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We calculate the mean-field phase diagram of a zero-temperature, binary Bose mixture on a
square optical lattice, where one species possesses a non-negligible dipole moment. Remarkably,
this system exhibits supersolidity for anomalously weak dipolar interaction strengths, which are
readily accessible with current experimental capabilities. The supersolid phases are robust, in that
they occupy large regions in the parameter space. Further, we identify a first-order quantum phase
transition between supersolid and superfluid phases. Our results demonstrate the rich features of
the dipolar Bose mixture, and suggest that this system is well-suited for exploring supersolidity in
the experimental setting.

Introduction– The physics of emergent, competing or-
ders is central to the rich phenomenology of many con-
densed matter systems, such as high-Tc superconductors
and frustrated magnets. Recently, exciting developments
in the cooling and trapping of magnetic atoms [1–8] and
diatomic molecules [9–13] offer promise that the physics
of competing orders will be accessible in exceptionally
clean, controllable forms of synthetic quantum matter.
One striking example is the predicted supersolid phase
of strongly dipolar bosons loaded in an optical lattice,
where the system simultaneously exhibits crystalline or-
der and superfluidity. Indeed, checkerboard and stripe
supersolids are predicted to emerge in dipolar lattice sys-
tems, in addition to a variety of structured insulating
phases [14–29]. The study of supersolidity predates ex-
periments with ultracold atoms [30], and was first pro-
posed as a potential manifestation of solidity in superfluid
4He [30, 31]. Despite significant, long-standing interest
in this phase and controversy over its existence [32–36],
a supersolid ground state has yet to be observed in an
experimental setting.

In the context of ultracold atoms in optical lattices,
it is often the case that the long-range dipolar inter-
actions, which are responsible for discrete translational
symmetry breaking and the formation of crystalline or-
der [37–40], are typically very weak, being easily over-
whelmed by atomic motion (hopping), repulsive local in-
teractions, and finite temperature, which favor spatially
uniform phases. Other proposals suggest that stronger
effective dipolar interactions can be achieved by using
large densities, though local interactions can easily de-
stroy supersolid order in this semiclassical regime [41].
Here, we show that the challenge posed by dipolar in-
teractions that are weak compared to the other energy
scales in the system is readily overcome by working with a
binary mixture of bosons, where a non-dipolar species is
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cospatial and interacting with the dipolar system [42, 43].
We calculate the zero-temperature (T = 0) phase

diagram for this system in the experimentally rele-
vant square lattice geometry, using a site-decoupled
Gutzwiller mean-field method [44]. A key parameter in
our theory is the local interspecies interaction strength,
which encourages translational symmetry breaking, and
thus the formation of a supersolid. Our results demon-
strate that the supersolid phase occupies an anomalously
large region in the phase diagram compared to scalar
dipolar Bose gases, and persists even for very weak dipo-
lar interaction strengths. Thus, we propose that the bi-
nary dipolar Bose mixture is a novel system for exploring
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FIG. 1: Schematic showing a mixture of equal-mass dipolar
(blue arrows) and non-dipolar (red circles) bosons in a square
optical lattice. The local intraspecies interactions U are as-
sumed to be species independent, U12 is the local interspecies
interaction strength, and t is the hopping rate. Nearest neigh-
bor (nn), next nearest neighbor, and next-next nearest neigh-
bor dipolar interactions are shown schematically by the black
arrows in the bottom panel. This panel shows the spatial de-
pendence of the superfluid order parameter 〈â1〉 for the dipo-
lar species in the supersolid regime (see text). The ground
state (GS) is a checkerboard supersolid. Two nearly degener-
ate, metastable excited states are depicted as MS1 and MS2.
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the interplay between superfluidity and crystalline order
in the cold atoms context, and is a promising candidate
for the experimental realization of supersolidity.

Dipolar mixture– The tight-binding Hamiltonian for an
equal-mass mixture of dipolar (σ = 1) and non-dipolar
(σ = 2) bosonic atoms reads (see Fig. 1)

Ĥ = −t
∑
〈ij〉σ

(â†σiâσj + h.c.)−
∑
i

µσn̂σi

+
∑
i,σσ′

Uσσ′

2
n̂σi (n̂σ′i − δσσ′) +

∑
i<j

Vij n̂1in̂1j . (1)

Here, âiσ (â†iσ) annihilates (creates) a boson of species σ

at site i, n̂σi = â†σiâσi is the number operator for species
σ on site i, µσ is the global chemical potential for species
σ, and U12 = U21 is the local interspecies interaction
strength. For simplicity, we take the local intraspecies
interaction strengths to be equal, setting U11 = U22 ≡ U .

We consider dipoles aligned perpendicular to the lat-
tice plane, yielding purely repulsive, isotropic dipolar in-
teraction couplings Vij = d2/|ρi − ρj |3, where d denotes
the dipole moment, and ρj are the positions of the dipo-
lar atoms on the square 2D lattice with spacing a; we
rescale all lengths by a. We denote the nearest neigh-
bor dipolar interaction couplings as Vnn. Although the
dipolar interactions are long range, they are significantly
weaker than typical local interaction strengths for the
magnetic atoms Cr, Dy, and Er [3]. For example, the
nearest-neighbor dipolar coupling for 168Er (dEr = 7µB

where µB is the Bohr magneton) in a square lattice with
spacing a = 266 nm is Vnn = d2Er/a

3 ' h × 34 Hz [45],
whereas U is typically many kHz. Vnn should be about
twice as large for Dy atoms under equivalent conditions.
Thus, we can reasonably expect 0.01 . Vnn/U . 0.1 for
atomic systems, with longer range interactions being fur-
ther suppressed by the 1/ρ3 scaling. A key distinction
of our work is that we identify supersolid phases in this
range of weak dipolar interaction strengths for a dipolar
Bose mixture. In contrast, dipolar interaction strengths
of Vnn/U & 0.5 are required to produce supersolidity in
a single species dipolar system [19, 24]. Much stronger
dipolar interactions can be achieved with diatomic, het-
eronuclear molecules, which are being actively pursued
experimentally [12]. However, it is difficult to achieve
large phase space densities with diatomic molecules, and
collisional losses impose considerable constraints on their
utility [46–48].

We employ a Gutzwiller mean-field theory to ob-
tain the T = 0 phase diagram of Eq. (1), and intro-
duce a spatially varying superfluid order parameter 〈âσi〉
for each species σ [44]. Throughout, we find ground
states with either uniform or checkerboard spatial or-
der. When dipolar interactions beyond nearest-neighbor
are considered, our method unveils a manifold of nearly-
degenerate, metastable excited states with supersolid or-
dering at multiple wave vectors [18]. Examples are de-
picted schematically in Fig. 1 for a 4 × 4 unit cell with

FIG. 2: (Left) Ground state phase diagram for U12/U = 0.9
and Vnn/U = 0.1, exhibiting a large supersolid region. The
light blue lobes correspond to Mott insulators with spatially
uniform total density, and checkerboard order in the individ-
ual species. The dark blue lobes correspond to Mott insu-
lators with checkerboard structure in the total density. The
red regions correspond to M0n1B/SS phases, the pink regions
correspond to SS phases, and the white region corresponds
to a spatially uniform superfluid (SF). The solid (dashed)
black lines show second-order (first-order) phase transitions.
(Right) Phase diagram at t = 0, varying U12. All phases are
Mott insulators, with coloring equivalent to that in the left
panel. (See text for details.)

period boundary conditions (MS1 & MS2), and parame-
ters t/U = 0.03, µ1/U = µ2/U = 2.5, U12/U = 0.9, and
Vnn/U = 0.1. The metastable states are gapped from
the ground state by an energy proportional to the dipo-
lar interaction strength. Because uniform and checker-
board orders possess an AB sublattice symmetry, we
consider only the nearest-neighbor part of the dipolar
interactions and specialize to a 2× 2 unit cell with peri-
odic boundary conditions, and focus on the ground state
phases only. Additionally, we fix the chemical potentials
to be equal, µ1 = µ2 ≡ µ. We vary µ as a free parame-
ter in the theory, which controls the total atom number
N =

∑
σi nσi, where nσi = 〈n̂σi〉. Because the dipolar

interactions break the interspecies symmetry of the sys-
tem, this choice produces a number imbalance that scales
with Vnn. The imbalance remains relatively small, how-
ever, for the weak dipolar interactions we consider here.
We focus on the regime 0 < U12 < U , which discourages
spatial demixing of the species.

Results– In the left panel of Fig. 2, we present the
phase diagram obtained for U12/U = 0.9 and Vnn/U =
0.1 as a function of t and µ. For larger t, correspond-
ing to shallower lattice depths, the system is a spatially
uniform superfluid (SF), characterized by non-zero val-
ues of the k-space superfluid order parameters α̃σ(k) =∑
i e
ik·ρi〈âiσ〉 at k = (kx, ky) = (0, 0). As t is de-

creased, the superfluid order parameter(s) acquire weight
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at k = (π, π), signifying the transition to a checkerboard
supersolid phase. Supersolidity can manifest in two dis-
tinct ways in this bosonic mixture: both species can
exhibit supersolid order (the SS phase), or the dipolar
species can transition directly from a SF to a checker-
board Mott insulator while the non-dipolar species re-
mains superfluid. In the latter case, the dipolar species
forms an effective checkerboard potential for the non-
dipolar species due to their mutually repulsive interac-
tions, which results in superfluidity with density-wave
order, or supersolidity, for the non-dipolar species. We
denote the Mott insulator phases by MnAnB

, where nA(B)

are the integer occupations of the A(B) sublattice sites.
This phase diagram possesses a tri-critical point between
the M̄3, SS, and M01/SS phases, though we do not study
this point in detail here.

The SF-SS transition occurs at larger densities, for
µ/U & 1.5, and is second-order, indicated by the solid
black line in Fig. 2. In contrast, the transition to the
M01/SS phase, where the dipolar species is in the M01

phase and the non-dipolar species is SS, occurs at smaller
densities and is strongly first-order, indicated by the
dashed black line in this figure. We note that first-order
transitions between purely insulating and SF phases were
predicted in previous theoretical studies of non-dipolar
Bose mixtures [49–51], and a first-order SF-SS transition
was predicted for hard-core dipolar bosons on a triangu-
lar lattice [28]. The presence of a first-order superfluid-
supersolid phase transition for weak dipolar interactions
is a new feature of the system we consider here.

We demonstrate the first-order nature of the M01/SS
to SF phase transition in Fig. 3, where the k-space su-
perfluid order parameters at k = (π, π) are shown for
µ/U = 1.25 in panel (a) and µ/U = 2.25 in panel (b),
corresponding to horizontal cuts across the left panel of
Fig. 2 (with U12/U = 0.9 and Vnn/U = 0.1). In panel
(b), the order parameters change continuously across
the transition from a M03/M30 insulator, through the
M01/SS and SS phases, to a SF phase. For µ/U = 1.25,
α̃1(π, π) = 0 for all values of t/U , so only α̃2(π, π) is
shown in panel (a). Here, the transition from a M01/M21

insulator to a M01/SS supersolid is second-order, while
the transition to a SF is clearly discontinuous, and first-
order. By smoothly following our ground state solutions
from either side of the transition region, we find that
α̃2(π, π) is multivalued for 0.04 . t/U . 0.06; this is
indicative of hysteresis, which is a feature of first-order
phase transitions. Notice that a first-order transition
also exists between the M02/SS and SS phases, shown
in Fig. 2, though the hysteresis area of this transition is
notably smaller.

For sufficiently small t, corresponding to deeper lat-
tices, both species enter Mott insulating phases, indi-
cated by the blue lobes in the left panel of Fig. 2. The
larger, light blue lobes correspond to insulating phases
with a spatially uniform density of n atoms per site.
When n is even, the individual species form checkerboard
Mott insulators, where n1A + n2A = n1B + n2B = n.

FIG. 3: (a) Supersolid order parameter as a function of t/U
for Vnn = 0.1U , U12 = 0.9U , and µ = 1.25U . (b) Same
as top, except for µ = 2.25U . The blue regions correspond
to Mott insulators, the red regions correspond to M0n1B/SS
phases, the pink corresponds to a SS, and the white regions
correspond to uniform superfluids (SF). All transitions are
second-order except the transition to a SF in (a), which is
strongly first-order. The double-valued order parameter is
characteristic of hysteresis at a first-order transition.

When n is odd, degeneracies exist between insulating
phases with different combinations of nσA and nσB . For
example, the first Mott lobe in Fig. 2 corresponds to
n = 1, and has a degeneracy between the M00/M11 and
M01/M10 phases. The third Mott lobe corresponds to
n = 3, and has a degeneracy between the M01/M32 and
M02/M31 phases. These phases are labeled M̄1 and M̄3,
respectively, in Fig. 2. We note that this degeneracy is
a consequence of our choice µ1 = µ2, and is broken if we
instead enforce equal total atom number, N1 = N2. In-
terestingly, the Mott lobes with uniform n are separated
by smaller lobes, wherein the dipolar species forms a
checkerboard insulator and the non-dipolar species forms
a uniform insulator, resulting in a Mott insulator phase
with checkerboard ordering in the total density.

To explore this further, we calculate the t = 0 phase
diagram as a function of µ and U12 for Vnn/U = 0.1,
shown in the right panel of Fig. 2. Unlike the single
species dipolar system, the Mott physics of the dipolar
mixture is quite rich, and exhibits an interesting array of
insulating phases. In particular, the diagram shows that
Mott insulating phases with checkerboard order in the
total density (dark blue regions) are sizable for smaller
U12, and shrink linearly as U12 → U . For t > 0, these
lobes melt into M0n1B

/SS supersolid phases. At exactly
U12 = U , these phases vanish, and the system only sup-
ports insulting phases with uniform total density.

The tendency for ground states to acquire checker-
board density-wave order can be understood intuitively
for this system, as this minimizes the nearest neigh-
bor contributions to the dipolar interaction energy in
a square lattice geometry. This ordering is preferred
by the interspecies interactions (U12 > 0), as well; the
right panel of Fig. 2 shows that all insulating phases at
U12/U > 0.6 have checkerboard ordering in the individ-
ual species. The kinetic energy and local intraspecies in-
teractions, however, prefer spatially uniform phases. We
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FIG. 4: Ground state phase diagram for U12/U = 0.99 and
Vnn/U = 0.01, exhibiting supersolidity for very weak dipolar
interactions. The light blue lobes correspond to Mott insu-
lators with spatially uniform total density, the red regions
correspond to M0n1B/SS phases, the pink regions correspond
to SS phases, and the white region corresponds to a spatially
uniform superfluid. The solid (dashed) black lines in the main
panel show second-order (first-order) phase transitions. The
lower (upper) inset shows the supersolid order parameters for
t/U = 0.8 at a cut near µ/U = 3 (µ/U = 2). In the insets, the
solid line corresponds to the dipolar species (σ = 1) and the
dashed line corresponds to the non-dipolar species (σ = 2).
The first-order phase transition is apparent as a discontinuity
in the order parameter near µ/U ' 3.06 in the upper inset.

thus expect supersolidity to vanish as the dipolar inter-
actions weaken, unless t is sufficiently small and U12 is
comparable to U . This suggests that supersolidity may
persist for very small dipolar interaction strengths, pro-
vided t and 1− U12/U are sufficiently small.

In Fig. 4, we plot the phase diagram for U12/U = 0.99
and Vnn/U = 0.01, corresponding to very weak dipo-
lar interactions, as a function of t and µ. We note that
very small M01/M22 and M02/M32 Mott lobes exist near
µ/U = 2 and µ/U = 3 and t ∼ 0, respectively, but are
omitted from this diagram due to their vanishingly small
size. Strikingly, supersolid regions exist at small t, be-
tween adjacent checkboard Mott lobes, and still occupy
a significant region of the phase diagram. The insets in
Fig. 4 show the checkerboard supersolid order parameter
α̃i(π, π) for the dipolar species (solid black lines) and the
non-dipolar species (dashed black lines) for t/U = 0.8.
The lower inset corresponds to a cut near µ/U = 2,
shown by the vertical black line to the left of the in-
set. Here, the phase transitions from Mott insulator to
supersolid are all continuous, and second-order. The up-
per inset corresponds to a cut near µ/U = 3. Here,
the M̄3-SS transition is second-order, while the transi-
tion from M02/SS to SS is discontinuous, and first-order;
this is consistent with the phase diagram in Fig. 2 for
Vnn/U = 0.1. Additionally, the Mott insulator to SF
transitions are first-order for larger t, as indicated by the
dashed black lines near the tips of the Mott lobes. This

is consistent with the findings of Refs. [49–51], where a
first-order superfluid-insulator transition is predicted for
a non-dipolar Bose mixture.

Though our discussion has focused on interspecies in-
teractions 0 < U12 < U , we note that supersolidity per-
sists for U12 > U as well. We have performed anal-
ogous calculations to those described above, but with
µ1 > µ2 chosen to balance the total particle number. The
Mott insulator states in this case are of the checkerboard
form M0n/Mn0 for all non-vanishing (nearest-neighbor)
dipolar interaction strengths. For Vnn/U = 0.01 and
U12/U = 1.01, we find SS regions between the Mott
lobes at small t, similar to those shown in Fig. 4. For
Vnn/U = 0.1 and U12/U = 1.1, we find a large SS region
that extends to larger t, well beyond the Mott lobes.
While increasing U12 will eventually lead to phase sepa-
ration at finite t, the Mott lobes will possess checkerboard
order for any U12 > 0, and we thus expect SS regions to
exist between these Mott lobes for sufficiently small t.

Discussion– In an experiment, the dipolar Bose mix-
ture will inevitably have unequal masses, and thus
species-dependent hopping. We note that the supersolid
regions span a large range of t values, so supersolidity
should persist for moderate differences in the species-
dependent hopping rates. Additionally, the presence of
low-lying metastable states at energies ∼ Vnn above the
ground state suggests that very low temperatures will be
necessary to realize pure checkerboard ground states. For
the Er example discussed above, with Vnn ' h × 34 Hz,
temperatures on the order of a few nK are sufficient to
discourage population of these metastable states. Still,
we note that these excited states are supersolid in nature,
and should permit superfluid transport and show signa-
tures of crystalline order in Bragg spectroscopy [52, 53] at
super-critical temperatures. In previous theoretical stud-
ies of single species dipolar systems, beyond mean-field
effects were found to enhance the Mott lobes, and only
slightly diminish the supersolid regions [25, 54, 55]. We
therefore expect the supersolid phases we find here to be
robust against quantum effects at intermediate densities,
even for Vnn/U = 0.01 (c.f. Fig. 4).

The subject of supersolidity in condensed matter sys-
tems has a rich history, and remains an active area of re-
search [56]. Despite evidence of supersolid phases in non-
equilibrium systems [40], the observation of this phase as
a ground state remains an open problem. Lattice ana-
logues of supersolid phases in long-range interacting sys-
tems are a promising avenue to explore this physics, as
the lattice naturally enhances correlations by suppress-
ing the kinetic energy, while the long range interactions
introduce a natural length scale for breaking discrete spa-
tial symmetry. Here, we have shown that a dipolar Bose
mixture on a square lattice is a promising candidate for
realizing supersolid ground states, even in the presence
of anomalously weak dipolar interaction strengths.
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