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Abstract

When an atom is strongly coupled to a cavity, the two systems can exchange a single photon

through a coherent Rabi oscillation. This process enables precise quantum-state engineering and

manipulation of atoms and photons in a cavity, which play a central role in quantum information

and measurement. Recently, a new regime of cavity QED has been reached experimentally where

the strength of the interaction between light and artificial atoms (qubits) becomes comparable to

the atomic transition frequency or the resonance frequency of the cavity mode. Here we show that

this regime can strongly modify the concept of vacuum Rabi oscillations, enabling multiphoton

exchanges between the qubit and the resonator. We find that experimental state-of-the-art circuit-

QED systems can undergo two- and three-photon vacuum Rabi oscillations. These anomalous Rabi

oscillations can be exploited for the realization of efficient Fock-state sources of light and complex

entangled states of qubits.
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I. INTRODUCTION

Light-matter interaction in the strong-coupling regime is a coherent reversible process in

which a photon is absorbed and re-emitted by an electronic transition at a rate equal to the

coupling energy divided by the Planck constant [1, 2]. Reaching the light-matter strong-

coupling regime has been a major focus of research in atomic physics and quantum optics for

several decades and has driven the field of cavity quantum electrodynamics (cQED) [3, 4].

The strong-coupling regime has been observed, both in the time and frequency domain, in a

variety of systems [5], when an electronic transition is resonantly coupled to a cavity (optical

resonator) and the coupling rate exceeds the rates of relaxation and decoherence of both

the electronic transition and the field. Cavity QED effects with individual qubits have been

intensively studied in solid state systems by replacing natural atoms with artificial atoms,

such as quantum dots [6, 7] and Josephson circuits [8–11]. The strong-coupling regime, when

reached with a single qubit, enables a high degree of manipulation and control of quantum

systems [12]. For example, by exploiting the strong-coupling regime of cavity QED, the

preparation and measurement of arbitrary quantum states in a completely controlled and

deterministic manner has been achieved [13, 14] and “Schrödinger’s cat” states of radiation

have been prepared and reconstructed [15, 16]. Basic steps in quantum information process-

ing, including the deterministic entanglement of atoms and the realization of quantum gates

using atoms and photons as quantum bits have also been demonstrated [2, 17, 18].

Recently a new regime of cavity QED, where the coupling rate becomes an appreciable

fraction of the unperturbed frequency of the bare systems, has been experimentally reached

in a variety of solid state systems [19–27]. In this so-called ultrastrong-coupling (USC)

regime, the routinely-invoked rotating wave approximation (RWA) is no longer applicable,

and the antiresonant terms in the interaction Hamiltonian significantly change the standard

cavity-QED scenarios (see, e.g., Refs. [28–36]). Although in principle counter-rotating terms

exist in any real light-matter interaction Hamiltonian, their effects become prominent only

in the USC limit [37]. Usually, light-matter USC is reached by coupling the resonator with a

large number of molecules or more generally electronic transitions. USC with a single qubit

has been achieved only by using superconducting circuits based on Josephson junctions,

which exhibit macroscopic quantum coherence and giant dipole moments as artificial atoms

[20, 21, 38].

2



One interesting feature of the USC regime is that the number of excitations in the cavity-

emitter system is no longer conserved, even in the absence of drives and dissipation. Mea-

surements on a superconducting circuit QED system in the USC regime have shown clear

evidence of this feature [21]. Specifically, tuning the qubit transition frequency (by adjust-

ing the external flux bias threading the qubit), and measuring the cavity transmission, an

anticrossing arising from the coupling between states with a different number of excitations

has been observed. In particular, the measurements evidence the resonant coupling of the

states |φ1〉 = |g, 0, 0, 1〉 and |φ2〉 = |e, 1, 0, 0〉, where the kets indicate the states of the qubit

and of the first three resonator modes. This level anticrossing occurs when ωq + ωr
1 ≈ ωr

3,

where ωq is the transition frequency of the artificial atom and ωr
m are the resonance frequen-

cies of the cavity modes. The dominant contributions to the resulting eigenstates |ψ±〉 are

approximate symmetric and antisymmetric superpositions of the degenerate states |φ1〉 and

|φ2〉. The coupling between these two states, determining the anticrossing, originates from

counter-rotating terms in the interaction Hamiltonian which do not conserve the number

of excitations. Indeed, the resulting effect of the action of these counter-rotating terms on,

e.g., the |φ2〉 state is the annihilation of two excitations, one in the n = 1 mode and one in

the qubit, and the simultaneous creation of a single excitation in the n = 3 mode. Such a

process can result only from counter-rotating terms, but it would not be possible within the

RWA.

Very recently it has been shown [39] that, when the frequency of the cavity field is near

one-third of the atomic transition frequency, there exists a resonant three-photon coupling

via intermediate states connected by counter-rotating processes.

The resonant quantum Rabi oscillations, occurring when the atom and the cavity mode

can exchange one excitation quantum in a reversible way, play a key role in the manipulation

of atomic and field states for quantum information processing [12]. Here, we show that a

system consisting of a single qubit ultrastrongly coupled to a resonator can exhibit anomalous

vacuum Rabi oscillations where two or three photons are jointly emitted by the qubit into

the resonator and re-absorbed by the qubit in a reversible and coherent process. We focus

on the case of a flux qubit coupled to a coplanar-waveguide resonator, a system where the

USC regime with a single artificial atom has been demonstrated [21]. We find that this

effect can be observed at coupling rates of the same order of those already reached in these

systems [21, 38].
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II. DISSIPATION AND PHOTODETECTION IN THE USC REGIME

In order to demonstrate multiphoton quantum Rabi oscillations in USC cavity QED, we

calculate the time evolution of the mean output photon fluxes and higher-order normally-

ordered photon correlations.

It has been shown that, in the USC regime, the usual normally-ordered correlation func-

tions fail to describe the output photon emission rate and photon statistics. Clear evidence

of this is that the standard input-output relations predict, even for a vacuum input and the

system in the ground state, a finite output photon flux proportional to the average number

of cavity photons [32, 40, 41], i.e., 〈Â−out(t)Â
+
out(t)〉 ∝ 〈â†(t)â(t)〉, where Â+

out(t) and Â−out(t)

are the positive- and negative-frequency components of the output field operator, while â

and â† are the destruction and creation operators for cavity photons. A solution to this

problem has been proposed in Ref. [32]. Considering for the sake of simplicity a single-mode

resonator, it is possible to derive the correct output photon emission rate and correlation

functions by expressing the cavity electric-field operator X̂ = â + â† in the atom-cavity

dressed basis. Once the cavity electric-field operator has been expressed in the dressed ba-

sis, it has to be decomposed in its positive- and negative-frequency components X̂+ and

X̂− [32]. Expanding the X̂ operator in terms of the energy eigenstates |j〉 (with h̄ωj the

corresponding eigenvalues) of the system Hamiltonian Ĥ, one finds the relations

X̂+ =
∑
j,k>j

Xjk|j〉〈k| ; X̂− = (X̂+)†, (1)

where Xjk ≡ 〈j|(â† + â)|k〉 and the states are labeled such that ωk > ωj for k > j. The

resulting positive frequency output operator can be expressed as

Â+
out(t) = Â−in(t)−√κC0X̂

+, (2)

where κ is the loss rate of the resonator due to the coupling to the external in-out modes

and C0 is a constant proportional to the zero-point fluctuation amplitude of the resonator

[42]. Two aspects of these results are noteworthy: first of all, we note that in the USC

regime, one correctly obtains X̂+|0〉 = 0 for the system in its ground state |0〉 in contrast

to â|0〉 6= 0. Moreover, we note that the positive-frequency component of X̂ is not simply

proportional to the photon annihilation operator â. As a consequence, for arbitrary degrees

of light-matter interaction, the output photon flux emitted by a resonator can be expressed as
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Φout = κ〈X̂−X̂+〉. Similarly, the output delayed coincidence rate is proportional to the two-

photon correlation function 〈X̂−(t)X̂−(t+ τ)X̂+(t+ τ)X̂+(t)〉. In quantum optics, it is well

known that the signal directly emitted from the qubit is proportional to 〈σ̂+σ̂−〉. In circuit

QED systems, this emission can be detected by coupling the qubit to an additional microwave

antenna [14]. Indeed, in the USC regime the qubit emission rate becomes proportional to

the qubit mean excitation number 〈Ĉ−Ĉ+〉, where Ĉ± are the qubit positive and negative

frequency operators, defined as Ĉ+ =
∑

j,k>j Cjk|j〉〈k| and Ĉ− = (Ĉ+)†, with Cjk ≡
〈j|(σ̂− + σ̂+)|k〉.

In order to properly describe the system dynamics, including dissipation and decoherence

effects, the coupling to the environment needs to be considered. We adopt the master-

equation approach. However, in the USC regime the description offered by the standard

quantum-optical master equation breaks down [43]. Following Ref. [41, 44], we express

the system-bath interaction Hamiltonian in the basis formed by the energy eigenstates of

Ĥ. We consider T = 0 temperature reservoirs (the generalization to T 6= 0 reservoirs

is straightforward). By applying the standard Markov approximation and tracing out the

reservoir degrees of freedom, we arrive at the master equation for the density matrix operator

ρ̂(t),

˙̂ρ =
i

h̄
[ρ̂(t), Ĥ] + Ldampρ̂(t) + Lφρ̂(t) , (3)

where Ldampρ̂(t) =
∑

j,k>j(Γ
jk
κ + Γjkγ )D[|j〉〈k|]ρ̂(t) with D[Ô]ρ̂ = 1

2
(2Ôρ̂Ô†− ρ̂Ô†Ô− Ô†Ôρ̂),

describes dissipation effects arising from the resonator and qubit reservoirs. These cause

transitions between eigenstates at rates

Γjkκ = κ|〈j|X̂|k〉|2, (4)

Γjkγ = γ|〈j|σ̂x|k〉|2, (5)

where κ and γ are decay rates, here assumed to be spectrally constant, induced by the

resonator and qubit reservoirs. Pure dephasing effects affecting the qubit are described in

Eq. (3) by the last term Lφρ̂(t) = D[
∑

j Φj|j〉〈j|]ρ̂(t), where Φj =
√
γφ/2〈j|σ̂z|j〉, and γφ is

the pure dephasing rate. Note that only the most relevant diagonal contributions have been

included.
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III. RESULTS

Here we study a flux qubit coupled to a coplanar resonator in the USC regime. For suitable

junctions, the qubit potential landscape is a double-well potential, where the two minima

correspond to states with clockwise and anticlockwise persistent currents ±Ip [10, 11]. When

the flux offset δΦx ≡ Φext−Φ0/2 = 0, where Φext is the external flux threading the qubit and

Φ0 is the flux quantum, the lowest two energy states are separated by an energy gap ∆. In the

qubit eigenbasis, the qubit Hamiltonian reads Ĥq = h̄ωqσ̂z/2, where h̄ωq =
√

∆2 + (2IpδΦx)2

is the qubit transition frequency, which can be adjusted by an external flux bias. We note

that the two-level approximation is well justified because of the large anharmonicity of this

superconducting artificial atom. The resonator modes are described as harmonic oscillators,

Ĥm = h̄ωr
mâ
†
mâm, where ωr

m is the resonance frequency, m is the resonator-mode index and

â†m (âm) is the bosonic creation (annihilation) operator for the m-th resonator mode. We

will consider λ/2 and λ/4 resonators. Then, the quantum circuit can be described by the

following extended Rabi Hamiltonian

Ĥ = Ĥq +
∑
m

[Ĥm + h̄gmX̂m(cos θ σ̂x + sin θ σ̂z)]. (6)

Here, X̂m = âm + â†m, σ̂x,z denote Pauli operators, gm is the coupling rate of the qubit to

the m-th cavity mode and the flux dependence is encoded in cos θ = ∆/ωq. The operator σ̂x

is conveniently expressed as the sum of the qubit raising (σ̂+) and lowering (σ̂−) operators,

which in the Heisenberg picture and for gm = 0 oscillate as exp (iωqt) (negative frequency)

and exp (−iωqt) (positive frequency) respectively. Thus, in contrast to the Jaynes-Cummings

(JC) model [45], the Hamiltonian in Eq. (6) explicitly contains counter-rotating terms of the

form σ̂+â
†
m, σ̂−âm, σ̂zâ

†
m, and σ̂zâm. Considering only one resonator mode and a flux offset

δΦx = 0, the Hamiltonian in Eq. (6) reduces to the standard Rabi Hamiltonian.

A. Two-photon quantum Rabi oscillations

We first consider the case of a flux qubit coupled to a λ/2 superconducting transmission-

line resonator with resonance frequencies ωr
m = mπc/L, where L is the resonator length.

We use the qubit parameters ∆/h = 2.25 GHz and 2Ip = 630 nA, as in Ref. [21]. We are

interested in the situation where the qubit transition energy is approximately twice that
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FIG. 1. (Color online) (a) Sketch of the distribution of the first three resonator modes (m = 1, 2, 3)

of a transmission-line λ/2 resonator. The resonance frequency of the first mode (blue solid curve)

is set to ωr
1/2π = 4 GHz. The qubit is positioned at the center of the resonator, so that it does not

interact with the m = 2 (red dashed curve) and is off-resonance to the m = 3 (green dotted-dashed

curve) mode. The bare resonance frequencies of the second and third modes are ωr
2 = 2ωr

1 and

ωr
3 = 3ωr

1, respectively. Qubit parameters are ∆/h = 2.25 GHz and 2Ip = 630 nA. (b) Frequency

differences ωi,0 = ωi − ω0 for the lowest energy dressed states as a function of the qubit transition

frequency ωq (which can be tuned by changing the external flux bias δΦx) for the JC model (red

dashed curves) and the extended Rabi Hamiltonian (blue solid curves). We consider a normalized

coupling rate g1/ω
r
1 = 0.15 between the qubit and the resonator. In both cases the ground state

level is not displayed. (c) Avoided level crossing (blue solid curves) resulting from the coupling

between the states |e, 0〉 and |g, 2〉 due to the presence of counter-rotating terms in the system

Hamiltonian. The energy splitting reaches its minimum at ωq/2π ≈ 7.97 GHz ≈ 2(ωr
1/2π). The

anticrossing is not present in the JC model (red dashed lines), since it arises from the coherent

coupling between states with a different number of excitations.
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of the fundamental resonator mode: ωq ≈ 2ωr
1. We consider the qubit to be positioned at

the center of the resonator, so that it does not interact with the resonator mode m = 2

(see Fig. 1a). The other resonator modes are much higher in energy, detuned with respect

to the qubit transition frequency by an amount significantly larger than the coupling rate:

(ωr
m−ωq) ≈ (m−2)ωr

1, providing only moderate energy shifts for the coupling rates gm/ω
r
m
<∼

0.2 considered here. We will thus only take into account the interaction of the qubit with

the fundamental resonator mode. We diagonalize numerically the Hamiltonian from Eq. (6)

and indicate the resulting energy eigenvalues and eigenstates as h̄ωi and |i〉 with i = 0, 1, . . . ,

choosing the labeling of the states such that ωk > ωj for k > j.

Figure 1b shows the frequency differences ωi,0 = ωi − ω0 for the lowest energy states as

a function of the qubit transition frequency, which can be tuned by changing the external

flux bias δΦx. The red dashed curves correspond to calculations obtained neglecting all

the counter-rotating terms (JC model). We observe a spectrum with two large-splitting

anticrossings around ωq ≈ ωr1 which appear both in the dashed and the continuous curves.

In the JC picture, they correspond to the resonant coupling between states with the same

number of excitations. The lowest energy avoided crossing results from the coherent coupling

of the states |e, 0〉 and |g, 1〉, where g (e) indicates the ground (excited) state of the qubit

and the second entry in the kets represents the photon number. When the splitting reaches

its minimum, the resulting system eigenstates are

1√
2

(|e, 0〉 ± |g, 1〉) . (7)

The higher-energy large avoided crossing in the plot corresponds to the second rung of the

JC ladder, arising from the coupling of |e, 1〉 and |g, 2〉. Only small quantitative deviations

between the eigenenergies in the JC and in the extended Rabi model can be observed.

When the counter-rotating terms are taken into account, the states |i〉 are no longer

eigenstates of the total number of the excitation operator N̂exc = â†a+ σ̂+σ̂−. For example,

the system ground state can be expressed as a superposition |0〉 =
∑

n c
0
gn|g, n〉 + c0

en|e, n〉
of bare states also involving nonzero excitations. Of course, when the normalized coupling

g1/ω
r
1 � 1, only the coefficient c0

g0 is significantly different from zero. Moreover, for θ = 0

parity is conserved [46, 47] and only states with an even number of excitations contribute

to |0〉. The non-conservation of the total excitation number also affects the excited dressed

states |j〉 =
∑

n c
j
gn|g, n〉+ cjen|e, n〉. As a consequence, the dressed states |1〉 and |2〉 at the
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FIG. 2. (Color online) Coupling between the bare states |e, 0〉 and |g, 2〉 via the intermediate states

|g, 1〉 and |e, 1〉. The red dashed arrows and the solid black arrows indicate, respectively, the two

different processes describing the two-photon resonant coupling between |e, 0〉 and |g, 2〉.

minimum splitting do not correspond to the simple JC picture of Eq. (7).

The continuous line levels in Fig. 1b also display a smaller amplitude avoided crossing

when ωq ≈ 2ωr
1. Observing that just outside this avoided-crossing region one level remains

flat as a function of the flux offset δΦx with energy ω ≈ 2ωr
1 while the other shows a linear

behavior with ωq, the splitting originates from the hybridization of the states |e, 0〉 and

|g, 2〉. This avoided crossing behavior is better shown in Fig. 1c, and the resulting states

are well approximated by the states 1√
2
(|e, 0〉 ± |g, 2〉). This splitting is not present in the

RWA, where the coherent coupling between states with a different number of excitations is

not allowed, nor does it occur with the standard Rabi Hamiltonian (θ = 0).

Following the procedure described in Ref. [39], such a two-photon coupling between the

bare states |e, 0〉 and |g, 2〉 can be analytically described by an effective Hamiltonian (see

Appendix). As displayed in Fig. 2, the coupling between |e, 0〉 and |g, 2〉 can only occur via

the intermediate states |g, 1〉 and |e, 1〉. Indeed, if the system is initially prepared in the state

|e, 0〉, two different processes can occur: either (i) the counter-rotating term â†1σ̂z enables a

virtual transition |e, 0〉 → |e, 1〉, and then the term â†1σ̂− leads to the final transition to the

state |g, 2〉; or (ii) the term â†1σ̂− enables the transition |e, 0〉 → |g, 1〉 which is followed by

the virtual transition |g, 1〉 → |g, 2〉 induced by the term â†1σ̂z.

In order to obtain an analytical description of the effective coupling, we first reduce the

extended Rabi Hamiltonian to the truncated Hilbert space composed of the bare states

|e, 0〉, |g, 1〉, |e, 1〉, and |g, 2〉. The matrix form of the reduced Hamiltonian becomes
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Ĥr

h̄
=


ωq

2
g1 cos θ g1 sin θ 0

g1 cos θ ωr
1 − ωq

2
0 −

√
2g1 sin θ

g1 sin θ 0 ωr
1 + ωq

2

√
2g1 cos θ

0 −
√

2g1 sin θ
√

2g1 cos θ 2ωr
1 − ωq

2

 , (8)

where the order of columns and rows is |e, 0〉, |g, 1〉, |e, 1〉, and |g, 2〉.
Near the two-photon resonance when ωq ≈ 2ωr

1, the intermediate states |g, 1〉 and |e, 1〉
can be adiabatically eliminated (see Appendix A), leading to the effective Hamiltonian

Ĥeff =

(
ωq

2
+

2g2
1

ωq

cos(2θ)

)
|e, 0〉〈e, 0|

+

(
2ωr

1 −
ωq

2
− 4g2

1

ωq

cos(2θ)

)
|g, 2〉〈g, 2|

− Ω
(2ph)
eff (|e, 0〉〈g, 2|+ |g, 2〉〈e, 0|),

(9)

which describes the effective two-photon coupling between |e, 0〉 and |g, 2〉, with an effective

two-photon Rabi frequency

Ω
(2ph)
eff ≡ 2

√
2g2

1 sin(2θ)

ωq

. (10)

A key theoretical issue of the USC regime is the distinction between bare (unobservable)

excitations and physical particles that can be detected. For example, when the counter-

rotating terms are relevant, the mean photon number in the system ground state is different

from zero: 〈0|â†â|0〉 6= 0. However, these photons are actually virtual since they do not

correspond to real particles that can be detected in a photon-counting experiment. Accord-

ing to this analysis, the presence of an n-photon contribution in a specific eigenstate of the

system does not imply that the system can emit n photons when prepared in this state. In

order to fully understand and characterize this avoided crossing not present in the RWA, a

more quantitative analysis is required. In the following, we therefore calculate the output

signals and correlations which can be measured in a photodetection experiment.

In order to probe the anomalous avoided crossing shown in Figs. 1b and 1c, we consider

the case where the qubit is directly excited via a microwave antenna by an optical Gaussian

pulse. The corresponding driving Hamiltonian is

Ĥd = E(t) cos(ωt)σ̂x , (11)

where E(t) = A exp [−(t− t0)2/(2τ 2)]/(τ
√

2π). Here, A and τ are the amplitude and the
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hĈ�Ĉ+i
G(2)

0 0.1 0.2 0.3

1

2

κ t

FIG. 3. (Color online) Time evolution of the cavity mean photon number 〈X̂−X̂+〉 (blue solid

curve), the qubit mean excitation number 〈Ĉ−Ĉ+〉 (red dot-dashed curve), and the zero-delay

two-photon correlation function G(2)(t) (dashed black curve) after the arrival of a π-like Gaussian

pulse initially exciting the qubit (the black vertical line on the far left shows the wavepacket peak

arrival time). The amplitude and the central frequency of the pulse are A/ωr
1 = 8.7 × 10−2 and

ω = (ω3,0 +ω2,0)/2, respectively. After the arrival of the pulse, the system undergoes vacuum Rabi

oscillations showing the reversible excitation exchange of two photons between the qubit and the

resonator. Initially, 〈X̂−X̂+〉 and G(2)(t) almost coincide. This perfect two-photon correlation is a

signature that photons are actually emitted in pairs. The resonator and qubit damping rates are

κ/ωr
1 = 1.8× 10−4 and γ/ωr

1 = 1.8× 10−4, respectively.

standard deviation of the Gaussian pulse, respectively. We consider the zero-detuning case

by choosing the flux offset δΦx corresponding to the qubit frequency ωq/2π ' 7.97 GHz,

where the splitting in Fig. 1b is at its minimum. The central frequency of the pulse has

been chosen to be in the middle of the two split transition energies: ω = (ω3,0 + ω2,0)/2.

The cavity output photon flux and the photon flux emitted by the qubit directly coupled

to a microwave antenna are proportional to 〈X̂−X̂+〉 and 〈Ĉ−Ĉ+〉, respectively. Figure 3

displays the dynamics of these two quantities and of the zero-delay two-photon correlation

11



Pan4

0 0.1 0.2 0.3

1

2

κ t

<
X

- X
+ >

0 0.1 0.2 0.3

0.5

1

κ t

<
C

- C
+ >

0 0.1 0.2 0.3

1

2

κ t

<
X

- X
- X

+ X
+ >

(a)

(c)

(b)
hX

�
X

+
i

 t

 t

 t

hC
�

C
+
i

hX
�

X
�

X
+
X

+
i

�� = 0

�� = 300 �

�� = 0

�� = 300 �

�� = 0

�� = 300 �

FIG. 4. (Color online) Effects of strong pure dephasing (dashed curves) on the dynamics of (a) the

mean photon number 〈X̂−X̂+〉, (b) the effective qubit population 〈Ĉ−Ĉ+〉, and (c) the two-photon

correlation function 〈X̂−X̂−X̂+X̂+〉. Calculations have been performed with the same parameters

as in Fig. 3 with the addition of a pure dephasing rate γφ = 300 γ. Solid curves display numerical

results obtained in the absence of pure dephasing (γφ = 0). It can be observed that the physics of

multiphoton vacuum Rabi oscillations is not significantly altered by the effects of pure dephasing.

function G(2)(t) = 〈X̂−(t)X̂−(t)X̂+(t)X̂+(t)〉 (dashed black curve) after the arrival of a π-

like pulse initially exciting the qubit described by the Hamiltonian (11). Calculations in

Fig. 3 have been carried out in the absence of pure dephasing (γφ = 0). Results for γφ 6= 0

are shown in Fig. 4. Vacuum Rabi oscillations showing the reversible excitation exchange

between the qubit and the resonator are clearly visible in Fig. 3. The pulse time-width is
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not much narrower than the Rabi period, so the qubit excitation is partially transferred to

the cavity during the pulse arrival. Therefore, the first peak of the qubit mean excitation

number in Fig. 3 is slightly lower than the second one. We observe that the mean intracavity

physical photon number at its first maximum is very close to two. This is a first hint that

when the qubit is in the ground state the resonator mode acquires two photons. However,

the output measured signals are proportional and not equal to 〈X̂−X̂+〉, so from this kind

of measurements it is not possible to certify that the qubit and the resonator are actually

exchanging two quanta. We also observe that, at early times, 〈X̂−X̂+〉 and G(2)(t) almost

coincide. This is a signature of perfect two-photon correlation: the probability of the system

to emit one photon is equal to the probability to emit a photon pair. During the system

evolution, higher values of the local minima of 〈X̂−X̂+〉 are observed due to the decay from

the two-photon state to the one-photon state (out of resonance with respect to the qubit)

caused by the photon escape from the resonator. However, the two-photon correlation

function 〈X̂−(t)X̂−(t)X̂+(t)X̂+(t)〉 goes almost to zero every time the qubit is maximally

excited. This different behavior indicates that the qubit does not absorb single photons

but only photon pairs. The period of a complete population oscillation is 2π/Ω
(2ph)
eff , where

2Ω
(2ph)
eff is the minimum splitting in Fig. 1c.

Ordinary quantum vacuum oscillations have already been demonstrated in circuit-QED

systems (e.g., [10, 48]). The dynamics observed in Fig. 3 can also be obtained by first

preparing the qubit in its excited state by employing a π pulse. Then the π pulse can be

followed by a shift pulse which brings the qubit into resonance with the resonator for the

desired duration in order to observe the coupled dynamics as in Ref. [48]. If the shift pulse

has a duration δt = 2π/Ω
(2ph)
eff , the Fock state n = 2 is directly generated. After the switch-

off of the shift pulse, the qubit is out of resonance with the resonator and the Fock state can

escape from the cavity through an input-output port and be detected. Hence two-photon

Rabi oscillations can be exploited for fast and efficient generation of two-photon states.

The influence of strong pure dephasing effects is shown in Fig. 4. Calculations have been

performed with the same parameters used in Fig. 3 with the addition of a pure dephasing

rate γφ = 300γ. Figure 4 compares the dynamics of the mean photon number (a), the qubit

effective population (b), and the two-photon correlation (c) in the absence (continuous

curves) and in the presence (dashed curves) of pure dephasing. The figure shows that

strong pure dephasing does not significantly alter the physics of multiphoton vacuum Rabi

13



oscillations and the main effect of dephasing is to make the excitation pulse less effective.

B. Three-photon quantum Rabi oscillations

Very recently, it has been shown [39] that the strong coupling of a single qubit with

three photons can be achieved in the USC regime when the frequency of the cavity field is

near one-third of the atomic transition frequency. In this case, parity-symmetry breaking

is not required and this effect can occur also at θ = 0. Hence, it could be observed also in

systems like natural atoms or molecules displaying parity symmetry. One possible problem

with this configuration is that the qubit can also interact resonantly with the one-photon

state of the m = 3 mode of the resonator. In this case the qubit would interact with both

one- and three-photon states. We show that the undesired one-photon resonant coupling

of the qubit with a resonator mode can be avoided by considering a λ/4 resonator, whose

resonance frequencies are ωr
m = (2m−1)πc/2L, with m = 1, 2, 3 . . . (see Fig. 5a). As shown

in Fig. 5a, the qubit is positioned so that it does not interact with the mode m = 2 with

resonance frequency ωr
2 = 3ωr

1. The qubit parameters are ∆/h = 4.25 GHz and 2Ip = 630

nA. In the present case we are interested in the situation where the qubit transition energy

is approximately three times that of the fundamental resonator mode: ωq ≈ 3ωr
1. The mode

m = 3 has resonance frequency ωr
3 = 5ωr

1, which is much larger than ωq. Hence also in

this case, we can consider the interaction of the qubit with only the fundamental resonator

mode.

Figure 5b displays the frequency differences ωi,0 for the lowest energy states as a function

of the qubit transition frequency. The red dashed curves corresponds to calculations obtained

neglecting all the counter-rotating terms (JC model). We observe a spectrum with two large-

splitting anticrossings which appear only in the continuous curves plus a smaller avoided

crossing magnified in Fig. 5c. The lowest energy splitting corresponds to a two-photon

vacuum Rabi splitting. When it reaches its minimum (at ωq ≈ 2ωr
1), the corresponding

hybridized states are analogous to those whose dynamics has been described in Fig. 3. They

can be approximately expressed as

1√
2

(|e, 0〉 ± |g, 2〉) . (12)

The second avoided crossing at higher energy corresponds to the second rung of the two-
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FIG. 5. (Color online) (a) Sketch of the distribution of the first three resonator modes (m = 1, 2, 3)

of a transmission-line λ/4 resonator. The resonance frequency of the first mode (blue solid curve)

is ωr
1 = 4 GHz. The qubit is positioned so that it does not interact with the m = 2 mode (red

dashed curve) with resonance frequency ωr
2 = 3ωr

1. The mode m = 3 (green dotted-dashed curve)

has resonance frequency ωr
3 = 5ωr

1, which is much larger than ωq so that only the interaction of the

qubit with the fundamental resonator mode can be considered. Qubit parameters are ∆/h = 4.25

GHz and 2Ip = 630 nA. (b) Frequency differences ωi,0 = ωi − ω0 for the lowest dressed energy

states as a function of the qubit transition frequency ωq (which can be tuned by changing the

external flux bias δΦx) for the JC model (red dashed curves) and the extended Rabi Hamiltonian

(blue solid curves) explicitly containing counter-rotating terms. We consider a normalized coupling

rate g1/ω
r
1 = 0.25 between the qubit and the resonator. The spectrum shows two large-splitting

anticrossings, which appear only in the continuous curves, plus a smaller avoided crossing which

is magnified in (c). (c) Three-photon vacuum Rabi splitting (blue solid curves) resulting from the

coupling between the states |e, 0〉 and |g, 3〉 due to the presence of counter-rotating terms in the

system Hamiltonian. The energy splitting reaches its minimum at ωq/2π ≈ 11.89 GHz ≈ 3(ωr
1/2π).

The anticrossing is not present in the JC model (red dashed curves), since it arises from the coherent

coupling between states with a different number of excitations.15



photon Rabi ladder and the corresponding approximated hybridized states (at the minimum

splitting) are
1√
2

(|e, 1〉 ± |g, 3〉) . (13)

The third smaller splitting, occurring at ωq ≈ 3ωr
1, corresponds to a three-photon vacuum

Rabi splitting. Here, a single qubit is resonantly coupled with a three-photon state, resulting,

at the minimum splitting, in the approximated eigenstates

1√
2

(|e, 0〉 ± |g, 3〉) . (14)

Figure 6 displays the system dynamics after the arrival of a π-like pulse exciting the

qubit described by the Hamiltonian (11). Specifically, Fig. 6a shows the time evolution of

〈X̂−X̂+〉 and 〈Ĉ−Ĉ+〉. Calculations have been carried out in the absence of pure dephasing

(γφ = 0). Vacuum Rabi oscillations showing the reversible excitation exchange between the

qubit and the resonator are clearly visible. We observe that the mean intracavity physical

photon number at its first maximum is very close to three. This is a first hint that when

the qubit is in the ground state the resonator mode is in a three-photon state. The period

of a complete population oscillation is 2π/Ω
(3ph)
eff , where 2Ω

(3ph)
eff is the minimum splitting in

Fig. 5c.

Figure 6b displays the time evolution of the zero-delay three-photon correlation func-

tion G(3)(t) = 〈X̂−(t)X̂−(t)X̂−(t)X̂+(t)X̂+(t)X̂+(t)〉 together with the intracavity photon

number 〈X̂−X̂+〉 for comparison. At early times the peak values of G(3)(t) are approxi-

mately two times higher than those of the mean photon number 〈X̂−(t)X̂+(t)〉. This is a

specific feature of three-photon Fock states and indicates an almost perfect three-photon

correlation. We observe that G(3)(t) at early times reach a peak value slightly beyond 6.

This indicates that the system has a nonnegligible probability to emit more than three

photons. This is confirmed by the presence of a non-zero four-photon correlation function.

Analyzing the different transitions contributing to G(3)(t), we can attribute this effect to

additional low-frequency transition |4〉 → |3〉. These transitions between Rabi-split states

occurs when parity symmetry is broken, [33] and in this case produces a 4-photon cascade:

|4〉 → |3〉 → |2〉 → |1〉 → |0〉. This small contribution cannot be observed if its low fre-

quency is outside the frequency-detection window. Analogously to the two-photon case (see

Fig. 4), pure dephasing does not significantly affect the dynamics of multiphoton quantum

Rabi oscillations (plot not shown).
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FIG. 6. (Color online) (a) Temporal evolution of the cavity mean photon number 〈X̂−X̂+〉 (blue

solid curve) and the qubit mean excitation number 〈Ĉ−Ĉ+〉 (red dashed curve) after the arrival of a

π-like Gaussian pulse exciting the qubit (the black vertical line on the far left shows the wavepacket

center time). The amplitude and the central frequency of the pulse are A/ωr
1 = 9.4 × 10−2 and

ω = (ω4,0 + ω3,0)/2, respectively. After the arrival of the pulse, the system undergoes vacuum

Rabi oscillations showing the reversible excitation exchange between the qubit and the resonator.

The fact that the mean intracavity physical photon number at its first maximum is very close to

three is a first signature that, when the qubit is in its ground state, the resonator mode is in a

three-photon state. (b) Time evolution of the zero-delay three-photon function G(3)(t) (dashed

green curve) together with the intracavity photon number 〈X̂−X̂+〉 (solid blue curve). The first

peak value of the three-photon correlation function is approximately two times higher than that of

the mean photon number, a signature of an almost-perfect three-photon correlation. Parameters

for resonator and qubit losses are the same as in Fig. 3.
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C. Generation of entangled GHZ states

Standard vacuum Rabi oscillations have been exploited for the realization of atom-atom

entanglement (see, e.g., Ref. [2]). Here we show that the multiphoton Rabi oscillations can

be directly applied to the deterministic realization of more complex entangled states. As a

first application we discuss the deterministic realization of multi-atom Greenberger-Horne-

Zeilinger (GHZ) states [49] by using only one resonator. The GHZ states lead to striking

violations of local realism and are an important resource for quantum information process-

ing [50], quantum cryptography [51] and error correction protocols [52]. Superconducting

circuits have been used to study GHZ states (see, e.g., Ref. [53, 54]).

Consider a resonator coupled to qubit 1 in the USC regime where two-photon vacuum

Rabi oscillations can occur. The resonator also interacts in the strong (not ultrastrong)

coupling regime with two additional qubits (2 and 3). Although the coupling rates between

the resonator and the qubits are fixed, the qubit-resonator interaction can be switched on

and off by adjusting the qubit frequencies [14]. The protocol is simple and consists of

three steps, one for each qubit. The different qubits do not interact directly with each other.

They interact one at a time with the same resonator. We start by exciting the ultrastrongly-

coupled qubit 1 with a π-pulse. Then, by changing the flux offset (at time t = 0), we drive

it into resonance with the two-photon state of the resonator (Fig. 1c). The system state at

time t is |ψ〉 = cos (Ω
(2ph)
eff t)|e, g, g, 0〉+ sin(Ω

(2ph)
eff t)|g, g, g, 2〉. We let the qubit interact for a

π/2 Rabi rotation so that the resulting state is

1√
2

(|e, g, g, 0〉+ |g, g, g, 2〉) . (15)

We then drive the qubit back out of resonance, stopping the Rabi rotation. The new state of

the system now consists in the EPR pair constituted by qubit 1 and the resonator described

in Eq. 15. Detecting qubit 1 in a given quantum state instantaneously collapses the cavity

mode in the correlated field state. For example, detecting this qubit in the ground state |g〉
amounts to preparing a two-photon Fock state in the cavity. Qubits 2 and 3 are still in a

factorized state.

The second step consists of driving qubit 2 into resonance with the one-photon state of

the first resonator mode for a π rotation time so that the resulting state is: (|e, g, g, 0〉 −
|g, e, g, 1〉)/

√
2. For the third step, we similarly drive the third qubit into resonance with

the first resonator mode for a π rotation. The resulting state is: (|e, g, g, 0〉+ |g, e, e, 0〉)/
√

2.
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At this point, the photon state can be factored out, leaving us with a three-qubit GHZ-like

entangled state. We note that the excitation of qubits 2 and 3 is conditioned on the presence

of photons in the resonator. The excitation swapping between the resonator and qubits 2

and 3 carries away the cavity photons and transfers the entanglement of “qubit 1 with the

resonator” to the other two qubits. A more conventional GHZ state can be obtained by

performing a final local operation on qubit 1, e.g., by sending a further π pulse to the first

qubit, so that the resulting final state is (|g, g, g, 0〉 + |e, e, e, 0〉)/
√

2. This procedure can

be easily generalized to four qubits or more. In general, if n-photon Rabi oscillations are

achieved, then n + 1 qubit GHZ states can be produced. We note that this protocol does

not need the initial synthesis of photonic or atomic superposition states [55, 56].

IV. CONCLUSION

We have investigated vacuum Rabi oscillations in the USC regime. According to the

Jaynes-Cummings model, the qubit and the resonator can exchange a single excitation

quantum through a coherent Rabi oscillation process. Such Rabi oscillations play a key

role in the manipulation of atomic and field states for quantum information processing [12].

Our theoretical predictions show clear evidence for physics beyond the Jaynes-Cummings

model and extend the concept of quantum Rabi oscillations. We find that multiphoton

reversible exchanges between an individual qubit and a resonator can be observed in the

USC regime. Specifically, we have shown that experimental state-of-the-art circuit-QED

systems can undergo two- and three-photon vacuum Rabi oscillations. Still increasing the

coupling rate, a higher number of photons can be exchanged with the qubit during a single

Rabi oscillation. These anomalous Rabi oscillations can be exploited for the realization of

efficient Fock-state sources of light, and for the implementation of novel protocols for the

control and manipulation of atomic and field states.
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Appendix A: Analytical derivation of the two photon-qubit effective Hamiltonian

In this Appendix, we derive the analytical expression for the effective Hamiltonian in

Eq. (9), describing the two-photon coupling between the states |e, 0〉 and |g, 2〉. We start

from the reduced Hamiltonian in Eq. (8) and then move to the rotating frame with frequency

ωq/2, obtaining the transformed reduced Hamiltonian

Ĥ ′r
h̄

=


0 g1 sin θ g1 cos θ 0

g1 sin θ ωr
1 0

√
2g1 cos θ

g1 cos θ 0 ωr
1 − ωq −

√
2g1 sin θ

0
√

2g1 cos θ −
√

2g1 sin θ 2ωr
1 − ωq .

 . (A1)

Now, the order of columns and rows is |e, 0〉, |e, 1〉, |g, 1〉, and |g, 2〉. After the transfor-

mation, an arbitrary state of the system in this truncated Hilbert space can be denoted as

(c1, c2, c3, c4)T and the Schrödinger equation with Hamiltonian Ĥ ′r gives

iċ1 = (g1 sin θ)c2 + (g1 cos θ)c3 (A2)

iċ2 = ωr
1c2 + (g1 sin θ)c1 + (

√
2g1 cos θ)c4 (A3)

iċ3 = (ωr
1 − ωq)c3 + (g1 cos θ)c1 − (

√
2g1 sin θ)c4 (A4)

iċ4 = (2ωr
1 − ωq)c4 + (

√
2g1 cos θ)c2 − (

√
2g1 sin θ)c3 . (A5)

For g1/ω
r
1 � 1, the adiabatic elimination in Eqs. (A3) and (A4) can be applied [39] and the

coefficients c2 and c3 can be approximated as

c2 ≈ −
g1

ωr
1

(sin θc1 +
√

2 cos θc4) (A6)

c3 ≈ −
g1

(ωr
1 − ωq)

(cos θc1 −
√

2 sin θc4) . (A7)

The coupled equations for c1 and c4 are obtained substituting these results in Eqs. (A2) and

(A5):

iċ1 ≈
g2

1(ωq sin2(2θ)− ωr
1)

ωr
1(ωr

1 − ωq)
c1 +

√
2g2

1ωq sin(2θ)

2ωr
1(ωr

1 − ωq)
c4 , (A8)

iċ4 ≈
−2g2

1(ωr
1 − ωq cos2 θ) + ωr

1[2(ωr
1)2 − 3ωr

1ωq + ω2
q]

ωr
1(ωr

1 − ωq)
c4 +

√
2g2

1ωq sin(2θ)

2ωr
1(ωr

1 − ωq)
c1 . (A9)
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FIG. 7. (Color online) Comparison between the minimum energy splitting 2Ω
(2ph)
eff /ωq obtained

analytically (red solid curve) and numerically (blue points) as a function of g1/ωq for θ = π/4.

Considering the near-resonant case ωr
1 ≈ ωq/2, transforming back to the laboratory frame

and keeping only the g2
1 dependence terms in the diagonal elements, the effective Hamiltonian

in Eq. (9) is obtained. According to the effective Hamiltonian (9), the ratio of the minimum

splitting at the avoided crossing (see Fig. 1c) to the qubit frequency ωq is given by

2Ω
(2ph)
eff

ωq

= 4
√

2 sin(2θ)

(
g1

ωq

)2

. (A10)

A comparison between analytical and numerical results for the minimum energy splitting

2Ω
(2ph)
eff /ωq is shown in Fig. 7 as a function of g1/ωq.
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