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With improved gate calibrations reducing unitary errors, we achieve a benchmarked single-qubit
gate fidelity of 0.9995±0.0002 with superconducting qubits in a circuit quantum electrodynamics
system. We present a method for distinguishing between unitary and non-unitary errors in quantum
gates by interleaving repetitions of a target gate within a randomized benchmarking sequence. The
benchmarking fidelity decays quadratically with the number of interleaved gates for unitary errors
but linearly for non-unitary, allowing us to separate systematic coherent errors from decoherent
effects. With this protocol we show that the fidelity of the gates is not limited by unitary errors.

Accurate characterization of control gates is an essen-
tial task for developing any quantum computing device.
Quantum process tomography (QPT) [1–3] has been the
standard method for characterizing quantum gates be-
cause, ideally, it produces a full reconstruction of the
quantum process. In practice however, QPT suffers from
many drawbacks, the most inimical being its exponential
scaling in the number of quantum bits (qubits) compris-
ing the system and that it is limited by state preparation
and measurement (SPAM) errors. Various methods such
as randomized benchmarking (RB) [4–7] and gate set to-
mography (GST) [8, 9] have recently been developed to
help overcome these limitations. RB is both insensitive to
SPAM errors and efficient [10]. However, it only extracts
a single piece of information, the average gate fidelity.
GST on the other hand helps to overcome limitations
from SPAM errors by reconstructing an entire library
of gates in a self-consistent manner. The price paid for
this self-consistent reconstruction is an even worse scaling
than QPT.

As control calibration techniques continue to improve
and quantum gates approach the fidelity required for
fault tolerant quantum computation, it becomes both
important and difficult to verify the presence of increas-
ingly small errors. Error verification constitutes a critical
first step in a debugging routine since different physical
mechanisms can lead to different error types. QPT and
GST are often poor choices for error verification since
they are time consuming and contain so much informa-
tion that backing out the presence of specific error types
on small scales can be a challenge in itself. In addition,
SPAM errors in QPT set a lower limit on the detectable
error strengths [8]. At the other end of the spectrum,
while standard RB is efficient, the information it con-
tains about the gate is typically not enough to perform
any sort of useful error verification. An extension of stan-
dard RB, interleaved randomized benchmarking, consists
of interleaving a target gate in a benchmarking sequence
and provides bounds on the error for the gate of inter-
est [11, 12]. Interleaved benchmarking can identify gates
that are poorly calibrated, but does not reveal if the er-
rors are due to decoherence, over-/under-rotations, or
off-resonance effects amongst other error types. Thus,
fast and reliable routines that determine the presence of
specific error types are required. Others have proposed

to use RB for measuring the unital part of a quantum
map [13], correlated errors on a multi-qubit space [14],
metrology of phase noise [15], and recently Ref. [16] has
proposed an alternative method for measuring unitary
errors.

In this paper we propose and experimentally imple-
ment a protocol, largely based on the ideas of RB, that
verifies the presence of unitary versus non-unitary errors.
More specifically, this method distinguishes unitary er-
rors that are additive, such as over-rotation errors, but
would not detect other types of unitary errors. Axes
errors, for example, would be undetectable unless con-
verted into an angle error through a combination of gates,
as we demonstrate experimentally here. Such additive
errors do include many types of calibration errors that
would be present in a physical system, so any method
capable of detecting such errors has a practical utility in
experimental settings.

A major source of unitary errors in transmon qubits
originates from the presence of higher levels, which can
be removed by the derivative removal via adiabatic gate
(DRAG) protocol [17]. To quantify this error source,
we compare experimental randomized benchmarking fi-
delities for several gate times with two simulations, one
assuming a DRAG-corrected pulse shape and the other
without DRAG (Fig. 1).

The measurements described here are performed on
a two-qubit sample consisting of two transmon qubits
coupled by a coplanar waveguide resonator, with inde-
pendent readout resonators for each qubit. The qubit
of interest has a transition frequency of 5.0154 GHz and
anharmonicity of δ/2π = −323 MHz. T1 and T2 are
45 ± 6 µs and 53 ± 10 µs, respectively. These character-
istic times are the mean values from 500 measurements
taken over 14 hours, and the error bars are the standard
deviation of this data; each independent experiment is
well fit by an exponential decay. The pulses used in the
RB sequence are truncated Gaussian pulses having total
length equal to four times the standard deviation of the
Gaussian and with the DRAG correction applied to the
quadrature component.

The weak anharmonicity, δ, of the transmon limits the
gate fidelity as 1/δ, which can be seen for short gate times
in Fig. 1. The experimental data falls below the non-
DRAG curve (brown dotted line in Fig. 1), showing that
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FIG. 1. (color online)(a) Randomized benchmarking fidelity
as a function of gate length. Simulated fidelity with a DRAG
correction in solid blue and without in dotted brown. Exper-
imental data (points), with the highest fidelity of 0.9995 ±
0.0002 occuring at 16.7 ns. Dashed black line: simulated fi-
delity when all gates are overrotated by π/64 (which would be
detectable by IRB). Green dot-dashed line: simulated fidelity
with gate-dependent dephasing proportional to the drive am-
plitude γφ = kΩ. (b) The iterative benchmarking sequence
with target gate C repeated n times between random Clifford
gates, Ci. The case n = 0 corresponds to a regular random-
ized benchmarking sequence as used for the data in (a).

we have partially removed unitary errors due to presence
of higher levels in the transmon. At the gate length tg =
16.7 ns, the error rate corresponds to an average fidelity
per gate of 0.9995 ± 0.0002 but is not yet limited by T1
and T2 with the DRAG correction (blue solid line). With
the current of control, we can calibrate pulses to within
a factor of four of the limit set by T1 and T2, but it is
clear that there are still errors remaining in the system.
(The remaining simulations in Fig. 1 will be described
later in this text).

For longer pulses the fidelity is limited by the finite co-
herence time of the qubit. The tradeoff between decoher-
ence and unitary errors shown in Fig. 1 is generic across
quantum computing hardware. For optimal fidelity, any
quantum processor will be operating with fidelity at least
partially limited by unitary errors: if this were not the
case, then the fidelity could surely be improved by short-
ening the gate time.

We achieve high-fidelity gates through a set of mi-
crowave pulse calibrations, which we describe here before
demonstrating our method for detecting errors that re-
main after calibration. We use single sideband (SSB)

modulation of our control pulses and adjust the in-
phase/quadrature (IQ) mixers (MITEQ IRM0408LC2Q)
for the chosen intermodulation frequency (IF) to ensure
only the correct sideband is produced with minimal leak-
age at the carrier frequency. We then calibrate the in-
phase control pulse amplitude and the amplitude of the
quadrature component for the DRAG correction. The
pulse amplitudes for a π-pulse (Xπ) and a π/2-pulse
(Xπ/2) about the x-axis are tuned up by repeating the

pulses in the sequence Xπ/2 − (X{π,π/2})
2n in order to

amplify the errors. The evolution of the qubit’s Bloch
vector during the first three points of this sequence is
depicted in Fig. 2(a).

We correct for over- or under-rotations by fitting to the
measured population of the qubit ground state, P (|0〉)
[see Fig. 2(b)]. Under the assumption that the error is
only an over- or under-rotation, it is simple to derive a
fitting formula for the amplitude calibration sequences.
The fit function for the Xπ/2 pulse in this sequence is

P (|0〉) = a+

(
1

2
(−1)n cos(π/2 + 2nε)

)
, (1)

where a is left as a fit parameter and goes to 1/2 for
perfect Xπ/2 pulses. For Xπ the fit function is

P (|0〉) = a+

(
1

2
cos(π/2 + 2nε)

)
. (2)

The angle error, ε, found by this fit corresponds to a
gate error r ≈ ε2/6. After fitting the error, we update
the pulse amplitude accordingly.

Lastly, we determine the DRAG correction by applying
the sequence (Xπ/2−X−π/2) while varying the amplitude
of the derivative pulse on the quadrature channel [Fig.
2(c)]. The error due to DRAG calibration depends on
square of the Rabi rate, Ω2, and is independent of the sign
of the Rabi drive. The DRAG error therefore adds during
this calibration sequence, so the final state of the qubit
traces a cosine as a function of the derivative amplitude.
We select the amplitude that returns the qubit in the
ground state, |0〉.

To further characterize the control gates, we have de-
veloped an extension to interleaved randomized bench-
marking. We repeat a target Clifford n times between the
random Clifford gates and measure the fidelity as a func-
tion of n repetitions [Fig. 2(b)]. A typical benchmarking
sequence consists of a set of random Clifford gates that
together compose to an identity operation [6]. Under re-
alistic assumptions on the noise, the fidelity between the
implementation of this sequence with the identity opera-
tion decays exponentially as a function of the number of
Clifford gates [10]. When the fidelity decay is averaged
over many realizations of the random sequence, the decay
constant serves as the single metric for the average noise
in the system. If the gate errors are non-unitary, then
the fidelity will only depend on the total length of the
interleaved segment, and the resulting error per segment
will thus be linear with n. If there are unitary errors of
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FIG. 2. (color online) Calibrations of the control pulses: (a)
Bloch sphere depiction of the qubit for the first three points
of the error amplification sequence given in Eq. 1. (b) The
amplitude calibration for a Xπ/2 pulse. The initial guess for
the pulse amplitude has some error, which the sequence am-
plifies so the deviation from 1/2 grows with n, the number of
repeated pulses. (c) The calibration of the DRAG parameter
performs the Xπ/2−X−π/2 sequence while varying λ, the am-
plitude of the derivative pulse on the quadrature channel. The
correct derivative amplitude corresponds to the point where
the qubit returns to the ground state.

an over-/under-rotation type, they will add coherently
with n, and the fidelity decay will be quadratic to lead-
ing order. To see this, suppose we have a single qubit
unitary error of the form

U = exp(−i ε
2
r̂ · ~σ), (3)

where ε, r̂, and ~σ are the error angle, axis of rotation, and
vector of Pauli operators respectively. Assuming ε � 1
we can write Un to second order in ε as

Un = 1− in ε
2
r̂~σ − (n(2n− 1))

ε2

4
(r̂ · ~σ)2 +O(ε2) (4)

The average fidelity F of the error gate compared to the

identity is given by F =
(
|tr(Un)|2 + 2

)
/2 and writing

F in terms of the benchmarking parameter α = 2F − 1
gives [6]

α = 1− n(2n− 1)ε2

3
(5)

which shows the quadratic dependence in n. We find
using a Kraus operator representation of T1 and T2 pro-
cesses that errors due to decoherence do decay linearly in
n to first order. The extracted α approximated to second

order in all errors is

α = 1 + 2n

(
−ε1

3
− ε2

6
− 2ε2

3
− 2ε22

3

)
+ 2n2

(
ε21
8

+
ε1ε2

3
+

2ε22
3
− ε2

6

)
(6)

where εi = 1 − exp(tg/Ti) corresponds to a T1 or T2
error during a gate of length tg, and ε is an over-rotation
error. The ε2i terms are negligible for typical gate and
coherence times, on the order of 10−8 compared to 10−4

for an over-rotation of π/128.
The calibrated pulses are used for iterative randomized

benchmarking (IRB), in which we interleave each target
sequence zero to 30 times within random sequences of
up to 365 Clifford gates [as depicted in Fig. 1(b)]. We
average over 35 instances of each sequence and fit the
decay to Anα

i
n + Bn, where i is the number of Clifford

gates, and n is the number of interleaved gates. Error
bars are given by the 95% confidence interval of this fit.

We performed this protocol with a 16.7 ns gate
time [the time producing the minimum error per gate,
Fig. 1(a)] and interleave the targets I, Xπ, and Xπ/2.
For these three gates, the increase in the error per gate,
r = (1 − α)(1 − 1/d), versus the number of interleaved
gates is linear [Fig. 3(a)]. This is consistent with the RB
data that suggests the unitary errors at this gate time
are small.

We then intentionally add over-rotation errors to the
Xπ gate to determine a bound on the sensitivity of this
procedure to amplitude errors. We repeat the IRB pro-
cedure with the Xπ/2 pulse replaced with Xπ/2+ε, where
ε = {π/64, π/128, π/256}. The π/64 and π/128 over-
rotations lead to fidelities that fall off quadratically and
are clearly distinguishable from gates approaching the co-
herence limit. The π/256 appears to have similar errors
to the calibrated gates, giving a bound on the sensitiv-
ity to over-rotation errors. Note that with infinite T1 we
could increase the sensitivity of this scheme by repeating
a larger number of interleaved gates.

In order to quantify the amount of unitary versus non-
unitary errors in the IRB data, we fit the data to both
quadratic and linear models. Using the Akaike informa-
tion criterion (AIC), we determine which model most ac-
curately describes the data [18, 19]. The AIC is a useful
tool for model selection and has been applied to quantum
information previously [20].

For n data points and k fitting parameters, the AIC is
given by

C = n ln
(R
n

)
+ 2k +

2k(k + 1)

n− k − 1
, (7)

where R is the residual sum of squares for the fit. The
final term in this expression is a correction under the
condition that n < 40k. This correction increases the
penalty for overfitting when the sample size is small. We
compute the C for three models: linear, quadratic with
no linear component, and combined linear and quadratic



4

(a)

0 5 10 15 20 25 30
0

0.05

0.1

0.15

Number of Iterated Gates

E
rr
or
P
er
G
at
e

I
X
π/2

Y
π/2

X
π/2
Y
π/2

Product X
π/2
,Y

π/2
X
π/2+π/256

X
π/2+π/128

X
π/2+π/64

(b)

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

Number of Iterated Gates

E
rr
or
P
er
G
at
e

I
X
π/2

Y
π/2

X
π/2
Y
π/2

Product X
π/2
,Y

π/2

FIG. 3. (Color online) Iterative benchmarking data for (a) a
16.7 ns gate and (b) a 10.0 ns gate. The interleaved gates are
the identity (blue squares), Xπ/2 (red circles), Yπ/2 (magenta
diamonds), and Xπ/2Yπ/2 (black stars). The product of r,
the error per gate, for Xπ/2 and Yπ/2 is shown (dashed black
stars) for comparison to the Xπ/2Yπ/2 gate. Also in (a) are
interleaved over-rotations on an Xπ/2 by π/256 (dotted aqua
triangles), π/128 (dashed green triangles), and π/64 (dot-
dashed orange triangles). The error bars here are the 95%
confidence interval of the fit to the IRB data averaged over
35 instances.

(see Table I). The relative probability that the ith model
is correct is

Pi = exp

[
1

2

(
Cmin − Ci

)]
, (8)

with Cmin the smallest AIC value for the set of mod-
els. The model with the best fit to the data will have
Pi = 1. We calculate the relative probabilities for the
three models for iterative randomized benchmarking data
with Xπ/2 pulses with no over-rotation, π/128 and π/256
over-rotations. As detailed in Table I, the calibrated gate
with no added error is best fit by a linear model, as ex-

Fit Function 0 π/256 π/128
bx+ c 1 1.3 × 10−3 2.2 × 10−3

ax2 + b 2.0 × 10−7 0.18 1
ax2 + bx+ c 0.29 1 0.16

TABLE I. AIC values for gates with no over-rotation,
π/256 over-rotation, and π/128 over-rotation for linear and
quadratic model functions.

Error Fit Function a b c
0 bx+ c 4.4 × 10−4 1.1 × 10−3

0 ax2 + c 1.8 × 10−5 1.1 × 10−3

0 ax2 + bx+ c 0.8 × 10−5 2.4 × 10−4 1.1 × 10−3

π/128 bx+ c 1.6 × 10−3 1.1 × 10−3

π/128 ax2 + c 1.1 × 10−4 1.1 × 10−3

π/128 ax2 + bx+ c 1.0 × 10−4 1.6 × 10−4 1.1 × 10−3

π/256 bx+ c 1.0 × 10−3 1.1 × 10−3

π/256 ax2 + c 6.0 × 10−5 1.1 × 10−3

π/256 ax2 + bx+ c 4.2 × 10−5 3.7 × 10−4 1.1 × 10−3

TABLE II. Fit parameters for Xπ/2 gates with zero error,
π/128 and π/256 over-rotation error using the three models
compared using the Akaike information criterion in Table I.

pected when there is little unitary error present. The
gate with π/256 over-rotation is fit best by the combined
model. The preferred model according to the AIC for
the gate with π/128 error is the quadratic model, but
this is in part due to the penalty placed on adding extra
parameters to the fit function. The fit parameters found
for each model are given in Table II.

From this analysis it follows that a π/128 over-rotation
is detectable with this method and that consequently co-
herent rotation errors must be smaller than this value.
We therefore simulate RB in the presence of a system-
atic π/64 over-rotation (easily detectable by IRB were
it present), demonstrating that this is not sufficient to
explain the deviation of the experiment from the sim-
ulated RB [dashed black in Fig. 1(a)]. We conclude
that there is an additional source of decoherence that is
present under the continuous-driving conditions of an RB
experiment. One possible form for such non-unitary er-
ror, would be a dephasing proportional to the Rabi rate
of the drive, as would result from amplitude fluctuations
in the local oscillator, an amplifier, or other microwave
electronics along the control line. Simulated RB in pres-
ence of such noise (green dot-dashed) shows reasonable
agreement with the experimental data. Drive noise with
a 1/f dependence has been measured in flux qubits [21],
and such low freqeuncy noise has been studied in the
context of randomized benchmarking [22, 23]. As the
IRB results for Xπ/2 and Yπ/2 decay at a similar rate to
the identity, however, we suspect that the deviation from
the coherence limit is actually due to pulse reflections
that add incoherently during the randomized sequence of



5

gates in standard RB. The calibration for π/2 compen-
sates for this type of error by repeating the pulse many
times, and thus IRB shows no unitary error.

We notice that there is still a deviation from the best
fit at the shortest gate time in Fig. 1(a). To understand
the origin of this larger error rate we calibrate gates of
length 10 ns and apply IRB. For interleaved I, Xπ/2, and
Yπ/2 the iterative benchmarking data appears to decay
linearly [Fig. 3(b)]. First, we notice that the error of a
Yπ/2 gate is larger than the Xπ/2 gate error. We at-
tribute this to our calibration procedure, in which the
amplitude of the Yπ/2 is assumed to be equal to the Xπ/2

pulse amplitude, but sampling errors in the pulse gen-
eration are not taken into account. Second, when the
interleaved sequence is Xπ/2Yπ/2 (black stars) a larger
decay is observed. This cannot be accounted for by mul-
tiplying (dashed black stars) the individual errors per
gate, r, for the Xπ/2 (red circles) and Yπ/2 (magenta di-
amonds) implying an additional error on the Xπ/2Yπ/2
gate. (Note that, in contrast, no additional error for the
Xπ/2Yπ/2 sequence is observed for the 16.67 ns gate, for
which the product of Xπ/2 and Yπ/2 matches the error
for Xπ/2Yπ/2.) The Xπ/2Yπ/2 is not directly calibrated,
and the presence of unitary errors here indicates a phase
error, despite the fact that SSB modulation ensures the
orthogonality of X and Y pulses by imposing a π/2 phase
shift on the IF signal.

After identifying the phase error, we have developed
an error amplification sequence similar to those of Fig. 2
in order to quantify an X-Y axes error. The sequence is
a repetition of XπYπ within a Ramsey experiment:

Xπ/2 − (Xπ − Yπ)
n − Y−π/2.

The fit function for the error case when X and Y are not
orthogonal is the same function as for a π/2 amplitude
error given in Eq. 1. The gate error measured by this
sequence is 2ε2/3.

We measure this error as a function of the buffer time
between pulses for three different pulse lengths, as shown
in Fig. 4. The IRB data was taken with a 3.33 ns buffer
indicated by the vertical line [with pulse length of 13.33
ns for the data in Fig. 3(a) and 6.67ns for Fig. 3(b)].
The gate error is 2 × 10−5 for the pulse length corre-
sponding to the 16.67 ns gate, and 3×10−3 for the 10 ns
gate. This is consistent with the IRB data that demon-
strates an axis error is present for the 6.67 ns pulse (red
squares in Fig. 4) but is not detected for 13.33 ns (violet
triangles). The gate error decreases as the buffer time
is increased until it levels off by around 15 ns, at which
point the resolution of the fit is not better than 1×10−5.
Because the error decreases with longer buffer time, it is
likely due to distortions that cause successive pulses to
overlap when the time between them is insufficient. Note
that this effect is not typically considered in RB, in which
it is assumed a pulse knows no history of previous pulses
in the sequence. This pulse distortion may be alleviated
by further pulse shaping (as shown in [24] with pulse dis-
tortions on flux qubits) and will be the subject of future
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FIG. 4. (Color online) The gate error measured as a fit to
the error amplification sequence Xπ/2 − (Xπ − Yπ)n − Yπ/2.
The gate error is plotted versus buffer length for three pulse
lengths: 6.67 ns in red squares, 13.33 ns in blue circles, and
20 ns in violet triangles. The buffer length used for the data
taken in Fig. 3 was the shortest one shown here, 3.33 ns (in-
dicated by the solid vertical line).

investigations.

We have introduced a variation of randomized bench-
marking, useful for distinguishing non-unitary from uni-
tary errors, and have validated this method on a super-
conducting qubit experiment. IRB will work for most
physical unitaries without knowledge of the type of error
present. Unitary errors that do not add coherently will
not be detected, but many such unitaries, such as axes
errors, may be rotated within the IRB protocol to errors
that are amplified. Once a unitary error is discovered,
one can develop a calibration sequence to reduce the er-
ror. The calibration sequences will generally be more
experimentally efficient than running the IRB protocol
for every gate, but these sequences must be developed
independently for each type of error. In contrast, IRB
provides a brute force method for identifying small er-
rors without prior knowledge of the type of error. In this
work we have demonstrated IRB on single qubit gates,
but this brute force approach may be useful when ex-
tended to multi-qubit systems. Multi-qubit gates could
be interleaved in the same way without requiring any ad-
ditional post-processing, measurements of correlations,
or even single-shot readout as is the case for alternative
characterization tools such as gate set tomography.

By pushing gate lengths down and paying careful at-
tention to calibrating the resulting unitary errors, we
have achieved a benchmarked single-qubit gate fidelity
of 99.95%. The error rate corresponding to this fidelity
still deviates from the expected coherence by about a fac-
tor of four, but our iterative randomized benchmarking
data indicates that we are not limited by unitary errors
that add coherently. We now seek to identify sources
of non-unitary errors (beyond T1 and T2) that must be
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limiting our fidelity at this time.
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