈j|ψj+1〉 is zero,
for each j = d− 2, d− 3, . . . , so that in general we find

αj = φj−1

βj =
π

2
+ δj,d−1φj

γj = 2θj−1. (18)

Using these angles, we see that

|ψ〉 =

d−1∏
j=1

Uj |0〉 = Ud−1 · · ·U1|0〉, (19)

with

Uj = Zj−1(αj)Zj(βj)Rj−1,j(γj), (20)

agrees with Eq. (8) after setting k = j−1. Note, however,
that the choice of the angles is not unique. We could have
set αj = 0 and βj = π/2 + (φj − φj−1) to achieve the
same result.

For an arbitrary target state |ψ〉, we can character-
ize the performance of this algorithm in terms of the re-
sources needed to construct the state. These resources
could be analyzed in terms of the number of controls re-
quired, the energy associated with each control, and the

duration over which the control fields act. While the
exact resources will depend on the actual details of an
experimental implementation, we can use our algorithm
to estimate the overall time required in the following way.
We postulate that each of the two-state rotations occurs
with an effective Rabi frequency Ω and each phase shift
with ±∆ω. Then, this algorithm produces a set of d− 1
phase shifts (assuming α and β can occur in parallel) and
d− 1 rotations, such that the overall time is

T =
1

∆ω

d−1∑
j=1

|βj |+
1

Ω

d−1∑
j=1

γj . (21)

The average time required can be found by averaging over
the unit circle (for βj) and the spherical coordinates in
Eq. (5) (for γj = 2θj). We find that 〈|βj |〉 = π/2 and

〈θj〉 =

∫ π/2
0

θ (sin θ)
d−2−j

dθ∫ π/2
0

(sin θ)
d−2−j

dθ
≈ π

2
− π

4

1√
d− 2− j

. (22)

Thus, we find that

〈T 〉 =
( π

Ω
+

π

2∆ω

)
(d− 1)− π

2Ω

d−1∑
k=1

1√
k
. (23)

Thus, this particular sequence takes a time that grows
roughly linear in the Hilbert space dimension d, with
timescales given by 1/Ω and 1/∆ω. For the state-
synthesis algorithms to be presented below, our goal will
be to find how the resources scale, on average, with the
Hilbert space dimension.

III. LAW-EBERLY ALGORITHM

Having illustrated the properties of qudit state syn-
thesis, we proceed to a qubit-oscillator system, appro-
priate for superconducting circuits and resonators. This
algorithm was first put forward by Law and Eberly
in the context of cavity-QED [37], and experimentally
demonstrated using the internal and vibrational states
of a trapped ion [67]. The superconducting experiments
[19, 20], using this algorithm, demonstrated exquisite
control over the combined Hilbert space of the qubit-
resonator system. For completeness, and to better un-
derstand the two-resonator constructions to be presented
below, we review this problem.

The goal of the Law-Eberly algorithm is to synthe-
size an arbitrary state of harmonic oscillator mode (the
resonator) by using a two-level auxiliary system (qubit).
The target state is taken to be

|ψtarget〉 = |0〉 ⊗
Nmax∑
n=0

cn|n〉, (24)

in which the resonator has a maximum photon number
Nmax. The system is modeled by a Hamiltonian of the
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Jaynes-Cummings type [68], with a Hamiltonian (in the
interaction picture) of the form

H/~ = ∆ω(t)σ†σ +
1

2
Ω(t)σx + g(t)

(
σ†a+ σa†

)
, (25)

where σ = |0〉〈1| is the lowering operator for the qubit
and the control fields ∆ω(t), Ω(t), and g(t) can be turned
on and off to achieve the operations above. This formu-
lation is natural in the cavity QED context, and can be
applied to circuit QED [20] with minor modifications.
Our goal is to characterize the performance of this algo-
rithm, using the average resources needed to prepare an
arbitrary target state.

Using the Hamiltonian Eq. (25), one can implement
the unitary operations

S(θ) = exp
[
−iθ

(
aσ† + a†σ

)]
, (26)

R(θ) = exp

(
−iθ

2
σx

)
, (27)

and

Z(φ) = exp

(
−iφ

2
σz

)
, (28)

by turning on (and off) the controls g(t), Ω(t), and ∆ω(t),
respectively. The Law-Eberly algorithm will be expressed
in terms of these operations.

The state-synthesis procedure follows a similar pattern
as the qudit case presented above. We first set

|ψj〉 = U†j |ψj+1〉, (29)

where

U†j = R†(γj)Z
†(βj)S

†(θj)Z
†(αj). (30)

and |ψN+1〉 = |ψtarget〉. Here α, β, γ, and θ are chosen so
that at each step

〈0, j|ψj〉 = 〈1, j|ψj〉 = 0. (31)

These angles are then found for each j = N → 1, after
which |ψ1〉 = |0, 0〉. The inverse sequence specifies how
to prepare the target state using only qubit rotations,
phase shifts, or qubit-resonator swaps.

To see how this can be accomplished, it is convenient
to break Eq. (29) into two steps by defining

|ψj+1/2〉 = S†(θj)Z
†(αj)|ψj+1〉 (32)

and

|ψj〉 = R†(γj)Z
†(βj)|ψj+1/2〉. (33)

In addition, we define

ψq,k(j) = 〈q, k|ψj〉, where q = 0 or 1. (34)

The first step of the algorithm (for the inverse evo-
lution) solves ψ0,j(j + 1/2) = 0. Using Eq. (32), this
reduces to

eiαj/2 cos
(√

jθj

)
ψ0,j(j + 1)

+ ie−iαj/2 sin
(√

jθj

)
ψ1,j−1(j + 1) = 0 (35)

or

e−iαj tan
(√

jθj

)
= i

ψ0,j(j + 1)

ψ1,j−1(j + 1)
. (36)

This has the solution

αj = arg

(
〈1, j − 1|ψj+1〉
i〈0, j|ψj+1〉

)
,

θj =
1√
j

arctan

(∣∣∣∣ 〈0, j|ψj+1〉
〈1, j − 1|ψj+1〉

∣∣∣∣) . (37)

The second step solves ψ1,j−1(j) = 0. Using Eq. (33),
this reduces to

e−iβj/2 cos
(γj

2

)
ψ1,j−1(j + 1/2)

+ ieiβj/2 sin
(γj

2

)
ψ0,j−1(j + 1/2) = 0 (38)

or

eiβj tan
(γj

2

)
= i

ψ1,j−1(j + 1/2)

ψ0,j−1(j + 1/2)
. (39)

This, in turn, has the solution

βj = arg

(
i〈1, j − 1|ψj+1/2〉
〈0, j − 1|ψj+1/2〉

)
,

γj = 2 arctan

(∣∣∣∣ 〈1, j − 1|ψj+1/2〉
〈0, j − 1|ψj+1/2〉

∣∣∣∣) . (40)

By solving these equations for αj , βj , γj , and θj for
j = N → 0, keeping track of |ψj〉 at each step, the ampli-
tude is forced down to smaller and smaller photon num-
bers, so that |ψ0〉 = |0, 0〉. The form of the sequence was
chosen specifically to not send amplitude to higher pho-
ton numbers. That is, the algorithm actually produces
operators Uj and states |ψj〉 that satisfy the condition

〈0, k|ψj〉 = 〈1, k|ψj〉 = 0 for k ≥ j. (41)

Satisfying this condition for two or more resonators is the
greatest challenge for generalizations of the Law-Eberly
algorithm. In the two resonator case, to be considered
shortly, the algorithm must simultaneously ensure that
amplitude is not sent to higher photon numbers for either
resonator mode.

The average values of αj , βj , γj , and θj can be used to
find the average time required, assuming constant con-
trols ±∆ω, Ω and g:

T =
1

∆ω

Nmax∑
j=1

(|αj |+ |βj |)+
1

Ω

Nmax∑
j=1

γj+
1

g

Nmax∑
j=1

θj . (42)
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FIG. 2: Averaged total angles for the state synthesis sequence using the Law-Eberly algorithm.

We illustrate the average angles obtained with Eqs. (37)
and (40) in Fig. 2. Here we have generated one hundred
random target states for each value of Nmax and averaged
the total of the angles used in the Law-Eberly algorithm.
Also shown are the approximations

∑
j

〈|αj |+ |βj |〉 ≈ π

(
Nmax −

1

2

)
,

∑
j

〈γj〉 ≈ 2.72Nmax − 1.66,

∑
j

〈θj〉 ≈ 2.65
√
Nmax − 1.78, (43)

obtained by fitting the numerical data.
The linear increase of the phases and qubit rotations

are expected, as each step requires such a rotation, while
the square-root dependence of

∑
j〈θj〉 is due to the

√
n-

coupling between the qubit and the n-photon state of the
resonator. When these averaged angles are substituted
into Eq. (42), we see that, just as the qudit case, an ar-
bitrary state of the form Eq. (24) can be synthesized in
a time proportional to the effective Hilbert-space dimen-
sion.

IV. TWO-RESONATOR ALGORITHMS

The state synthesis problem can be extended to any
number of resonators, but explicit algorithms are a chal-
lenge to specify. Early work utilized special interactions
[69–73] to enable the transfer of excitations between res-
onators and multilevel atoms. These interactions, while
possible for trapped-ion systems, are harder to realize in
other resonator systems. As we are interested in Fock-
state control, we restrict our attention to the simplest
system of a single qubit coupling two resonators, with
the general target state

|ψtarget〉 = |0〉 ⊗
Na∑
na=0

Nb∑
nb=0

cna,nb
|na〉 ⊗ |nb〉. (44)

In general, such a state will be entangled, thus we call
this the entangled-state synthesis problem. To analyze
the state-synthesis algorithms, we use a simplified form
of the two-mode driven Jaynes-Cummings Hamiltonian:

H/~ = ∆ω(t)σ†σ +
1

2

∑
na,nb

Πna,nb
Ωna,nb

(t)σx

+ga(t)
(
σ†a+ σa†

)
+ gb(t)

(
σ†b+ σb†

)
,(45)

where the control fields ∆ω(t), Ωna,nb
(t), ga(t), and gb(t)

can be turned on and off at will, and where we have
defined a set of projection operators

Πna,nb
= |na, nb〉〈na, nb|. (46)

The physics underlying this projection operator is due to
Stark shift of the qubit in the dispersive regime of the
underlying Jaynes-Cummings Hamiltonian. These Stark
shifts allow for a number-state selective Rabi rotation of
the qubit. Such selective operations were first observed
in circuit QED as number splitting [39] and later used
for photon measurement [42] and theoretically proposed
for entangled-state synthesis [21]. A derivation of this
effective Hamiltonian from the original driven two-mode
Jaynes-Cummings model is presented in the Appendix.

Using this effective Hamiltonian, steps of the algorithm
will involve the swap operators

A(θ) = exp
[
−iθ

(
aσ† + a†σ

)]
,

B(θ) = exp
[
−iθ

(
bσ† + b†σ

)]
, (47)

the single-qubit phase rotations

Z(φ) = exp

(
−iφ

2
σz

)
, (48)

and the number-state-selective qubit rotations

Rna,nb
(θ) = exp

(
−iθ

2
σx ⊗ |na, nb〉〈na, nb|

)
. (49)

The first three operators correspond to turning on (and
off) the controls ga, gb, and ∆ω, respectively. The last
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operation corresponds to a special application of the Rabi
control Ω(t) to drive a state-selective Rabi transition, for
state |na, nb〉 only. We note that this last condition is
not necessary, as the state synthesis algorithms can be
performed with reduced selectivity [21, 36]. In fact, we
will discuss applications that require no selectivity at all
in the following section.

To analyze the algorithms, we use a Fock-state dia-
gram, such as Fig. 3, in which a state |na, nb, q〉 with
na excitations in mode A, nb excitations in mode B, and
qubit state q is indicated by the node at location (na, nb)
and internal level q. Each of the operations described
above corresponds to a transition between sets of states
in this diagram, and the state synthesis sequence can be
interpreted using paths in this diagram. Two algorithms,
to be described below, can be visualized using these dia-
grams. The first algorithm, shown in Fig. 3(a), which we
call the photon subtraction algorithm, uses vertical and
horizontal paths from top-to-bottom and left-to-right in
the Fock-state diagram. The second algorithm, shown in
Fig. 3(b) which we call the photon swapping algorithm,
uses diagonal paths from the upper-left to the lower-right.
These are the two natural choices for how to navigate the
Fock-state diagram in order to program the quantum sys-
tem into any desired state. In this section, we will ana-
lyze each algorithm in detail, and compare their average
performance when preparing an arbitrary two-resonator
state of the form Eq. (44).

A. Algorithm 1: Photon Subtraction

The first algorithm for superconducting resonators [21]
used a strategy similar to the trapped-ion proposal by
Kneer and Law [72], and involves repeated subtraction
of photons from one of the resonators. In terms of
the Fock-state diagram presented, state amplitudes are
cleared column-by-column, row-by-row, until all of the
remaining photons are in one mode only. The final steps
remove these photons by the Law-Eberly protocol de-
scribed above.

The essential steps can be written as

U =

 Nb∏
j=1

Ub,j

Ua, (50)

where

Ua =

Na∏
j=1

Z(αj)A(θj)Z(βj)R(γj) (51)

and

Ub,j =

Nb∏
k=0

Z(αjk)B(θjk)Z(βjk)Rna=k(γjk). (52)

Read in reverse, the elements of Ua and Ub,j are all of
the form of Eq. (30), with phases and angles calculated

using the same method. In more detail, U†b,j is a product

of operations that subtract a photon from state |0, k, j〉
(transferring its amplitude to |1, k − 1, j〉 and then to
|0, k − 1, j〉), first for k = Na → 1 (column-by-column),
which is then repeated for j = Nb → 1 (row-by-row).
After all of the amplitudes have been transferred to the
states |0, k, 0〉, Ua removes these much as the original
Law-Eberly algorithm. A graphical representation of this
sequence is shown in Fig. 3(a).

To prevent amplitudes from returning to previously
cleared states, it was proposed [21] to make the qubit
rotations in Ub,j number-state selective. This could be
achieved by choosing a rotation for state (na = k, nb =
j − 1) only, but the main requirement is that previously
removed states with nb = j and na < k are unaffected.
Note also that, for the number-state-selective interac-
tions induced by coupling the resonator to a multilevel
system, the column ordering may need to be reversed, as
discussed in [36].

The actual steps involved in this algorithm are nearly
identical to those in the Law-Eberly algorithm. The main
challenge is to keep track of the various quantum states
and the ordering of the operations. For completeness,
we include an explicit treatment here, first breaking up
the quantum evolution into two stages (for the B and A
swaps, respectively). For the first stage, we define

|ψj,k+1/2〉 = B†(θjk)Z†(αjk)|ψj,k+1〉,

|ψj,k〉 = R†na=k(γjk)Z†(βjk)|ψj,k+1/2〉, (53)

where k is the “fast” index (ranging from Na → 0) and j
is the “slow” index (ranging from Nb → 1). These states
have the boundary conditions |ψj,Na+1〉 = |ψj+1,0〉 and
|ψNb,Na+1〉 = |ψtarget〉. Following a procedure similar to
the previous section, we find

αjk = arg

(
〈1, k, j − 1|ψj,k+1〉
i〈0, k, j|ψj,k+1〉

)
,

θjk =
1√
j

arctan

(∣∣∣∣ 〈0, k, j|ψj,k+1〉
〈1, k, j − 1|ψj,k+1〉

∣∣∣∣) ,
βjk = arg

(
i〈1, k, j − 1|ψj,k+1/2〉
〈0, k, j − 1|ψj,k+1/2〉

)
,

γjk = 2 arctan

(∣∣∣∣ 〈1, k, j − 1|ψj,k+1/2〉
〈0, k, j − 1|ψj,k+1/2〉

∣∣∣∣) . (54)

These equations can be solved for k = Na → 0, j =
Nb → 1, until we reach the second stage.

For stage two, we define

|ψj+1/2〉 = A†(θj)Z
†(αj)|ψj+1〉,

|ψj〉 = R†(γj)Z
†(βj)|ψj+1/2〉, (55)

with j ranging from Na → 1 and |ψNa+1〉 = |ψ1,1〉 (the
final state from stage 1). The remaining parameters are
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FIG. 3: Illustration of the Fock-state diagram for state synthesis: (a) Algorithm 1: the inverse sequence for the photon
subtraction algorithm, (b) Algorithm 2: the inverse sequence for the photon swapping algorithm.
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FIG. 4: Averaged total angles for the state synthesis sequence using the photon subtraction algorithm.

then found by

αj = arg

(
〈1, j − 1, 0|ψj+1〉
i〈0, j, 0|ψj+1〉

)
,

θj =
1√
j

arctan

(∣∣∣∣ 〈0, j, 0|ψj+1〉
〈1, j − 1, 0|ψj+1〉

∣∣∣∣) ,
βj = arg

(
i〈1, j − 1, 0|ψj+1/2〉
〈0, j − 1, 0|ψj+1/2〉

)
,

γj = 2 arctan

(∣∣∣∣ 〈1, j − 1, 0|ψj+1/2〉
〈0, j − 1, 0|ψj+1/2〉

∣∣∣∣) . (56)

The total number of operations amounts to Na+Nb+
NaNb swaps, Na+Na+NaNb rotations, and 2(Na+Nb+
NaNb) phase shifts. Assuming we can turn the various
Hamiltonians on and off with rates ±∆ω, g, and Ω (for
the phase, swap, and rotation operators, respectively),

the total time for this sequence is

T =
1

∆ω

∑
j

(|αj |+ |βj |) +
∑
jk

(|αjk|+ |βjk|)


+

1

Ω

∑
j

γj +
∑
jk

γjk

+
1

g

∑
j

θj +
∑
jk

θjk

 .

(57)

The averaged total angles are shown in Fig. 4. These
were again formed by generating one hundred random
target states of the form Eq. (44) with Na = Nb = Nmax

and summing and averaging the angles produced by Eqs.
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(54) and (56). Also shown are the approximations

∑
n

〈|αn|+ |βn|〉 ≈ π

(
N2

max +
3

2
Nmax −

1

2

)
,∑

n

〈γn〉 ≈ 2.8N2
max + 4.6Nmax − 2.7,∑

n

〈θn〉 ≈ 2.9Nmax − 0.7, (58)

where the sums are over all of the indices (j, k) and j of
stages one and two, respectively. The quadratic growth
of the phase shifts and rotations match the total number
of operations, while the linear growth of the swap angles
is reduced by a square-root, similar to the Law-Eberly
results above. We observe that the total time required
to produce an arbitrary target state again scales with
effective Hilbert-space dimension.

B. Algorithm 2: Photon Swapping

An important fact regarding state synthesis is that the
solution need not be unique. There are an infinite num-
ber of solutions, and finding the optimal solution, under
constraints on time, energy, or complexity, is a hard prob-
lem [56, 74]. For the algorithm just presented, we observe
that each qubit rotation can add or remove one quantum
of energy, which occurs N2

max times. The desired state,
however, has a maximum energy of 2Nmax, corresponding
to the resonator state |Nmax〉 ⊗ |Nmax〉. Thus, we might
expect an optimal solution would use a smaller number
of qubit rotations. We will provide such a solution in
this section. For convenience, we will let the target state
be a superposition of all states with quantum number
na + nb ≤ 2Nmax:

|ψ〉 = |0〉 ⊗
∑

na+nb≤2Nmax

cna,nb
|na〉 ⊗ |nb〉. (59)

The photon subtraction algorithm described above re-
moves a quantum of energy for each and every possible
state on the Fock-state diagram. However, one can just
as easily move about the Fock-state diagram by swap-
ping photons between the resonators, either directly or
through the qubit [7]. Using the latter, we can swap pho-
tons along diagonal paths with a fixed number of quanta
(na + nb + q = Na + Nb ≤ 2Nmax). By first swapping
all of the photons from resonator B to A, we can then
remove a photon from mode A, after which we move to
the next diagonal. By repeating the procedure, we need
only use 2Nmax qubit rotations.

Specifically, our new algorithm is

U =

2Nmax∏
`=1

U`, (60)

where

U†` = R†na=`−1(γ`)Z
†(φ`)

×
1∏

m=`

[
A†(θm−1,`−m)Z†(βm−1,`−m)

×B†(ηm,`−m)Z†(αm,`−m)
]
. (61)

The interpretation of each operation is analogous to Al-
gorithm 1, however, the sequence of operations is signif-
icantly different. A graphical illustration of this photon
swapping algorithm is presented in Fig. 3(b).

In this algorithm, as we move along the diagonal path
with na+nb+q = `, the operator B†(ηm,`−m) implements
the transition |0, `−m,m〉 → |1, `−m,m− 1〉, while for
m > 1 A†(θm−1,`−m) implements the transition |1, ` −
m,m− 1〉 → |0, `−m+ 1,m− 1〉. This sequence has the
effect of repeatedly swapping quanta from mode B to
mode A, until we reach |1, `− 1, 0〉. At this point, θ0,`−1

is chosen to complete the swapping transition |0, `, 0〉 →
|1, ` − 1, 0〉, which is finally rotated to |0, ` − 1, 0〉. This
last step need only be selective on na = ` − 1, and is so

indicated in U†` .
For completeness, we present the detailed steps of the

algorithm. We again break each step in two by defining

|ψ`,m+1/2〉 = B†(ηm,`−m)Z†(αm,`−m)|ψ`,m+1〉,
|ψ`,m〉 = A†(θm−1,`−m)Z†(βm−1,`−m)|ψ`,m1/2〉,

(62)

where the various angles are calculated by the following
equations:

αm,`−m = arg

(
〈1, `−m,m− 1|ψ`,m+1〉
i〈0, `−m,m|ψ`,m+1〉

)
,

ηm,`−m =
1√
m

arctan

(∣∣∣∣ 〈0, `−m,m|ψ`,m+1〉
〈1, `−m,m− 1|ψ`,m+1〉

∣∣∣∣) ,
βm−1,`−m = arg

(
i〈1, `−m,m− 1|ψ`,m+1/2〉
〈0, `−m+ 1,m− 1|ψ`,m+1/2〉

)
,

θm−1,`−m =
1√

`−m+ 1

× arctan

(∣∣∣∣ 〈1, `−m,m− 1|ψ`,m+1/2〉
〈0, `−m+ 1,m− 1|ψ`,m+1/2〉

∣∣∣∣) .
(63)

These can be solved from m = ` until m = 1, for which
case we must modify our equations by

β0,`−1 = arg

( 〈1, `− 1, 0|ψ`,1+1/2〉
i〈0, `, 0|ψ`,1+1/2〉

)
,

θ0,`−1 =
1√
`

arctan

(∣∣∣∣ 〈0, `, 0|ψ`,1+1/2〉
〈1, `− 1, 0|ψ`,1+1/2〉

∣∣∣∣) . (64)

This still leaves a final phase and amplitude rotation, the
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FIG. 5: Averaged total angles for the state synthesis sequence using the photon swapping algorithm.

latter selective on na = `− 1, with parameters

φ` = arg

(
i〈1, `− 1, 0|ψ`,1〉
〈0, `− 1, 0|ψ`,1〉

)
,

γ` = 2 arctan

(∣∣∣∣ 〈1, `− 1, 0|ψ`,1〉
〈0, `− 1, 0|ψ`,1〉

∣∣∣∣) . (65)

This sequence is then repeated for the next diagonal with
na+nb+q = `−1, starting with m = `−1 and |ψ`−1,`〉 =
|ψ`,1〉, and again for ` = 2Nmax → 1.

The expectation values for the sum of the angles, when
averaged over many target states, are shown in Fig. 5,
along with the approximate forms∑
n

〈|αn|+ |βn|+ |φn|〉 ≈ 6.4N2
max,∑

n

〈γn〉 ≈ 6Nmax − 3,∑
n

〈θn + ηn〉 ≈ 1.65N2
max + 4.2Nmax − 4.5.

(66)

Here we see that the total rotation angles
∑
n〈γn〉 is

now linear with the maximum photon number, at the
cost of an increased number of swaps (and phase rota-
tions). However, this can represent a significant advan-
tage, as the qubit rotations have (so far) been required
to be number-state-selective, and thus limited in Rabi
amplitude Ω [36]. By reducing the number of such rota-
tions, the total time can be reduced. The overall scaling
of the time, however, is again proportional to the effective
Hilbert-space dimension.

V. SPECIAL TWO-RESONATOR STATES

The algorithms presented above are designed for the
synthesis of an arbitrary state of two resonators. For
many applications, the desired target state has a specific

form. One such target state is the so-called NOON state

|ψtarget〉 = |0〉 ⊗ 1√
2

(|N, 0〉+ |0, N〉) , (67)

an entangled superposition of resonator states in whichN
photons are in mode A or mode B. This state can be con-
sidered a generalization of the Bell and GHZ states, and
has potential applications in quantum metrology [75]. A
second such target state is the maximally entangled state

|ψtarget〉 =
1√
N

N∑
n=0

|N − n, n〉. (68)

This state can be used for tests of higher-dimensional
Bell inequalities [76] and superdense teleportation [77].
In this section we analyze how the photon subtraction
and photon swapping algorithms perform for these two
important entangled states. In fact, we find that the
photon swapping algorithm can prepare any state of the
form

|ψtarget〉 = |0〉 ⊗
N∑
n=0

cn|N − n, n〉 (69)

without state-selective interactions.

A. NOON State Synthesis

The NOON state has the special status of having en-
tanglement equal to that of a singlet state. As such, it can
be prepared without using the full algorithms described
above. Indeed, the initial experiment to generate a ‘high’
NOON state (with N = 3) was performed using a par-
ticular preparation method [22, 38]. That method uses a
pair of three-level systems to couple the resonators. This
method has been simplified using a single three-level sys-
tem [23] or four levels of a tunable flux-based device [24].
These methods start from a single superposition state of
the auxiliary system that is then mapped onto the res-
onators, and require state-selective swapping interactions
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TABLE I: NOON State Synthesis by the Photon Subtraction Algorithm

Step Parameters Quantum State

R1 γ1 = π/2 |0, 0, 0〉 − i|1, 0, 0〉
A1 θ1 = π |0, 0, 0〉 − |0, 1, 0〉
R2 γ2 = π |0, 0, 0〉+ i|1, 1, 0〉
A2 θ2 = π/

√
2 |0, 0, 0〉+ |0, 2, 0〉

R3 γ2 = π |0, 0, 0〉 − i|1, 2, 0〉
A3 θ3 = π/

√
3 |0, 0, 0〉 − |0, 3, 0〉

R4 γ2 = π −i|1, 0, 0〉 − |0, 3, 0〉
B1 η1 = π −|0, 0, 1〉 − |0, 3, 0〉
R5 γ2 = π i|1, 0, 1〉 − |0, 3, 0〉
B2 η2 = π/

√
2 |0, 0, 2〉 − |0, 3, 0〉

R6 γ2 = π −i|1, 0, 2〉 − |0, 3, 0〉
B3 η3 = π/

√
3 −|0, 0, 3〉 − |0, 3, 0〉

that are effectively turned on and off by tuning the aux-
iliary system.

While these methods do not require number-state-
selective transitions, their use of state-selective swaps
limits the coupling rate due to the anharmonicity of the
system [11]. Nevertheless, these methods can be imple-
mented faster than the original state-synthesis algorithm
[21] (the photon subtraction method presented above).
However, a comparison with the experimental method
[22, 38] showed that both were experimentally compa-
rable as far as decoherence is concerned [36]. Here we
consider the new photon swapping algorithm and show
that no multilevel systems or state-selective interactions
are required, allowing for faster operations and simplified
experimental design.

This improved performance is due to the nature of
the paths taken through the Fock-space diagram in
this new algorithm. By following the photon swapping
method, starting from a superposition of a given diago-
nal na +nb = N , the first time through one can move all
of the population down to |0, N − 1, 0〉. Thus, one need
only use a Law-Eberly sequence along the path nb = 0 to
remove the photons from the system. The result is that
any “diagonal” state of the form Eq. (69) can be syn-
thesized by one sequence of photon swaps followed by a
Law-Eberly sequence with no state-selective interactions.
The specific set of parameters for NOON state synthe-
sis with N = 3 are shown for the photon subtraction
and swapping algorithms are shown in Tables I and II,
respectively, and graphically represented in Fig. 6.

TABLE II: NOON State Synthesis by the Photon Swapping Algorithm

Step Parameters Quantum State

R1 γ1 = π −i|1, 0, 0〉
A1 θ1 = π/2 −|0, 1, 0〉
R2 γ2 = π +i|1, 1, 0〉
A2 θ2 = π/2

√
2 +|0, 2, 0〉

R3 γ3 = π −i|1, 2, 0〉
A3 θ3 = 0.2153 −0.3643|0, 3, 0〉 − i0.9313|1, 2, 0〉
B1 η1 = 2.1999 −0.3643|0, 3, 0〉+ i0.548|1, 2, 0〉 − 0.753|0, 2, 1〉
A4 θ4 = 1.3589 +0.6454|0, 3, 0〉 − i0.1283|1, 2, 0〉+ 0.2589|0, 2, 1〉+ i0.7071|1, 1, 1〉
B2 η2 = π/2

√
2 +0.6454|0, 3, 0〉 − i0.2889|1, 2, 0〉+ 0.7071|0, 1, 2〉

A5 θ5 = π/2 −0.7071|0, 3, 0〉 − i0.7071|1, 0, 2〉
B3 η3 = π/2

√
3 −0.7071|0, 3, 0〉 − 0.7071|0, 3, 0〉

We now compare these two approaches for a general
NOON state. Based on previous analysis [36], we find

that the photon subtraction method requires N A-swaps,
N B-swaps, and 2N rotations. No phase shifts are re-
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FIG. 6: NOON state synthesis (with N = 3) using (a) the photon subtraction method, and (b) the photon swapping method.
Both prepare the NOON state with a linear number of steps, but the latter uses no state-selective interactions.

quired, and the parameters scale as(∑
n

γn

)
subtraction

≈ π

(
2Nmax −

1

2

)
,(∑

n

[θn + ηn]

)
subtraction

≈ 6
√
Nmax − 3.3. (70)

As in the general photon subtraction algorithm, many of
these rotations must be number-state-selective.

The photon swapping algorithm requires 2N − 1 A-
swaps, N B-swaps, and N rotations. There are also a few
phase shifts required, but they do not scale appreciably
with N . By looking at the numerical performance for the
NOON state (not shown), we find(∑

n

γn

)
swapping

≈ πNmax,(∑
n

[θn + ηn]

)
swapping

≈ 9.9
√
Nmax − 9.2. (71)

As described above, these rotations need not be number-
state-selective.

Comparing these two algorithms for the NOON state,
we see that we have traded rotations for swaps, with
the photon swapping algorithm achieving the minimal
number of rotations. Even better, the photon swap-
ping method does not require those rotations to be state-
selective. This advantage is particularly nice as the ac-
tual dispersive shifts for a multilevel system coupled to
a resonator can be quite complicated [9, 11, 78] and the
extension to multiple resonators is an outstanding experi-
mental challenge [43]. There is also an advantage over the

special-purpose algorithms in terms of reduced complex-
ity of hardware and controls [22–24]. Thus, the method
presented here has both theoretical and experimental ad-
vantages, with the potential for fast performance and op-
timal scaling.

B. Maximally Entangled States

While most research has studied NOON state synthe-
sis, the maximally entangled states of Eq. (68) are of po-
tentially greater value. As discussed above, the photon
swapping algorithm can produce a superposition along
the diagonals of the Fock state diagram with only N ro-
tations. For the maximally entangled states we compare
the rotations required by two state-synthesis algorithms
in Fig. 7.

We find that the photon subtraction algorithm requires
a quadratic number of rotations, with the total of the
rotation angles scaling as(∑

n

γn

)
subtraction

≈ 1.56N2
max +4.49Nmax−1.33. (72)

Here many of the rotations must be number-state-
selective. However, the photon swapping algorithm, as
argued above, requires only N rotations, with the total
of the rotation angles scaling as(∑

n

γn

)
swapping

≈ πNmax. (73)

Here none of the rotations need be number-state-
selective. We thus see that the photon swapping algo-
rithm achieves the same advantages found for NOON
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FIG. 7: Total rotation angles for the state synthesis of the maximally entangled state using (a) the photon subtraction algorithm,
and (b) the photon swapping algorithm.

state synthesis, with both a reduced number of rotations
and the elimination of their number-state-selective char-
acter.

VI. CONCLUSION

In this paper, we have studied state synthesis algo-
rithms for superconducting resonators. Starting from
a qudit and the classic Law-Eberly algorithm, we have
explored how solving for the inverse evolution allows
one to determine the operations needed to synthesize
an arbitrary state. We have further shown how these
step-by-step procedures have a complexity that typically
grows linearly with the effective Hilbert-space dimen-
sion. These schemes have been extended to two different
state synthesis algorithms for a qubit coupled to two res-
onators. The first uses photon subtraction to ensure that
the inverse evolution leads to the ground state, whereas
the second uses photon swapping before any photons are
removed from the system. When taken in reverse, these
algorithms allow one to synthesize an arbitrary entan-
gled state of two resonators. Finally, when applied to
typical superconducting circuit experiments, we expect
that the photon swapping method will have improved
performance due to a reduced number of state-selective
interactions.

While we have found an improved algorithm, we do
not claim to have found an optimal algorithm. Indeed,
we believe that numerical optimizations using the same
basic Hamiltonians can lead to improved methods for
state synthesis. However, we do hold that the two al-
gorithms compared here are the most natural analyt-
ical approaches to state synthesis. At the same time,
the differences between the two algorithms suggest that
different types of optimizations may be possible. The
photon subtraction algorithm minimizes the number of
A-swaps performed on the system, but at the cost of a
quadratic number of B-swaps and state-selective qubit

rotations. By constrast, the photon swapping algorithm
minimizes the number of rotations, at the cost of an in-
creased number of A-swaps and slightly increased overall
complexity. Nevertheless, for states such as the NOON
and maximally entangled states, the photon swapping
method appears to have overall better performance, in
that no state-selective rotations are needed at all.

Finally, the linear scaling of the NOON state sequences
are nearly ideal, in that the energy of the final state and
the number of qubit rotations used (to put energy into
the system) are both linear in the state number Nmax

[11]. We further observe that one can achieve a reduc-
tion in time complexity by a factor of two by driving
multiple transitions simultaneously [26], but the linear
scaling remains. However, recent work has found, us-
ing numerical optimization, that sublinear scaling is pos-
sible for Fock state preparation by starting the cavity
in a large-amplitude coherent state and using repeated
number-state-dependent qubit transitions and displace-
ments of the resonator [28]. Extending such a scheme to
NOON state synthesis in two cavities using two qubits is
straightforward [26]; whether a single qubit suffices is an
interesting question.

In conclusion, we have improved the theoretical un-
derstanding and performance of entangled-state synthe-
sis algorithms for superconducting resonators. We hope
that the results presented here, on a fundamental quan-
tum control problem, may provide useful benchmarks for
future explorations of control of superconducting or other
resonator-based systems.
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Appendix: Driven two-mode Jaynes-Cummings
Hamiltonian

In this Appendix we derive the effective Hamiltonians
used in Sec. IV in the text, starting from the driven
two-mode Jaynes-Cummings Hamiltonian

H/~ = ωaa
†a+ ωbb

†b+ ωq(t)σ
†σ + F (t)σx

+ ga(t)
(
σ†a+ σa†

)
+ gb(t)

(
σ†b+ σb†

)
.

(A.1)

This Hamiltonian models two resonators with different
frequencies (ωa 6= ωb) and coupled by a qubit. Ide-
ally, the qubit has a tunable frequency ωq(t), is control-
lably coupled to each resonator [with couplings ga(t) and
gb(t)], and is driven by an external control field F (t).
While such a system has not yet been realized, the effec-
tive Hamiltonians used in the text can be realized using
experimentally demonstrated interactions: systems with
fixed couplings (and a tunable qubit frequency) have been
realized in [7] and [45]; systems with controllable cou-
plings have been realized in a number of different ways
[46–52].

We will consider both fixed and controllable couplings
in this Appendix, and describe three primary modes of
operation. The first mode involves operations in the dis-
persively coupled regime (when |ωq − ωa|, |ωq − ωb| �
ga, gb), with fixed couplings. The second mode involves
operations in the resonant regime (when ωq = ωa or
ωq = ωb), again with fixed couplings. These two modes
can be accessed by using a qubit with a dynamically tun-
able frequency ωq(t) [42, 43]. The third mode involves
time-dependent parametric couplings [48, 51] that can
be used to generate operations with a fixed frequency
qubit (with ωq 6= ωa, ωb).

1. Dispersive Regime

In the dispersive regime, we analyze the dynamics us-
ing a canonical transformation [79],

H′ = eKHe−K , (A.2)

with

K =
ga
∆a

(
a†σ − aσ†

)
+
gb
∆b

(
b†σ − bσ†

)
, (A.3)

where ga and gb are held constant and we have defined
∆a = ωa−ω0 and ∆b = ωb−ω0, with ω0 a constant idling
point of the qubit frequency. By expanding the exponen-
tials to second-order in the couplings, one obtains (with

F = 0 and ωq = ω0)

H′/~ ≈
(
ωa +

g2
a

∆a

)
a†a+

(
ωb +

g2
b

∆b

)
b†b

+
gagb

2

(
1

∆a
+

1

∆b

)(
a†b+ ab†

)
σz

+

[
ω0 −

g2
a

∆a
(2na + 1)− g2

b

∆b
(2nb + 1)

]
σ†σ,

(A.4)

where na = a†a and nb = b†b.
This transformation has produced small shifts of the

resonator frequencies, a small coupling term, and a
number-state-dependent shift of the qubit frequency (the
AC Stark shift). By additional transformations, we can
simplify this Hamiltonian to that used in the text. Specif-
ically, we can remove the first two terms in Eq. (A.4) by
a rotating frame transformation for the resonators and
the third by a rotating wave approximation (using the
fact that |ωa − ωb| > ga, gb in the dispersive regime).
By reintroducing the detuning and the coupling field, we
thus obtain the effective Hamiltonian

H′′/~ ≈ ∆ω(t)σ†σ +
∑
na,nb

ωna,nb
Πna,nb

σ†σ

+ F (t)
∑
na,nb

Πna,nb
σx, (A.5)

where we have used the projection operators

Πna,nb
= |na, nb〉〈na, nb| (A.6)

and defined the time-dependent detuning ∆ω(t) =
ωq(t)−ω0 and the number-state-dependent qubit transi-
tion frequencies

ωna,nb
=

[
ω0 −

g2
a

∆a
(2na + 1)− g2

b

∆b
(2nb + 1)

]
. (A.7)

We proceed to consider Eq. (A.5) when the driving
field drives all of the number-state-dependent transitions
in parallel:

F (t) =
∑
na,nb

Ωna,nb
cos(ωna,nb

t), (A.8)

and perform yet another rotating frame transformation
and rotating wave approximation. This can be done by
using the transformation

Heff = U†0H′′U0 − i~U†0dU0/dt (A.9)

with

U0 = exp

(
−it

∑
na,nb

ωna,nb
Πna,nb

σ†σ

)
(A.10)

and selecting the time-independent terms, which yields

Heff/~ ≈ ∆ωσ†σ +
1

2

∑
na,nb

Ωna,nb
Πna,nb

σx, (A.11)
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This expression agrees with the effective Hamiltonian
(with ga, gb → 0) of Eq. (45) in the text. Number-
state-dependent transitions can be driven provided the
Rabi frequencies Ωna,nb

are small compared to the fre-
quency differences |ωna+1,nb

− ωna,nb
| = 2g2

a/∆a and
|ωna,nb+1 − ωna,nb

| = 2g2
b/∆b; this ensures that the ro-

tating wave approximation remains valid. Small changes
of ∆ω about zero will cause the qubit state to develop a
phase with respect to the driving field (which is what
is observed in tomography [20]). We note that these
results can be extended to coupling of resonators via
a multilevel system, albeit with modified number-state-
dependent qubit transition frequencies [9, 11, 78]; some
of the implications of these modified results have been
discussed elsewhere [36]. The conclusions of this paper
are largely independent of these modifications.

2. Resonant Regime

In the resonant regime, we have ωq = ωa or ωq =
ωb. In these cases, a rotating frame transformation (and
rotating wave approximation) yield the qubit-resonator
swapping interactions

Heff/~ = ga
(
σ†a+ σa†

)
(A.12)

and

Heff/~ = gb
(
σ†b+ σb†

)
, (A.13)

respectively. These agree with the effective Hamilto-
nian (with ∆ω,Ωna,nb

→ 0) of Eq. (45) in the text.

While there are residual phase shifts incurred by tun-
ing the qubit frequency between these two frequencies,
these phases can be adjusted (relative to the fixed condi-
tion ∆ω = 0 discussed above) during the time-dependent
pulse [40, 41].

3. Parametric Coupling

The previous mode of operation required a qubit with
a tunable frequency. A fixed frequency qubit will re-
quire an alternative mode of operation, which is pos-
sible using parametric coupling. Such methods have
been experimentally demonstrated and used to couple
a qubit and lumped-element resonator [48], two planar
resonators [51], and two three-dimensional cavities [52].
These experiments all use a parametric coupling of the
form

g(t) = g0 + g1 cos(ωt), (A.14)

This type of coupling can achieve the two modes of op-
eration described above in the following way. First, one
can operate the coupler with g0 6= 0 and g1 = 0 to effect
the number-state-dependent transitions in the dispersive
regime. Second, one can operate the coupler with g0 = 0,
g1 6= 0, and ω tuned to the difference in frequencies
ωa − ωq or ωb − ωq to effect the qubit-resonator swap-
ping interactions in the resonant regime. Thus, all of the
operations designed for systems with tunable frequency
qubits and fixed couplings can be realized for fixed fre-
quency qubits and tunable couplings.
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