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In the dispersive regime of qubit-cavity coupling, classical cavity drive populates the cavity, but
leaves the qubit state unaffected. However, the dispersive Hamiltonian is derived after both a frame
transformation and an approximation. Therefore, to connect to external experimental devices, the
inverse frame transformation from the dispersive frame back to the lab frame is necessary. In this
work, we show that in the lab frame the system is best described by an entangled state known
as the dressed coherent state, and thus even in the dispersive regime, entanglement is generated
between the qubit and the cavity. Also, we show that further qubit evolution depends on both the
amplitude and phase of the dressed coherent state, and use the dressed coherent state to calculate
the measurement contrast of a recently developed dispersive readout protocol.

The interaction between a two level system (TLS)
and quantized electromagnetic radiation has been stud-
ied extensively since the beginnings of quantum mechan-
ics, with much effort devoted to the study of physi-
cal systems described by the Jaynes-Cummings Hamil-
tonian [1]. Over the last few decades the fields of cav-
ity quantum electrodynamics (CQED) and more recently
circuit quantum electrodynamics (cQED) have signifi-
cantly developed, allowing for the exploration of the
Jaynes-Cummings interaction in a wide range of parame-
ter regimes and physical systems. In particular in cQED,
both the strong coupling regime (g � κ, γ, first achieved
in Rydberg atoms [2]) and the strong dispersive regime
(χ� κ, γ) have been reached within the last decade [3].
In cQED, a superconducting qubit serves as the TLS,
while the quantized electromagnetic fields are microwaves
in either a strip-line resonator or 3D microwave cavity.

Contemporary experiments in cQED often work in the
strong dispersive regime, where the qubit and microwave
cavity are off resonance, and the Jaynes-Cummings inter-
action reduces to an effective second order shift in system
eigen-energies. In this regime, a wide range of quantum
information protocols has been demonstrated [4], includ-
ing quantum teleportation [5], entanglement generation
by measurement and feedback [6, 7], non-classical mi-
crowave state generation [8], and error correction by sta-
bilization measurements [9].

When an empty electromagnetic cavity is driven by
classical radiation, the state of the cavity is described
quantum mechanically by the coherent state |α〉, where
the complex amplitude α depends on the strength and
length of the classical drive. In the dispersive regime
of qubit-cavity coupling, when a classical cavity drive is
applied the state of the joint system is typically described
by the product state a |g〉 |αg〉+ b |e〉 |αe〉, with no qubit-
cavity entanglement generated if the qubit is not initially
in a superposition state.

What is often overlooked is that the state a |g〉 |αg〉 +
b |e〉 |αe〉 is an accurate description of the joint system
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state under the dispersive approximation, which involves
a frame transformation to the dispersive frame, and thus
this state is not an accurate description of the qubit-
cavity system in the lab frame of the experiment. In this
manuscript, we will show that in the lab frame of the
experiment a more accurate description of the joint state
is the dressed coherent state |g/e, α〉 [10]. Unlike the
description in the dispersive frame, the dressed coherent
state of the lab frame is entangled, even if the qubit is
not initially in a superposition state. This has profound
implications on the future evolution of the system, and
we will show that future qubit evolution is dependent on
both the amplitude and phase of the dressed coherent
state. Similar effects have previously been studied for a
driven qubit-cavity system where the qubit and cavity
are resonant [11, 12].

This manuscript is organized as follows: in section I
we describe the physical system of interest and the uni-
tary frames in which we will be working; in section II we
define the dressed coherent state and give analytical and
numerical evidence that this is the state created after the
coupled system is driven classically through the cavity de-
grees of freedom; in section III we discuss applications of
the dressed coherent state to quantum information pro-
tocols; finally, in section IV we make concluding remarks.

I. THE PHYSICAL SYSTEM

We consider a qubit and cavity coupled via the Jaynes-
Cummings interaction, described by the lab frame Hamil-
tonian

Ĥ = ωcâ
†â− ωq

2
σ̂z + g

(
σ̂−â† + σ̂+â

)
+ 2 cos(ωdt)

(
εâ+ ε∗â†

)
, (1)

where â and â† are the usual bosonic annihilation and
creation operators, σ̂z is the Pauli matrix whose eigen-
states are the qubit logical states, σ̂± are the qubit rais-
ing and lowering operators, ωc/q are the cavity and qubit
frequencies, g is the Jaynes-Cummings coupling strength,
and we set ~ = 1 from here on. The last term in equa-
tion (1) is a classical drive field applied to the cavity with
complex amplitude ε and at frequency ωd.
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In the limit that |ε| = 0, i.e. no applied drive field, the
eigenbasis for this Hamiltonian is given by the dressed
states [13]

|g, n〉 = cos θn |g, n〉 − sin θn |e, n− 1〉 , (2)

|e, n− 1〉 = cos θn |e, n− 1〉+ sin θn |g, n〉 , (3)

where the unbarred kets are the eigenstates of the un-
coupled system, and the mixing angle θn is given by the
relation

θn =
1

2
arctan

(
2λ
√
n
)
, (4)

where λ = g/∆ with ∆ = ωq − ωc the cavity-qubit de-
tuning. We work in the dispersive regime, defined by
|λ| � 1. In this regime the mixing angle is well approx-
imated as θn ≈ λ

√
n, provided n � ncrit, where ncrit is

the critical photon number at which the approximation
breaks down due to the product

√
nλ approaching unity

[14]. The dressed states then reduce to

|g, n〉 = cos
(
λ
√
n
)
|g, n〉 − sin

(
λ
√
n
)
|e, n− 1〉 , (5)

|e, n− 1〉 = cos
(
λ
√
n
)
|e, n− 1〉+ sin

(
λ
√
n
)
|g, n〉 , (6)

In this regime, it is then possible to transform to the
dispersive frame by applying the unitary rotation ÛD =
exp

{
λ
(
σ̂+â− σ̂−â†

)}
, and keeping terms up to second

order in λ. The result of this procedure is the dispersive
frame Hamiltonian

ĤD = ωcâ
†â− ωq + χ

2
σ̂z − χσ̂zâ†â, (7)

where χ = g2/∆ is the dispersive shift. We emphasize
that this Hamiltonian is not in the lab frame, but in
the dispersive frame defined by ÛD. To highlight the
in-equivalence of the two frames, we note the identities
(which will be useful later)

Û†D |g, n〉 = |g, n〉, (8)

Û†D |e, n〉 = |e, n〉, (9)

where the dressed states are given by equations (5) and
(6).

II. THE DRESSED COHERENT STATE

A. Analytic Derivation

We are interested in the effect on the full system of a
classical drive applied to the cavity, and so we set ε 6= 0
and reintroduce the classical drive field described in the
lab frame by the Hamiltonian

Ĥd(t) = 2 cos(ωdt)
(
εâ+ ε∗â†

)
. (10)

The dispersive frame transformation must be applied per-
turbatively to this Hamiltonian, and to lowest order in

the dispersive frame the classical drive Hamiltonian is
unchanged, and is the same as that of equation (10).

The next order term in the dispersive frame is a qubit
drive with a drive strength proportional to λ|ε|, at fre-
quency ωd. However, as we assume that |ωq − ωd| � 0,
that is, the qubit and cavity are far off resonance, then
this term is nonsecular. Provided that λ|ε|/|ωq − ωd| �
1, this term has a negligible effect on the system dy-
namics over timescales of interest. For the parameter
regimes considered in this work, we have both λ < 1 and
|ε|/|ωq − ωd| � 1, and so this qubit drive has negligible
effect on our system and can be ignored.

In the interaction frame of the system Hamiltonian
ĤD of equation (7) (which we refer to as the “dispersive-
interaction” frame), and after making the rotating wave
approximation the full system Hamiltonian is

ĤI(t) = εe−iδteiχσ̂ztâ+ ε∗eiδte−iχσ̂ztâ†, (11)

where δ = ωc − ωd is the cavity-drive detuning, and
the subscript “I” labels the interaction picture. In the
dispersive-interaction frame, after a time T the state of
the full system is described by

|ψ′D(T )〉 = ÛI(T, 0) |ψ′D(0)〉

= T exp

{
−i
∫ T

0

ĤI(t)

}
|ψ′D(0)〉 , (12)

where T is the usual time ordering operator. From here
onwards |ψ′D〉 is the state in the dispersive-interaction
frame, |ψD〉 the state in the dispersive frame, and |ψ〉
the state in the lab frame.

To calculate ÛI(T, 0) exactly we will use the Magnus
expansion [15], given by

ÛI(T, 0) = exp

( ∞∑
k=1

Ωk(T, 0)

)
(13)

where Ωk(T, 0) is the k’th order Magnus generator. For
our system these generators are zero for k > 2, and so
ÛI(T, 0) can be calculated exactly. The first order Mag-
nus generator is given by an expression proportional to
the average Hamiltonian

Ω1(T, 0) = −i
∫ T

0

dt ĤI(t) = |g〉 〈g| (αg(T )â† − α∗g(T )â)

+ |e〉 〈e| (αe(T )â† − α∗e(T )â), (14)

where

αg(T ) =
−ε∗

(
ei(δ−χ)T − 1

)
δ − χ

,

αe(T ) =
−ε∗

(
ei(δ+χ)T − 1

)
δ + χ

. (15)

As [ĤI(t1), ĤI(t2)] ∝ f(σz) ⊗ I which commutes with
HI(t3) the Magnus expansion truncates at second order,
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and the second order generator results in a qubit-state
dependent relative Stark phase. Also, as Ω2(T, 0) com-
mutes with Ω1(T, 0) the full evolution operator is

ÛI(T, 0) = exp {Ω1(T, 0)} exp {Ω2(T, 0)}

=
(
|g〉 〈g| D̂(αg(T )) + |e〉 〈e| D̂(αe(T ))

)
eiF (σzT ) (16)

where D̂(β) = exp
{
βâ† − β∗â

}
is the usual displacement

operator, and eiF (σzT ) is the phase from the Ω2(T, 0)
term, shown explicitly in equation (A2).

In the lab frame of equation (1) we consider an ini-
tial state given by |g, 0〉, which is the ground state of
the Jaynes-Cummings Hamiltonian. This state is a dark
state and therefore invariant under both the transfor-
mation into the dispersive frame ÛD(t) and the trans-
formation into the interaction frame exp

{
iĤDt

}
, and

so in the dispersive-interaction frame the initial state is
|ψ′(0)〉 = |g, 0〉 (we work in the lab frame basis through-
out).

We can then calculate the final state in the dispersive-
interaction frame

|ψ′D(T )〉 =
(
|g〉 〈g| D̂(αg(T )) + |e〉 〈e| D̂(αe(T ))

)
|g, 0〉

= |g, αg(T )〉 , (17)

where as our initial state is not a qubit superposition
state the effect of the second order Magnus term is a
global phase that can be ignored. Next we transform
this trivially out of the interaction frame back to the
dispersive frame

|ψD(T )〉 = exp
{
−iĤDT

}
|ψ′D(T )〉

= |g〉 e−|αg(T )|2
∑
n

αng (T )
√
n!

e−i(ωc−χ)â†âT |n〉

=
∣∣∣g, αg(T )e−i(ωc−χ)T

〉
= |g, α̃g(T )〉 . (18)

To return to the lab frame we must apply the inverse
dispersive transformation Û†D, and using equation (8) we
see that the final state in the lab frame is

|ψ(T )〉 = Û†D |g, α̃g(T )〉 = e−|α̃g(T )|2
∑
n

α̃ng (T )
√
n!

Û†D |g, n〉

= e−|α̃g(T )|2
∑
n

α̃ng (T )
√
n!
|g, n〉. (19)

The qubit-cavity state of equation (19) is the dressed
coherent state |g, α̃g(T )〉, where in general a dressed co-
herent state has the form

|g/e, α〉 = e−
|α|2
2

∑
n

αn√
n!
|g/e, n〉, (20)

where |g/e, n〉 is given exactly be equation (2)/(3), and
to first order in λ by equation (5)/(6). To the best of

Figure 1: (Color online) Schematic diagrams of the dressed
coherent states |g, α〉 and |e, α〉 for |α|2 = 4. The red and
blue curves are the Poisson distribution of superposition co-
efficients, Pn = |〈g/e, n| g/e, α〉|2.

our knowledge this state was first described in Ref. [10].
Schematic diagrams of the dressed coherent states |g, α〉
and |e, α〉 for |α|2 = 4 are shown in FIG. 1. The curves
in FIG. 1 represent the Poissonian weights of the sum
in equation (20), and highlight the fact that the dressed
coherent state has the same distribution of superposition
coefficients as the coherent state, only for the dressed
states instead of the bare states.

As we have just shown, if the system starts in the state
|g, 0〉 then the final state of the system after a classical
cavity drive of length T will be the dressed coherent state
|g, α̃g(T )〉. Similarly, if the system starts in its first ex-
cited state, given by |e, 0〉 in the lab frame, then the final
state after classical drive will be the state |e, α̃e(T )〉 (see
appendix A for further details). We will now discuss an
intuitive physical understanding of the dressed coherent
state, and compare the analytic results to full numerical
simulations.

B. Effective Qubit Drive

To understand the dressed coherent state for λ� 1 it
is useful to expand the state of equation (20) in powers
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of λ to obtain

|g, β〉 = e−
|β|2
2

∑
n

βn√
n!

[(
1− λ2n

2

)
|g, n〉

− λ
√
n |e, n− 1〉

]
+O

(
λ3
)

= (|g〉 − λβ |e〉) |β〉

− λ2

2
e−
|β|2
2

∑
n

βn√
(n− 1)!

√
n |g, n〉+O

(
λ3
)
, (21)

and we see that to lowest nontrivial order in λ the qubit is
effectively in the superposition state (|g〉 − λβ |e〉) /

√
N ,

with the normalization factor N = 1 + λ2|β|2. Thus, to
lowest order in λ, when the qubit-cavity system is driven
by a classical cavity drive (creating a dressed coherent
state) the qubit is effectively weakly driven on resonance
via the Hamiltonian (in the interaction picture)

ĤEff = q0σ̂
− + q∗0 σ̂

+, (22)

for a time T as before, where the effective qubit drive
strength is given by q0 = (iβ∗λ)/T for the dressed coher-
ent state |g, β〉.

It is important to note that under the dispersive ap-
proximation the cavity drive of equation (10) is only the
leading order term, and that the next order correction in
the dispersive frame, of order λ, is a qubit drive, as dis-
cussed previously. However, this drive is at a frequency
ωd, which will not be resonant with the qubit transition
frequency, and as a result this qubit drive has no net ef-
fect on relevant timescales. For this reason we have not
included this off-resonant qubit drive in our analtyical
calculations.

The effective resonant qubit drive described here by
equation (22) is not due to the O(λ) term in the dis-
persive approximation of the cavity drive Hamiltonian,
as this term has been neglected. The effective drive oc-
curs even when only the zeroth order term of the disper-
sive frame cavity drive is considered (i.e. just the cavity
drive), as in equation (10). It is uniquely an effect of
considering the lab frame state for qubit-cavity interac-
tion with a driven cavity, and results from interactions
between the cavity and the qubit.

C. Numerical Simulations

In section IIA we have shown that under the disper-
sive approximation done completely, the final state in the
lab frame of a qubit-cavity system after a classical cavity
drive is a dressed coherent state. While for λ � 1 and
|α|2 � ncrit it is sufficient to keep terms up to order λ2

and obtain the Hamiltonian of equation (7), it is worth-
while to examine what effect the neglected higher order
terms have on the final state. To do so, we numerically

investigate time evolution induced by the Hamiltonian

ĤT(t) = ωcâ
†â− ωq

2
σ̂z + g

(
σ̂−â† + σ̂+â

)
+
(
εeiωdtâ+ ε∗e−iωdtâ†

)
Θ(T − t), (23)

for the lab frame initial states |g, 0〉 and |e, 0〉, with
ωd = ωc − χ and ωd = ωc + χ respectively. We simu-
late over a range of λ, ε, and target α̃g/e(T ) to see how
these parameters affect the accuracy of the dressed co-
herent state.

We compare the numerically created states with the
dressed coherent states |g, α̃g(T )〉 and |e, α̃e(T )〉, as well
as the undressed product states |g, α̃g(T )〉 and |e, α̃e(T )〉
(all in the lab frame), by calculating the overlaps

Fg/eD (|α|2, ε, λ) =
∣∣∣ 〈ψ(T )|

∣∣g/e, α̃g/e(T )
〉∣∣∣2, (24)

Fg/e(|α|2, ε, λ) =
∣∣∣ 〈ψ(T )|

∣∣g/e, α̃g/e(T )
〉 ∣∣∣2, (25)

where |ψ(T )〉 is the state created by numerical simula-
tion, and we have set that for either initial state the tar-
get coherent state amplitude is the same, i.e. |α̃g(T )| =
|α̃e(T )| = |α(T )|. The phase of α(T ) has no impact on
the fidelity and so the fidelity depends only on |α|2.

Figures 2(a), 2(c), and 2(d) show 1−Fg/eD (|α|2, ε, λ) for
varying |α|2, λ, and ε respectively, with the non-varying
parameters held at the constant values indicted on the
figures. Fidelities for both the ground or excited dressed
coherent state are plotted. Due to decreasing validity of
the dispersive approximation, both FIGs. 2(a) and 2(c)
show a decreasing overlap as either |α|2 or λ increase. As
is to be expected, increasing λ is more detrimental to the
agreement between the numerical state and the dressed
coherent state, as a larger λ requires fewer photons in the
cavity for terms beyond order λ2 in the full Hamiltonian
to become relevant. For increasing |α|2, FIG. 2(a) shows
that even for a high average photon number of |α|2 = 9
the numerical state still has an overlap greater than 90%
with a dressed coherent state.

Interestingly, FIG. 2(d) shows that for increasing drive
strength ε, the overlap between the dressed coherent state
and the numerical state actually increases. This can
likely be understood by competition between the cav-
ity drive and higher order effects beyond the dispersive
approximation, which will both be off-diagonal in the ba-
sis of equation (7). The stronger the drive, the more it
dominates this competition, which therefore diminishes
the effect of the higher order correction terms, leading to
a state closer to the dressed coherent state.

Finally, FIG. 2(b) shows the difference in fidelity be-
tween the dressed coherent state and the undressed prod-
uct state, i.e. Fg/eD (|α|2, ε, λ)−Fg/e(|α|2, ε, λ), as a func-
tion of |α|2. As can be seen, the difference is always
positive, and the dressed coherent state is always a bet-
ter description of the numerical state than the undressed
product state.
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Figure 2: (Color online) Comparison of the numerical state created by simulation of equation (23) with the dressed coherent
state as a function of (a) photon number |α|2, with ε and λ constant, (c) λ, with ε and |α|2 constant, and (d) drive strength
ε, with |α|2 and λ constant. (b) The difference in overlap with the numerical state between the dressed coherent state and
the undressed product state as a function of photon number |α|2, with ε and λ constant. Values of |α|2, λ, and ε chosen to be
commensurate with current experiments. Additional phase matching was required to obtain high fidelity (see appendix B).

III. IMPLICATIONS AND APPLICATIONS

A. Qubit Operations

In this section we examine a simple case of qubit op-
erations performed on a dressed coherent state to em-
phasize the dependence of these operations on both the
amplitude and phase of the cavity state. Such interac-
tions could occur in a set-up that involved parallel oper-
ations on a qubit and a cavity used as a bus [16] or as a
quantum memory [17]. We consider a primitive for qubit
operations that, while itself not necessarily useful or in-
teresting, elucidates the relevant physics involved, such
that useful and interesting applications may be developed
from it in future work. Starting in the dressed coherent
state |g, β〉 (created as described in section IIA), we at-
tempt to rotate the reduced state of the qubit to as close
to the excited state as possible. We will show that the
excitation probability will depend on both the amplitude
and phase of β.

We begin by expanding the inital dressed coherent
state |g, β〉 to lowest order in λ, as in equation (21). In
this case, the reduced state of the qubit is a weakly ro-
tated qubit state, with the phase of this rotation propor-

tional to the phase of β. For a weakly rotated qubit state,
the probability amplitude upon further rotating the qubit
depends on the phase of the applied drive relative to the
phase of the initial qubit rotation, and therefore, the suc-
cess of rotating to the excited state from the state |g, β〉
will depend on the phase of β. For purely real (imagi-
nary) β, the reduced qubit state lies in the x-z (y-z) plane
on the Bloch sphere, and rotation about the x (y) axis
cannot transform the qubit state to the state |e〉, while
rotation about the y (x) axis can. For general β the su-
perposition is along the plane defined by the z axis and
the line {(x, y) = (cos(φβ)s, sin(φβ)s), ∀s ∈ R} in the x-
y plane, which depends on the phase of β, given by φβ . In
this case perfect state transfer to |e〉 is not possible by ro-
tation along any axis other than that defined by φβ+π/2,
given by the line {(x, y) = (sin(φβ)s, cos(φβ)s), ∀s ∈ R}.

More rigorously, we consider the qubit-drive Hamilto-
nian to first order in the dispersive frame given by

ĤQ = ηe−iωtσ̂+ + η∗eiωtσ̂−. (26)

In the interaction picture with respect to the dispersive
Hamiltonian of equation (7), this Hamiltonian becomes

Ĥ ′Q = ηeiνtei2χn̂tσ̂+ + η∗e−iνte−i2χn̂tσ̂−, (27)
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where n̂ = â†â and ν = ωq + χ − ω. To calculate the
evolution operator, we follow the same procedure as in
section IIA using the Magnus expansion. Unfortunately,
the Magnus generators Ωn do not vanish for any finite
order n, due to the nonlinearity of the qubit. To account
for this we choose our evolution time to be short enough
(roughly one period for the drive frequency ω) that Mag-
nus terms beyond first order have minimal contribution
to the evolution, as the magnitude of their effects is small
and only becomes relevant after accumulating for a long
period of time. With this in mind, the analytical results
presented below are meant to be instructive and to high-
light the important physical effects, rather than to have
high accuracy.

The result of this calculation (see appendix C for fur-
ther details) is a very complicated expression for the ex-
cited state probability as a function of time, given by
equation (C5). In order to gain some intuitive under-
standing of the rigorous result, we set ω = ωq and go to
the limit where χ, λ → 0, in which case, the probability
of finding the qubit in the excited state at time τ is given
by

Pe(τ) =
(
1− λ2

)
sin2 (ητ) + λ2|β|2 cos(2ητ)

+ λ sin(2ητ)
(

Im(βe−iϕ) cos(∆τ)

+ Re(βe−iϕ) sin(∆τ)
)
, (28)

where eiϕ = η/|η|, and ∆ = ωq − ωc as before. From the
last term in equation (28) we see that the excited state
probability depends not only on the photon number in
the cavity, but also the interplay between the coherent
state phase and the phase of the drive, through the un-
equal dependence on Re(βe−iϕ) and Im(βe−iϕ). This
effect can be understood as interference between the ef-
fective qubit drive of equation (22) caused by the dressed
coherent state and the applied qubit drive of equation
(26), in a manner similar to coherent destruction of tun-
neling [18].

Unfortunately, while easy to understand, equation (28)
is not very accurate in the relevant parameter regimes
(due to the approximations made), and the error in trun-
cating the Magnus expansion at first order grows for
longer times. However, the analytical calculations lead-
ing to equation (28) were done to distill the relevant
physical effects and present them in an understandable
manner, not to obtain highly accurate results. To accu-
rately test the phase dependence effects, we numerically
simulate a qubit-cavity system with classical qubit drive
(without making the dispersive approximation). As an
initial state, we start with the state created by simulation
of equation (23) of section IIC, which has high overlap
with a dressed coherent state. Figure 3 shows the ex-
cited state probability as a function of time, starting in
a dressed coherent state with either purely real or imag-
inary β, and with a purely real qubit drive η.

In addition to photon number effects, where the qubit
resonance frequency is modified by the photon number

0 1 2 3 4 5 6 7 8 9 100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

11

Qubit Applied Drive Time ( ω q
1

P e

Imaginary β
Real β

units of

Figure 3: (Color online) Qubit excited state probability as
a function of the time of the applied qubit drive, starting
in a dressed coherent state with either purely real or purely
imaginary β for |β|2 = 4. The drive strength is strong, |η| =
0.05ωq, so that phase effects are clearly visible. The drive
frequency is set to the average shifted qubit frequency, ω =
ωq + 2

(
|β|2 + 1

)
, η is purely real (i.e. |η| = η), and λ = 0.1

as elsewhere.

in the cavity [19], FIG. 3 shows that the excited state
probability’s time evolution depends also on the phase
of the dressed coherent state amplitude β. This agrees
with the intuitive conclusions drawn previously, using the
approximation of equation (21), where one considers the
dressed coherent state to be a coherent state in the cavity,
and a weakly rotated qubit.

B. Dispersive Multi-Qubit Readout with a
Threshold Detector - Limited Contrast

In recent proposals for dispersive single qubit readout
[20], and qubit parity readout [21], protocols were devel-
oped that conditionally populate the cavity dependent
on the state (parity) of the qubit(s), after which, by us-
ing a threshold photon counter to distinguish between
the qubit dependent cavity states, the state (parity) of
the qubit(s) can be non-destructively measured. A sub-
sequent coherent cavity drive of opposite phase removes
the cavity occupation. Such conditional cavity occupa-
tion can be achieved by setting ωd = ωc − χ in equation
(15), and the correct choice of T such that α̃g(T ) 6= 0
while α̃e(T ) = 0.

For single-qubit readout, starting from an initial state
in the lab frame of either |g, 0〉 or |e, 0〉 and using equa-
tions (19) and (A6), after classical cavity drive the qubit
state dependent qubit-cavity states are

|ψ(T )〉 = |g, α̃g(T )〉, (29)

|Ψ(T )〉 = cos (λ) |e, 0〉 − ei(ωq+χ) sin (λ) Û†D |g〉 |ξ(T )〉 ,
(30)

for the suitable choice of T that ensures α̃e(T ) = 0.
Misidentification of the qubit excited state as the ground
state occurs when there is spurious photon population in
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the cavity when the qubit is in its excited state. As can
be calculated using equation (30) this spurious photon
population is given by

N = 〈Ψ(T )| â†â |Ψ(T )〉 ≈ sin2 (λ) cos2 (λ) 〈1| â†â |1〉

+ sin2 (λ) 〈g| 〈ξ(T )| ÛDâ
†âÛ†D |g〉 |ξ(T )〉

≈ sin2 (λ)
(
cos2 (λ) + 〈ξ(T )| â†â |ξ(T )〉

)
= sin2 (λ) (cos2 (λ) + 1 + |αg|2) (31)

where in the first approximation we have ignored the
cross terms as the photon occupation of |ξ(T )〉 is much
greater than 1, and in the second approximation we have
assumed the dispersive transformation only slightly mod-
ifies the average photon number of |ξ(T )〉. The photon
occupation of |ξ(T )〉 is high since it is the single photon
Fock state displaced by D̂(αg(T )), and αg(T ) > 0 for this
protocol. Extending this effect to multiple qubits in their
excited states explains the even parity misidentification
error for four qubit parity measurement seen in Ref. [21],
as it is the four-qubit generalization of the state |ξ(T )〉
that leads to spurious detections when the qubits are in
an even parity state. The exact value of this error is de-
pendent on the nature of the threshold photon counter
used [22, 23].

IV. CONCLUSION

In the work presented here, we have undertaken a crit-
ical and careful examination of the dispersive limit, dis-
persive approximation, and the dispersive Hamiltonian,
in order to understand the distinction and commonalities
between these commonly used terms. We have found that
one obtains the dispersive Hamiltonian after making the
dispersive approximation, which requires both being in
the dispersive limit of the Jaynes-Cummings interaction,
and a frame transformation to the dispersive frame. The
dispersive Hamiltonian therefore describes evolution of
the system in the dispersive frame, and in order to ob-
tain results valid in the lab frame, one must apply the
inverse frame transformation.

This has a profound effect on the description of the
system state, and in particular, we have found that after
a classical drive is applied to the cavity, the state of the
system in the lab frame is accurately described by the
dressed coherent state |g/e, α〉, not, as often used, the
product state |g/e〉 |α〉. The entanglement present in the
dressed coherent state will affect all future operations
on the qubit and the cavity. We have shown how this
is relevant to rotations of the qubit state, in particular
that the probability of rotating the qubit from its ground
to excited state (or vice versa) depends on the phase
difference between α and the applied qubit drive. We
have also explained the limit in measurement contrast for
readout of the qubit state via a cavity and a threshold
photon counter, reported in Ref. [21]. Future work will
continue to explore the effects of the dressed coherent
state on contemporary quantum information protocols.
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Appendix A: Dressed Coherent State for An Excited
Qubit

In this appendix we consider starting in the initial state
in the lab frame of the bare excited qubit state |e, 0〉,
which can be prepared by initialization to the state |g, 0〉
followed by a fast, nonadiabatic pulse on the qubit. In
the dispersive frame the initial state will be |ΨD(0)〉 =
UD |e, 0〉 = cos (λ) |e, 0〉−sin (λ) |g, 1〉. Transforming into
the interaction frame, the state is unchanged since t = 0.
To calculate the final state, we will need the second order
Magnus generator, given by

Ω2(T, 0) = −1

2

∫ T

0

dt1

∫ t1

0

dt2

[
ĤI(t1), ĤI(t2)

]
= i
|ε|2

χ2

(
sin(χTσz)− χTσz

)
(A1)

From this we can calculate the qubit-state dependent
phase due to the second order Magnus generator, given
by

eiF (σzT ) = exp

(
i
|ε|2

χ2

(
sin(χTσz)− χTσz

))
, (A2)

and make the identification

F (σzT ) =
|ε|2

χ2

(
sin(χTσz)− χTσz

)
. (A3)

Now using equation (16), at t = T the system state in
the dispersive-interaction frame is given by

|Ψ′D(T )〉 = cos (λ) |e, αe(T )〉
− ei[F (T )−F (−T )] sin (λ) |g〉 D̂(αg(T )) |1〉 , (A4)

where we have factored out a global phase. Transforming
back into the dispersive frame we have:

|ΨD(T )〉 = cos (λ) |e, α̃e(T )〉

− ei(ωq+χ)T ei2F (T ) sin (λ) e−i(ωc−χσ̂z)â†âT D̂(αg(T )) |g, 1〉
= cos (λ) |e, α̃e(T )〉 − eiG(T ) sin (λ) |g〉 |ξ(T )〉 , (A5)

where α̃e(T ) = αe(T )e−i(ωc+χ)T , G(T ) = (ωq + χ)T +

2F (T ), and |ξ(T )〉 = e−i(ωcâ
†â−χσ̂z â†â)T D̂(αg(T )) |1〉 is

the displaced single photon Fock state. Finally, trans-
forming back into the lab frame gives

|Ψ(T )〉 = Û†D

(
cos (λ) |e, α̃e(T )〉 − eiG(T ) sin (λ) |g〉 |ξ(t)〉

)
= cos (λ) |e, α̃e(T )〉 − eiG(T ) sin (λ) Û†D |g〉 |ξ(t)〉 , (A6)
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where as before we have made the identification that
Û†D |e, α̃e(T )〉 = |e, α̃e(T )〉 to first order in λ. If λ � 1
such that sin(λ) ≈ 0, then as before |Ψ(T )〉 is a dressed
coherent state. Additionally, if as an initial state we use
|Ψ(0)〉 = |e, 0〉 instead of the bare excited state |e, 0〉,
then as ÛD|e, 0〉 = |e, 0〉 the term proportional to sin(λ)
in equation (A6) disappears, and |Ψ(T )〉 contains only
the dressed coherent state |e, α̃e(T )〉. The dressed initial
state is closer to experimental reality as it is an eigenstate
of the Hamiltonian, however, the calculation for the bare
initial state |Ψ(0)〉 = |e, 0〉 was shown for completeness,
as some experimental protocols can prepare this state,
and as from the solution for the bare initial state the
solution for the dressed initial state is trivial to obtain.

Appendix B: Corrections to the Phase of the
Dressed Coherent State Due to Nonlinear Terms

In the expected parameter regime, FIG. 2 demon-
strates excellent agreement between the state created by
a numerical simulation of the Jaynes-Cummings Hamil-
tonian and the dressed coherent state. However, to
obtain this high fidelity, it was necessary to include
effects beyond the dispersive Hamiltonian to correctly
match the phase of the dressed coherent state amplitude
α̃g/e(T ) with the numerical state. In particular, follow-
ing Ref. [24], we include the nonlinear term proportional
to ∆λ4 in the classical equations of motion for the am-
plitudes α̃g/e(T ) and obtain the approximate solutions

α̃g(T ) = αg(T ) exp

(
−i
(
ωc − χ+ ζ

〈n̂(T )〉
2

)
T

)
, (B1)

α̃e(T ) = αe(T ) exp

(
−i
(
ωc + χ− ζ

(
〈n̂(T )〉

2
+ 1

))
T

)
,

(B2)

where ζ = ∆λ4, 〈n̂(T )〉 =
〈
â†â
〉

(T ) is the average photon
number in the cavity at time T , and αg/e(T ) are defined
as before in equation (15). Using these modified coherent
state amplitudes in equations (19) and (A6) gives the ex-
cellent overlap with the numerical states seen in FIG. 2.
We emphasize that the nonlinear corrections have only
been used to correct the classical solution for α̃g/e(T ),
and that to lowest order the nonlinearity modifies only
the phase and not the amplitude of the dressed coherent
states. Furthermore, the squeezing Hamiltonian of the
nonlinearity is not considered in our analytical calcula-
tions (as this would modify the state so that it was no
longer a dressed coherent state), and while its effect is
small, we suspect it to be the leading cause of the less
than unit fidelity seen in FIG. 2.

Appendix C: Driven Qubit Excited State Probability

To first order in the Magnus expansion, the qubit-drive
evolution operator is

ÛQ(τ, 0) = exp {−iΩ1(τ, 0)}

= cos
(
|ηb(n̂, τ)| (ν + 2χn̂)

−1
)
I

+ sin
(
|ηb(n̂, τ)| (ν + 2χn̂)

−1
)(

(ηb(n̂, τ))∗σ−

− ηb(n̂, τ)σ+
)
|ηb(n̂, τ)|−1, (C1)

where we have defined the operator function b(n̂, τ) =
1 − ei(ν+2χn̂)τ . Starting from the initial state |ψ′D(0)〉 =
|g, β〉 in the dispersive-interaction frame, the state after
a time τ of the applied qubit-drive is

|ψ′D(τ)〉 = ÛQ(τ, 0) |ψ′D(0)〉

= e
−|β|2

2

∑
k

βk√
k!

[
cos

(
|ηb(k, τ)|
ν + 2kχ

)
|g, k〉

− i sin

(
|ηb(k, τ)|
ν + 2kχ

)
eiϕei(ν+2kχ)τ/2 |e, k〉

]
, (C2)

where eiϕ = η/|η|, and we have used the fact that
b(k, τ)/|b(k, τ)| = iei(ν+2kχ)τ/2. Transforming out of the
interaction frame, we arrive at the state in the dispersive
frame (after factoring out a global phase)

|ψD(τ)〉 = Û†I (τ, 0) |ψ′D(τ)〉

= e
−|β|2

2

∑
k

β̃k√
k!

[
cos

(
|ηb(k, τ)|
ν + 2kχ

)
|g, k〉

− i sin

(
|ηb(k, τ)|
ν + 2kχ

)
eiϕe−iΣτ/2 |e, k〉

]
, (C3)

where β̃ = βe−iωcτ absorbs the rotation of the cavity
state in phase space, and Σ = ωq + χ + ω + 2kχ = ν +
2kχ+ 2ω. Finally, transforming back into the lab frame,
we end up with the state

|ψD(τ)〉 = Û†D(τ, 0) |ψD(τ)〉 =

e
−|β|2

2

∑
k

β̃k√
k!

[
cos

(
|ηb(k, τ)|
ν + 2kχ

)
cos
(
λ
√
k
)
|g, k〉

− cos

(
|ηb(k, τ)|
ν + 2kχ

)
sin
(
λ
√
k
)
|e, k − 1〉

− i sin

(
|ηb(k, τ)|
ν + 2kχ

)
ei(ϕ−Στ/2) cos

(
λ
√
k + 1

)
|e, k〉

− i sin

(
|ηb(k, τ)|
ν + 2kχ

)
ei(ϕ−Στ/2) sin

(
λ
√
k + 1

)
|g, k + 1〉

]
.

(C4)

Now we can calculate the probability at a given time τ
that the qubit is in the excited state, given by Pe(τ) =
〈ψD(τ)| |e〉 〈e|⊗ I |ψD(τ)〉. Using equation (C4) we calcu-
late this to be
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Pe(τ) = e−|β|
2 ∑

k

|β|2k

k!

[
cos2

(
|ηb(k, τ)|
ν + 2kχ

)
sin2

(
λ
√
k
)

+ sin2

(
|ηb(k, τ)|
ν + 2kχ

)
cos2

(
λ
√
k + 1

)]

+ 2e−|β|
2 ∑

k

|β|2k

k!
√
k + 1

cos

(
|ηb(k + 1, τ)|
ν + 2(k + 1)χ

)
sin
(
λ
√
k + 1

)
sin

(
|ηb(k, τ)|
ν + 2kχ

)
cos
(
λ
√
k + 1

)
Im
[
β̃e−iϕeiΣτ/2

]
. (C5)

Equation (C5) is quite cumbersome, and to gain some
intuitive understanding, we set ω = ωq and examine the

χ, λ→ 0 limit, which results in equation (28).
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