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Spectral method for efficient computation of time-dependent phenomena in complex lasers

O. Malik, K. G. Makris,∗ and H. E. Türeci
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA

Studying time-dependent behavior in lasers is analytically difficult due to the saturating non-
linearity inherent in the Maxwell-Bloch equations and numerically demanding because of the
computational resources needed to discretize both time and space in conventional FDTD approaches.
We describe here an efficient spectral method to overcome these shortcomings in complex lasers
of arbitrary shape, gain medium distribution, and pumping profile. We apply this approach to
a quasi-degenerate two-mode laser in different dynamical regimes and compare the results in the
long-time limit to the Steady State Ab Initio Laser Theory (SALT), which is also built on a spectral
method but makes a more specific ansatz about the long-time dynamical evolution of the semiclassical
laser equations. Analyzing a parameter regime outside the known domain of validity of the stationary
inversion approximation, we find that for only a narrow regime of pump powers the inversion
is not stationary, and that this, as pump power is further increased, triggers a synchronization
transition upon which the inversion becomes stationary again. We provide a detailed analysis of
mode synchronization (aka cooperative frequency locking), revealing interesting dynamical features
of such a laser system in the vicinity of the synchronization threshold.

Lasers are very rich dynamical systems which exhibit
various time-dependent phenomena characteristic of non-
linear systems such as phase and mode locking, self-
pulsing and breathing, and generally, spatio-temporal
pattern formation and dynamical chaos. Almost all these
effects can be understood and quantitatively studied using
the semiclassical laser theory in the form of Maxwell-Bloch
(MB) equations [1–3], a set of coupled non-linear equations
for the space- and time-dependent electric field amplitude
E(r, t), and the polarization and inversion of the gain
medium P (r, t) and D(r, t). Early work made abundant
use of spectral methods, where the field amplitudes en-
tering the MB equations are expanded in a complete
basis of spatial modes, reducing MB equations to a set
of coupled non-linear ordinary differential equations for
time-dependent amplitudes. These early theoretical inves-
tigations made a number of simplifying assumptions on
the spatial aspects of the problem. The lasing modes were
assumed to be simple (uniform, trigonometric, or gaus-
sian) and unmodified from their passive cavity modes,
and the openness (optical leakage) was taken into ac-
count phenomenologically. While these assumptions are
sufficiently general to reproduce qualitatively almost all
features of laser dynamics in macroscopic cavities, new
laser systems have emerged in the past two decades that
raised questions not easily addressable by these spectral
approaches.

Most novel laser systems are motivated by their deploy-
ment as compact and tunable light-sources for on-chip
applications [4]. Typically, these lasers feature complex
sub-wavelength patterning of the cavity volume to employ
light-confinement mechanisms that are based on optical
interference (photonic band gap materials that may or
may not include optical defects, random lasers) and/or
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total internal reflection (whispering gallery lasers, wave-
chaotic lasers). Therefore these lasers feature spatially
complex modes, typically in highly open geometries. In
some cases, such as weakly scattering random lasers, it is
not even clear where the boundary of the system is, and
even what a mode means [5]. In addition, many solid-state
lasers are subject to spatially non-uniform pumping con-
ditions and feature strong modal interactions [6–10]. All
these conditions can be modeled by appropriately setting
up the original Maxwell-Bloch equations and solving the
resulting non-linear partial differential equations (PDEs)
in time-domain through various finite-difference-based nu-
merical methods [11–13]. A number of such powerful com-
putational methods have been developed and employed
to investigate the dynamics of complex laser systems, ei-
ther solving the full set of MB equations [14–16], or the
parabolic version obtained upon a slowly varying envelope
(SVE) approximation in the time-domain, the so-called
Schrödinger-Bloch (SB) equations [17].

A more recent approach, the Steady-state Ab-initio
Laser Theory (SALT) [18, 19], overcomes the rather ex-
pensive discretization of the spatial domain of a complex
laser system in MB/SB-FDTD solvers by taking a spectral
approach. The field amplitudes E(r, t) are expressed in
the Constant-Flux (CF) basis [18], a set of non-Hermitian
modes that exactly describe the steady-state field distribu-
tion in a finite and open domain under harmonic driving
conditions [20]. There are a number of advantages pro-
vided by this approach. (1) The steady-state multi-mode
solution (to be defined precisely below) in the asymptotic
infinite-time limit is obtained directly, without resorting
to a time-domain simulation, (2) The exact solution of the
MB equations in the steady-state is obtained through a
modular two-stage procedure: in the first stage the linear
problem corresponding to the determination of a CF basis
is solved, and in the second stage this information is used
to solve a set of algebraic transcendental equations [20].
This allows the separation of spatial complexity (handled
as a linear problem) from the computational non-linear
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problem, and perhaps more importantly obviates the need
for the computational implementation of boundary condi-
tions through various PML-variety approaches [21]. (3)
SALT is also flexible enough to effectively account for spa-
tially non-uniform pumping conditions [10, 19, 22, 23], (4)
can directly provide the farfield electric field distribution
and spectrum [10], and (5) over the past decade provided
unique semi-analytic insight to fundamental problems
in laser physics [10, 19, 23–26] that is harder to attain
through brute-force computational approaches.

Despite the success of SALT in the treatment of com-
plex laser systems, it has certain well-known limitations.
The key assumption of the theory is the stationarity of
the inversion D(r, t) [27] (or more generally, the level
populations [28]). The inversion is however never truly
stationary, but in a certain regime of parameters the non-
stationary corrections are systematically very small and
can be neglected. To be more specific, the non-stationary
corrections [27], as discussed in detail below, are order
γ‖/∆ where ∆ is the smallest frequency difference of the
lasing modes (typically slightly different from the free
spectral range of the cold cavity) and γ‖ is the inver-
sion relaxation rate. However, ∆ depends on the pump
strength, and at larger powers can become smaller than
γ‖ due to non-linear effects. As a consequence, the cor-
rections to SALT are not going to be small, and can lead
to qualitatively different behavior. As shown here, such
a scenario can take place under unusual circumstances
where the spectrum of the cavity contains quasi-doublets
(typically protected through a discrete spatial symmetry
of the cavity) that are spectrally spaced apart at a dis-
tance (∆2) that is larger than the splitting of the doublets
(∆), as shown in Fig. 2. Under such circumstances the
lasing modes of the doublet-pair most favored by the gain
curve can lock to each other and synchronize as pump
power is increased through an effect called ’cooperative
frequency locking’ [29]. Yet even then, as we will show,
the Stationary Inversion Approximation (SIA) fails only
in a very limited pump power range near the synchroniza-
tion threshold, and is valid for most of the pump power
range below and above this threshold.

Thus it is of interest not only to understand the valid-
ity of the SIA under various circumstances, but also to
develop a spectral method that is in principle not limited
by any approximations such as the SIA. Such a technique
should be able to capture any intrinsically dynamical be-
havior of complex lasers. We present such a technique
in this article, and discuss precisely how SIA and thus
SALT may fail in certain limited parameter regimes.

Just as SALT, the new Constant Flux Time Domain
(CFTD) technique presented here provides a versatile
tool for calculating lasing thresholds, spectra, and modal
distributions in the multi-mode regime for complex lasers
including random [19], semiconductor [30], photonic crys-
tal surface-emitting [31], and photonic molecule lasers [32].
Unlike SALT, it can capture transient regimes, locking
and synchronization, various dynamical instabilities [33],
as well as dynamical chaos and generally, spatio-temporal

pattern formation.
In Section I we provide an overview of our theoretical

approach, outline key approximations, and establish the
CFTD-SALT correspondence. In Section II, we provide a
comparative study of CFTD and SALT for a two-mode
quasi-degenerate laser in two different regimes of param-
eters. Keeping all other parameters the same, we an-
alyze the steady-state dynamics of this laser for small
γ‖ = 0.001 (γ‖/∆ = 0.0038) where the SIA is valid, and
then for γ‖ = 1 (γ‖/∆ = 3.8037) where SIA can not be
guaranteed. Indeed, in the latter regime we illustrate
that the inversion is non-stationary for a narrow range of
pump powers, and show how this destabilizes the station-
ary emission and ultimately triggers the synchronization
of the two modes, to return to a dynamical regime where
inversion is again stationary.

I. NON-HERMITIAN SPECTRAL APPROACH
TO LASER DYNAMICS

We start with the following form of the Maxwell-Bloch
equations [2] for the scalar electric field amplitude E(r, t),
polarization P (r, t) and inversion density D(r, t):

∇2E+ − n2

c2
Ë+ = µ0P̈

+, (1)

Ṗ+ = −(iΩa + γ⊥)P+ − ig
2

~
E+D, (2)

Ḋ = γ‖[D0(x)−D] + i
2

~
[E+(P+)∗ − (E+)∗P+]. (3)

Here E = E+ + E−, P = P+ + P− and we used the
rotating wave approximation (RWA), valid when the fre-
quencies of the aforementioned fields (∼ Ωa) are much
larger than their relaxation rates (controlled by γ‖ in
Class A and B lasers [34]), typically well-satisfied in the
optical regime. The laser cavity is characterized by the
complex-valued refractive index distribution n(r). We
have in mind a quasi-2D geometry in which case the
scalar field E(r, t) denotes the z-component of the elec-
tric field for transverse magnetic (TM) polarization, and
n(r) represents the effective index [35]. In the inversion
equation, D0(r) represents the possibly spatially inhomo-
geneous pump distribution. We note that the description
in Eqs. (2-3) is sufficiently general to describe the salient
features of various gain media characterized by a single
dominant optical transition frequency, including quantum
cascade-based lasers (see Supplementary Information in
[10]). The remaining parameters are as follows: γ⊥ and
γ‖ are the polarization and inversion decay rates, Ωa is
the center frequency of the gain curve, g is the dipole
moment of the individual two-level emitters forming the
gain medium, µ0 is the magnetic permeability, and c is
the speed of light.

In the standard spectral approach [36], the electric
field and polarization are expanded in a complete set
of states φm(r) e.g. E+(r, t) =

∑
m cm(t)φm(r), with



3

φm satisfying ∇2φm(r) = −n2(r) (ω2
m/c

2)φm(r) with a
boundary condition at the cavity walls ∂D that gives rise
to a Hermitian boundary value problem, and hence a
complete set of orthogonal states {φm} with real-valued
frequencies {ωm}. There are two crucial shortcomings
of this approach. The first is that a phenomenological
decay rate has to be added by hand to the equations
[37] in order for a well-defined steady-state to exist. As
an additional consequence, there is no systematic way to
extend the solution to the exterior of the cavity, where the
fields are actually measured. A second shortcoming with
this approach is that spatial hole burning interactions
can only be captured perturbatively in the electric field
amplitude, or else through an adiabatic elimination of the
gain medium degrees of freedom.

Here, we extend this spectral approach to a consistent
mathematical framework, by first expanding the electric
and polarization fields in terms of CF states [18] through
the following ansatz:

E+(r, t) =
∑
n

εn(t)ϕn(r,Ωa)e−iΩat, (4)

P+(r, t) =
∑
n

ρn(t)ϕn(r,Ωa)e−iΩat. (5)

The biorthogonal set of CF states {ϕm(r,Ω)} is the
solution to the Laplace eigenvalue problem ∇2ϕm =
−n2(r) (ω2

m/c
2)ϕm with outgoing boundary conditions

∂ϕm
∂r ∼ i(Ω/c)ϕm as r → ∞. The set of CF states is

the exact non-Hermitian basis to expand the fields in an
arbitrary open geometry described by n(r) that is excited
by an arbitrary spatial distribution of monochromatic
sources at frequency Ω [20]. The solution to this bound-
ary value problem leads to a complex-valued spectrum
ωm and associated eigenmodes ϕm that parametrically
depend on the excitation frequency Ω (see Fig. 1 for an
example of this parametric dependence). The imaginary
part of ωm provides the crucial mode-dependent losses,
either through optical leakage out of ∂D or the material
absorption described by the imaginary part of n(r).

A crucial computationally important detail here is that
the computational domain of the CF problem can be
reduced to a ”last scattering surface” ∂D that can be
chosen to be the minimal volume that includes all the rel-
evant scattering elements. In practice [19], ∂D is chosen
to be the minimal circular boundary (in 2D) that includes
all the spatial inhomogeneities of n(r). Therefore, by
construction the relevant open boundary conditions are
exactly satisfied through the use of the CF basis in the
expansion Eq. (4). In addition, CF states can be analyti-
cally continued straightforwardly outside ∂D and hence
the fields, and in particular the electromagnetic flux and
the measured spectrum, can be calculated exactly in the
farfield [10].

In the ansatz (4)-(5) the time-dependence of each field
variable is entirely encapsulated in its respective coeffi-
cients εn and ρn. For computational efficiency, we factor
out the fast oscillation at atomic frequency Ωa. The

spatial dependence is entirely captured by the CF states,
which are calculated, in a departure from previous applica-
tions of the CF basis, only at Ωa. This is a very good and
well-controlled approximation, for the CF states and fre-
quencies {ϕm(r,Ω), ωm(Ω)} typically change slowly when
the excitation frequency Ω is varied, see for an example
Fig. 1. This is in fact one of the crucial factors in the
computational efficiency of SALT [19]. We note that it
is possible to choose an unusual geometry where for a
certain narrow regime of parameters (Ω) this assumption
may fail, but generally this should be taken as a hint
that some extraordinary spatial physics is present in the
system that may give rise e.g. to an exceptional point
[23].
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FIG. 1. (Color online) (a) CF Eigenvalues and their variation
as a function of the external frequency are shown for a 1D
cavity with n = 3, Ωa = 20, γ⊥ = 1, and nΩaL/c = 60
(see description of parameters in text). Closely spaced blue
’+’ markers indicate the variation in eigenvalues within the
range Ω = Ωa ± γ⊥ and the red ’x’ marker indicates the
eigenvalue calculated at Ω = Ωa. The shift in the real part of
these eigenvalues is negligibly small. Frequencies are scaled
by tRT = nL/c and dimensionless. (b) The variation in the
CF eigenstate associated with the smallest eigenvalue shown
in (a). Blue lines show the eigenstate calculated in the same
range as (a) while the red line shows the eigenstate calculated
at Ω = Ωa. The inset zooms in on the peak enclosed in the
dotted rectangle, closely showing the very small variation in
the eigenstates as a function of Ω. Length is scaled by cavity
length L.

With the above ansatz of Eqs. (4-5) inserted into Eqs. (1-
3), we can derive the following equations of motion for
the time-dependent dimensionless coefficients ε̃(t), ρ̃(t),

D̃mn(t):

˙̃εm =
i

2Ωa
(Ω2

a − ω2
m)ε̃m + i

Ωa
2

∑
n

Bmn ρ̃n, (6)

˙̃ρm = − γ⊥ρ̃m − iγ⊥
∑
n

D̃mn ε̃n, (7)

˙̃Dmn = γ‖(D̃0,mn − D̃mn)

+ i
γ‖

2

∑
rs

(Amrsnε̃rρ̃
∗
s −A′mrsnε̃∗r ρ̃s).

(8)

Here we introduced the inversion matrix Dmn(t) =∫
cavity

dr n(r)ϕm(r)D(r, t)ϕn(r), a set of space-

independent coefficients describing the mode-projected
inversion distribution. While the inversion D(r, t) itself is
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real-valued, the coefficients Dmn are in general complex-
valued. All the variables are rendered dimensionless
through ε̃m = εm/Ec, ρ̃m = ρm/Pc, and D̃mn = Dmn/Dc

using the following scale factors that contain all the units:

Ec =
~
√
γ⊥γ‖L

2g
, Pc =

Ec
µ0c2

, Dc =
~γ⊥
µ0g2c2

. (9)

Furthermore, time and decay rates are scaled by the effec-
tive cavity round-trip time tRT = nL/c (n can be taken
to be the spatially averaged effective index, and L = V 1/3

for a cavity with volume V ). The key step in obtaining
Eqs. (6-8) is the elimination of the spatial dependence of
each field vector by utilizing the biorthogonality of the
CF basis vectors. We will drop the tildes henceforth.∫

cavity

dr n2(r)ϕm(r)ϕn(r) = δmn (10)

In contrast to a Hermitian orthogonality relation, this
inner product does not contain a complex conjugation.
This is a consequence of the dual modes (left eigenvectors)
{ϕ̄m} satisfying the relationship ϕ̄m = ϕ∗m [18, 20].

This step produces the following unitless complex-
valued parameters appearing in the above equations,

Amrsn = L

∫
cavity

dr n2(r)ϕm(r)ϕr(r)ϕ∗s(r)ϕn(r),

(11)

A′mrsn = L

∫
cavity

dr n2(r)ϕm(r)ϕ∗r(r)ϕs(r)ϕn(r),

(12)

Bmn =

∫
cavity

dr ϕm(r)ϕn(r), (13)

D0,mn =

∫
cavity

dr n2(r)ϕm(r)D0(r)ϕn(r). (14)

Here, Amrsn and A′mrsn can be seen as a generalization
of the inverse mode volume in the Hermitian version
of the single-mode laser problem. Interestingly, Bmn
is not diagonal unless the index is uniform across the
cavity. The effective mode-projected pump parameter is
given by D̃0,mn and is the most critical parameter here.
These overlap integrals Eqs. (11-14) are calculated prior to
numerically solving the time-dependent system of coupled
equations in Eqs. (6-8) and they encapsulate the impact
of the resonator modal structure on modal interactions.

An important aspect of the above spectral formulation
of semiclassical laser equations is that it takes into ac-
count modal interactions through spatial hole burning
exactly. Majority of the past spectral methods (with the
exception of SALT), account for interactions only pertur-
batively and generally to third order in the electric field
amplitude. This approximation, as pointed out first in
[38] and later in quantitative detail discussed in [27], is
only valid near the lowest laser threshold, and generally
severely underestimates the number of lasing modes at
higher pump powers.

As long as the parametric variations of the CF basis is
small within a window γ⊥ of Ωa, the Eqs. (6-8) are exact
up to the slowly varying envelope approximation used
in Eq. (6) to remove second order time derivatives in ε̃n
and ρ̃n. The impact of the latter in SALT has been quan-
tified perviously [27] and was shown to introduce small
inaccuracies in the calculation of steady-state lasing char-
acteristics, but was not found to lead to any qualitative
differences even in the case of a complex two-dimensional
random laser. As discussed in [27], the inaccuracies due
to the SVE approximation increase for modes that lie
further away from the atomic (envelope) frequency, mod-
ifying the threshold and slope efficiency of the affected
mode. The full non-linear form of the SALT equation
remains unchanged, however, and any additional terms
appearing due to the the time-dependent treatment in
CFTD appear as corrections to the polarization and are
not especially affected by this approximation. Therefore,
while this approximation may fail to predict the actual
modal geometry at higher powers, it is not critical to the
success of this method in qualitatively describing a range
of time-dynamical effects as discussed below, and it can
easily be undone at the expense of introducing additional
fields.

In the next section, our goal is twofold. We would
first like to benchmark SALT against the CF-projected
time-dependent laser equations Eqs. (6-8) (CFTD) in the
regime of parameters where SALT is known to be accurate.
Next, we investigate a regime accessed by the change of
a single parameter, γ‖, to a regime where the validity of
the SIA is not guaranteed, leaving all other parameters
the same. Here we encounter a narrow regime of pump
powers where the system is critical and unstable towards
a synchronized oscillation regime. In this regime that,
for the special cavity configuration of Fig. 2, occurs at
extremely high pump power (about 25 times the lowest
threshold), SALT fails to capture the underlying dynamics
qualitatively. Interestingly, below and above this narrow
regime of pump powers, the SIA is valid and SALT is
accurate.

A second aim of the following discussion is to present an
accurate picture of the synchronization transition, known
as cooperative frequency locking [29]. Our theoretical
result is able to accurately capture the interesting dynam-
ical regime around the critical pump power for locking,
experimentally observed for the first time in 1988 [39].

II. BENCHMARKING SALT AGAINST CFTD:
THE TWO-MODE QUASI-DEGENERATE LASER

In this section, laser dynamics is investigated for a quasi-
degenerate 1D cavity. It consists of a dielectric slab with
refractive index n = 3.3 which sandwiches symmetrically
a layer of index n = 1.5 of thickness δL (see Fig. 2).
The gain curve is centered at Ωa = 20.5, γ⊥ = 8, and
nΩaL/c ≈ 135. This particular choice of γ⊥ ensures a
flat gain experienced by both of the cavity resonances
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included in the calculations below, significantly reducing
the effect of gain-pulling in the time-dynamical scenario
where lasing mode frequencies shift strongly with the
pump power.
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FIG. 2. (Color online) (a) The refractive index distribution
of the cavity described in the text is shown as a function of
space (r), scaled by cavity length L. The CF eigenvectors
color-matched with the CF eigenvalues marked in (b) are
plotted inside and outside the cavity; dashed gray lines on
each end mark the cavity faces. Note that the CF mode
with an anti-node in the low refractive index region shows
the expected large amplitude due to reduced index. (b) The
10 eigenvalues closest to gain center are shown for the cavity
shown in (a); filled red/blue circles mark the two eigenvalues
used in the calculations in this section: ω1 = 20.3764−0.0970i
and ω2 = 20.6393 − 0.0957i. The spacing between them is
∆ = Re [ω2 − ω1] = 0.2629 and their spacing from the adjacent
eigenvalue pairs is ∆2 ≈ 0.7.

Choosing δL/L = 1/40, the resonances of the cavity
come in quasi-doublets which are separated from each
other by a relatively large spectral range (See Fig. 2).
These conditions are ideal to consider two regimes, one in
which the SIA is valid (Regime A) and another where it
cannot be guaranteed (Regime B), by changing the value
of a single parameter, γ‖, and leaving all other parameters
identical.

In regime A (γ‖ � ∆� γ⊥), the assumptions under-
lying SIA are valid and SALT and CFTD results should
agree quantitatively [27]. We will first set up the cor-
respondence between SALT and CFTD variables in the
steady-state and then demonstrate excellent agreement be-
tween the two methods using the 2-mode quasi-degenerate
laser as an example.

In regime B (∆ � γ‖ � γ⊥) however, accessed here
by changing γ‖, the stationary inversion approximation
can not be guaranteed. Indeed, while at low powers the
laser oscillates in two frequencies (“two-mode lasing”),
above a critical pump power D0 = Dth

sync corresponding
to the threshold for synchronization, these two frequencies
lock and a single frequency remains. Just prior to syn-
chronization, a close up at the power spectrum of various
dynamical variables of CFTD in Eqs. (6-8) reveals that
close to the synchronization threshold the SIA breaks
down. The SIA remains valid generally however, breaking

down in a very interesting way but only within a narrow
range of pump powers.

SALT-CFTD correspondence

The strength of a steady-state approach like SALT [18]
is that it directly delivers the frequencies as well as the
intra- and extra-cavity field amplitudes as functions of the
pump power D0. As such, it is not immediately clear how
the SALT variables are related to the CFTD variables
εm, ρm and Dmn. In this subsection, we will set up
this correspondence when this correspondence exists, and
then compare SALT and CFTD results in the following
subsection.

SALT is obtained by making a more specific ansatz
for the long-time solution of MB equations than that for
CFTD:

E+(r, t) =
∑
µ

Ψ(µ)(r)e−iΩ
(µ)t, (15)

P+(r, t) =
∑
µ

p(µ)(r)e−iΩ
(µ)t. (16)

The crucial point here is the assumption of a specific
form for the exact time-dependence once steady-state is
reached (compare Eq. (15) to Eq. (4)). The fields are
assumed to be expandable in a discrete Fourier series
with a finite number of laser frequencies Ω(µ), which are
unknown and to be determined. Ψ(µ)(r) are the spatial
field amplitudes corresponding to the exact (non-linear)
lasing modes, also to be determined through the SALT
equations:[
∇2 + (εc(~r) + εg(~r))Ω

2
µ

]
Ψµ(~r) = 0, ~r ∈ cavity (17)

εg(~r) =
γ⊥

Ωµ − ωa + iγ⊥

D0(~r)

1 +
∑N
ν=1 Γν |Ψν(~r)|2

. (18)

Here Γν = γ2
⊥/[γ

2
⊥ + (Ωµ −Ωa)2]. Note that the polariza-

tion spatial amplitudes p(µ)(r) can be directly related to
Ψ(µ)(r) and do not show up in the final set of equations
to be solved. Also note that in contrast to CFTD, the
index µ specifically identifies lasing modes oscillating at
distinct frequencies Ω(µ) (as opposed to spatial modes).
The time-independent SALT equations Eq. (17) are then
solved by projecting each lasing mode Ψ(µ)(r) into a set
of CF states for the associated frequency of oscillation
Ω(µ):

Ψ(µ)(r) =
∑
n

a(µ)
n ϕn(r,Ω(µ)). (19)

The SALT-CFTD correspondence is unveiled by assuming
ϕn(r,Ω(µ)) ≈ ϕn(r,Ωa), which as discussed before, is
generally a good approximation. In that case,

εn(t) = eiΩat
∑
µ

a(µ)
n e−iΩ

(µ)t (20)
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where the coefficients on the left and right hand side are
the CFTD and SALT variables, respectively.

Additional insight is obtained by asking what assump-
tions SALT makes about the solution of CFTD equations
Eqs. (6-8), that are more general. SALT corresponds to
specific long-time solutions of the CFTD equations for
which εn(t) =

∑
µ ε

µ
ne−iΩµt, ρn(t) =

∑
µ ρ

µ
ne−iΩµt and

Ḋmn = 0. The last assumption is the mode-projected
version of the SIA and one of the consequences is that γ‖
drops out of the equations. That doesn’t however mean
that SALT solutions do not depend on γ‖, but rather that
the entire γ‖-dependence of SALT solutions is contained
in the particular scaling of the electric field Eq. (9). Of
course, being exactly equivalent to MBE equations up to
the aforementioned approximations, the CFTD equations
permit far more general solutions, one of which we will
encounter further below.

For an N -mode CFTD calculation where N is the num-
ber of modes, a CF basis of equivalent dimension must
be constructed, and N2 + 2N equations must be solved.
For a 2-mode calculation, this amounts to 2 equations
each for the electric and polarization fields, and a total
of 4 equations for the diagonal and off-diagonal elements
of inversion. Below we will discuss the two-mode regime
for the quasi-degenerate 1D laser we introduced before
(Fig. 2).

Regime A: Stationary inversion

We use the parameters quoted at the beginning of
Section II and take γ‖ = 0.001. Right at the onset of the
second mode this gives γ‖/∆ = 0.0038. ∆ only slightly
changes in the calculated interval of pump powers (see
Fig. 4(b)) and the assumptions underlying the SIA remain
rigorously valid throughout. In the figures below, we use
a normalized pump β = D0/Dth where Dth is the lasing
threshold.

CFTD calculations show that both |ε1(t)|2 and |ε2(t)|2
reach steady state after initial transients die out. Some
sample time-series are shown in Fig. 3(a,b) for two dif-
ferent pump powers β = 1.16 and β = 2. These findings
indicate that there is a single frequency in both ε1(t) and
ε2(t), as confirmed in the respective power spectra shown
in Fig. 3(c). Shown in Fig. 3(d), |Dmn(ω)|2 is the power
spectral density (PSD) of Dmn(t) (itself not shown). Here
we plot |D11(ω)|2 and |D12(ω)|2 only. Further detail is
shown in the inset which zooms out and shows in loga-
rithmic scale that the non-stationary components in D12

(red peaks) are suppressed by more than three orders of
magnitude with respect to the static component of D11

(black peak). The smallness of these side-peaks indicates
that the SIA is an excellent approximation and the SALT-
CFTD correspondence should be possible, which is what
we do next.

The SALT calculation containing two lasing modes
expanded into a basis of two CF eigenvectors will con-

tain four coefficients (a
(1)
1 , a

(1)
2 , a

(2)
1 , a

(2)
2 ) and two lasing

frequencies (Ω(1), Ω(2)). As discussed in the previous
section, in the steady-state, the information contained
in these SALT variables can be retrieved from the two
time-dependent CFTD variables (ε1, ε2). To do so, we
simply expand and rearrange the SALT ansatz for two
lasing modes,

E+(r, t) = (a
(1)
1 e−iΩ

(1)t + a
(2)
1 e−iΩ

(2)t)ϕ1(r,Ωa) (21)

+ (a
(1)
2 e−iΩ

(1)t + a
(2)
2 e−iΩ

(2)t)ϕ2(r,Ωa) (22)

= ε1(t)ϕ1(r,Ωa) + ε2(t)ϕ2(r,Ωa) (23)

The CFTD results imply that εn(t) ≈ a
(n)
n e−iΩ

(n)t, in

other words a
(m)
n ≈ 0 for n 6= m. In SALT language,

this means that the single-pole approximation is valid
throughout the calculated regime – the CF eigenvectors
calculated for a cold cavity very closely represent the two
lasing modes Ψ(µ=1,2)(r), and a single CF component is
sufficient to represent each mode. For CFTD-SALT com-

parison, in Fig. 4(a) we plot the “intensity”,
∑
n |a

(µ)
n |2

from SALT, and compare it to Im = 1
T2−T1

∫ T2

T1
dt |εm(t)|2,

calculated for a sufficiently long sampling time after the
steady state is reached in CFTD.

0

20

40

0 5000 10000 15000

0 5000 10000 15000
0

50

t

t

a

c

20.3 20.4 20.5 20.6 20.7
ω

d

ω - Ωa

ω - Ωa

|D
m

n
|2

β = 2
0

5

10

0

2

4

-0.4 0 0.410-2

102

-0.02 0 0.02
0

5

10

15

20

|D
m

n
(ω

)|
2

20.3 20.4 20.5 20.6 20.7
ω

2

b

9.21

5.44

2.1

~2

~9~5.5

β = 2

β = 2

β = 1.16

β = 1.16

|ε1(ω)|2

|ε2(ω)|2

2

|ε1(ω)|2

FIG. 3. (Color online) (a) The time-domain behavior of |ε1(t)|2
(blue) at β = 1.16 in the single-mode lasing regime. (b) The
time-domain behavior of |ε1(t)|2 (blue) and |ε2(t)|2 (red) in
the multi-mode regime. Their approximate steady-state values
are labeled. Time (t) is scaled by the cavity round-trip time
tRT = nL/c and is dimensionless. (c) The PSDs of ε1(t) (blue)
and ε2(t) (red) at the same β values as above; the labeled
values compare well to those marked in (a) and (b) and in
Fig. 4(a). (d) The spectral content of the diagonal inversion
element D11 (black peak); inset log-plot also plots the off-
diagonal element D12 (smaller red side-peaks) and shows that
it’s nearly 3 orders of magnitude smaller than D11.

The threshold of the first mode as calculated by SALT
and our time-dynamical method is almost the same, and
the emission intensities also coincide up to the point where
a second mode begins to lase in the SALT calculation [see
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Fig. 4(a)]. Shortly thereafter, the second mode begins
to lase in the time-dynamical calculation as well and
both modes progress with comparable slope-efficiencies
up to high pump powers. The steady-state frequencies
[Fig. 4(b)] confirm the expected steady-state behavior.
The small offset between the CFTD and SALT solutions
stems from the use of the SVE approximation in CFTD.
Making the same approximation in SALT (dashed lines
in Fig. 4) shows excellent agreement between the steady-
state and time-dynamical calculations in this regime.
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FIG. 4. (Color online) (a) The steady-state emission intensity
of the two lasing modes as calculated by SALT (red), SVE-
SALT (dashed blue), and CFTD (solid blue). The values
shown here are a time-average (details in text) of the steady-
state time domain behavior at each pump step; the time-
domain behavior is shown in Fig. 3(a-b) for selected values of
β = 1.16 and β = 2 (marked in this plot). (b) The steady-state
center frequency for both lasing modes for SALT (red) and
CFTD (blue).

Regime B: Non-stationary inversion

Keeping all other parameters, we now choose γ‖ = 1.
At the onset of the second mode, this gives γ‖/∆ = 5.61.
We will find that ∆ will change dramatically in this case,
essentially going to zero as the pump power is increased.
This phenomenon is known as ‘cooperative frequency
locking’ [29], and has been experimentally studied for
quasi-degenerate transverse modes of a laser in Ref. [39].

In Fig. 5, CFTD reveals that while the first mode starts
lasing at the same threshold as before, with a nominally
identical lasing frequency Ω1 = 20.3762, the second mode
lases at a threshold nearly 10 times larger with frequency
Ω2 = 20.5426. However, immediately after the turn-on
of the second mode, |εn(t)|2 ceases to reach a stationary
value (see Fig. 5(b)), implying the existence of multiple
frequencies in the respective spectra εn(ω). In lieu of
intensities, we plot in Fig. 5(a) the time-averaged quan-
tities Im, and indicate the size of oscillations, δ, around
the mean by shaded regions. As the pump approaches
the synchronization threshold Dth

sync, the oscillations in
the intensities grow (for the second mode, the oscillation
magnitude remains always of the order of the mean, im-
plying a clear limit cycle solution). For D0 > Dth

sync the
oscillations in the intensities abruptly disappear, and all
field amplitudes oscillate at a single, synchronized fre-

quency. The synchronization threshold is clearly defined
and corresponds to β = 22.98.
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FIG. 5. (Color online) (a) The steady-state emission inten-
sity of the two lasing modes. The first mode (red) reaches
threshold at the same pump power as Fig. 4 while the second
mode (blue) reaches threshold at more than ten times the
threshold of the first mode. At β = 21.91 the two modes begin
to converge, leading to a sharp rise (decline) in the blue (red)
mode accompanied by oscillations steadily increasing in am-
plitude δ (shown by the light red and blue shaded triangular
regions). After synchronizing, the modal intensities of the two
modes are comparable and they increase linearly. (b) The
top figure shows the large oscillations in time in each mode,
immediately before synchronization; the straight lines identify
the time-average of the oscillating signal and correspond to the
values marked in (a). The bottom figure shows the absolute
absence of these oscillations and a return to a steady-state
after synchronization.

A close look at the dynamical behavior of the system
near the synchronization threshold is provided in Fig. 6.
We follow here the PSDs of (a) the electric field and
(b) the D11 and D12 components of inversion as a func-
tion of the pump. Note that these spectra are shown
for only a small range of pump powers around the syn-
chronization threshold at β = 22.98. The largest peak in
Fig. 6(a) belongs to the dominant mode, shown in red in
Fig. 5(a), and the sub-dominant peak belongs to the mode
shown in blue in Fig. 5(a). As pump power is increased,
∆ decreases, and additional peaks enter the monitored
frequency window, separated by integer multiples of ∆
(with respect to the original laser frequencies Ωi). These
are the sharp beat frequencies observed in [39]. Note
that the highly non-linear sawtooth-like oscillations in
the intensities seen in Fig. 5(b) are closely linked with
this proliferation of frequencies in the power spectrum
(also observed in experiment [39]). As the pump power is
increased further, all these peaks approach each other in
a dramatic manner and at β = 22.64, recollect into the
single peak shown (in purple) at β = 22.98 and beyond.
This peak is seen to be shifted from the point of conver-
gence and from both primary frequency components, and
it is pulled towards the gain center. A slightly different
perspective is offered by the evolution of the power spec-
trum of the inversion [Fig. 6(b)] which also shows that the
off-diagonal frequency components (blue) converge into
the DC component (red) as they must if there is to remain
only one mode. The new mode that emerges beyond syn-
chronization is comprised of nearly equal contributions
from both CF states, which can be seen directly from the
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coming together of |ε1|2 and |ε2|2 in Fig. 5(a). The new
mode has a non-trivial spatial pattern, which is embodied
in a non-linearly generated phase between the two CF
states composing the new laser mode. More detail on this
point is provided in the Appendix.

20.65
20.15ω

24

20

β

0.2
-0.2ω - Ωa

24

20

β

a

b

FIG. 6. (Color online) (a) All red (blue) peaks belong to
the spectrum of ε1 (ε2). All peaks are seen to draw closer
and converge at β = 22.64 (marked by a star) and a single
purple peak representing the nearly identical spectra of ε1
and ε2 can be seen at β = 22.98 = Dth

sync (marked by a
pentagon) and beyond. (b) The red (blue) peaks belong to
the D11 (D12) component of inversion. Compared to the inset
in Fig. 3(d), the peaks of D12 are comparable in magnitude
to the DC peak from D11, representing the significant effect
of time-dynamical behavior in this calculation. Similar to
(a), all peaks converge upon synchronization and only a DC
component (purple) remains from D11 and D12.

It is interesting to see how all this looks from the
perspective of SALT. We provide a comparative study in
Fig. 7. The SIA appears to be valid everywhere outside
the comparatively narrow range of pump powers 15 .
β < 22.64 and the SALT-CFTD correspondence should
in principle be possible. Comparing the intensities in
Fig. 7 (a), however, we see what is a strinkingly large
discrepancy between SALT and CFTD for β ≈ 15. While
SALT finds two modes that turn on relatively close to
each other (Dth

2 ≈ 1.3Dth
1 ), CFTD shows that the second

mode does not turn on before β = 12.86. These seemingly
disparate results should however be taken with a grain of
SALT. We first point out that the two thresholds found
by SALT are identical to those found for γ‖ = 0.001
shown in Fig. 4. This is of course expected because SALT
equations do not depend on γ‖ when expressed in scaled
variables (Eq. (9)), which is what is plotted in the vertical
axis. The large discrepancy (despite SIA appearing to
be valid) is simply because SALT predicts the turn-on
of the second mode incorrectly, by a large margin. The
consequence is that the change in slope of the intensity

of the first mode that happens when the second mode
turns on is incorrectly predicted by SALT as well. The
seemingly large discrepancy between intensities by the
time the second mode turns on in CFTD at β = 12.86
is thus simply due to the incorrect slope. We note that
the pump range we are comparing is extremely large (and
could well be inaccessibly large for certain gain media)
– the synchronization threshold found is about 22 times
larger than the (lowest) laser threshold.

The culprit for the incorrect prediction by SALT of
the threshold of the second mode is interestingly still due
to the breakdown of SIA, but in a non-trivial manner.
While the oscillating corrections to the inversion are still
small for β . 15, they generate a polarization component
oscillating at Ω1 + ∆ i.e. Ω2, that is proportional to
the intensity of the first mode ∼ |Ψ(1)(r)|2 that does
become large as pump power is increased. It can be
shown that the threshold condition of the second mode is
changed by a term proportional to (γ‖/∆)|Ψ(1)(r)|2. An
appropriately modified set of two-mode SALT equations
can be found [27], and its implementation under the SVE
approximation would correctly reproduce the behavior
seen in CFTD for β . 15.

However, SALT will have nothing to say and will fail
qualitatively in capturing the physics in the range of pump
powers plotted in Fig. 6 very near the synchronization
threshold. This is directly linked with the appearance of
oscillating terms in the inversion (see Fig. 6(b)) that are
comparable in magnitude to the static terms. Note that
very interestingly the oscillations only appear in the off-
diagonal elements, while diagonal elements mostly remain
stationary. An analytic understanding of these features
will be presented in future work.

Post-synchronization, as seen in Fig. 7 for β > Dth
sync,

a properly conditioned SALT (discussed in the Appendix)
very precisely predicts the synchronized mode, both its
oscillation frequency and the spatial composition. This
again, is not surprising because now the SIA is valid to an
excellent approximation in a single-frequency regime of
lasing. We note however that SALT is unable to capture
the synchronization threshold accurately.

III. CONCLUSION

Here we’ve presented a computationally and concep-
tually efficient approach to isolating and studying time-
dependent effects in lasers. Using a spectral approach,
we fully treat the open nature of lasers and integrate
out the spatial variables, obtaining dynamical equations
for the time-dependent coefficients describing the electric
and polarization fields and the inversion. This delivers a
highly scalable multi-mode framework for analyzing in-
trinsically non-stationary phenomena in open resonators
of arbitrary spatial complexity, gain medium distribution,
and pump profile. The simplest of such effects, mode
synchronization, is studied here in a simple 1D cavity
featuring pairs of closely spaced quasi-degenerate modes
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FIG. 7. (Color online) SALT and CFTD calculations are
compared for the same 2-mode calculation as above both
before and after synchronization (γ‖ = 1). (a) A comparison
of the intensities as a function of pump. CFTD calculation
for intensities of the two lasing modes is shown in red/blue
circles while the SALT result is shown in red/blue crosses.
Purple triangles represent the sum of the intensities of the
two modes in the time-dependent calculation. The shaded
green (white) region marks the pump range before (after)
synchronization. Black squares show the SALT calculation
after synchronization. (b) A comparison of the frequencies as
a function of pump. Again, red/blue circles mark the time-
dependent calculation and red/blue crosses mark the SALT
calculation. Purple triangles (black squares) show the time-
dependent (SALT) synchronized solution. The two smaller
plots zoom in on regions of interest.

(small ∆). With small enough γ‖, we obtain a stationary
behavior once the transients die out, as postulated at the
outset. At larger γ‖, non-stationary behavior is demon-
strated in a narrow range of pump powers. We find that
the stationary inversion approximation is largely valid
in the parameter regimes investigated here, failing only
in a narrow range of pump powers, for very large γ‖/∆,
and for a special choice of the resonator structure. We
expect that CFTD will find application in particular in
modeling time-dependent phenomena in quasi-2D and 3D
laser structures, because of its efficient spectral decom-
position method that takes into account the openness of
the underlying resonator structure in essentially an exact
manner.
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V. APPENDIX
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FIG. 8. (Color online) (a) Frequencies as a function of the
pump are shown for the seed (black triangles), and the three
SALT solutions: the single-mode solution near the cavity
frequency (blue circles), the synchronized solution (green dia-
monds), and the unstable solution (red squares). (b) Intensities
are shown as a function of pump for the same color-scheme
as (a). (c) and (e) The distribution of seeds in phase space is
shown for ε1 and ε2; inset in (c) zooms in a region near the
real axis where the synchronized and unstable solutions are
found. (d) SALT solutions for ε1, which lie on the real line
due to the SALT gauge condition. (f) SALT solutions for ε2
and their distribution in phase space.

In this Appendix, our goal is to provide more detail on
the SALT-CFTD correspondence in Regime B. The SIA is
valid to a good approximation for β . 15 and β > 22.98,
and a SALT-CFTD correspondence in these power ranges
is therefore possible.

As discussed in Regime B and Fig. 7 above, in the pre-
synchronization regime the apparent sizable discrepancy
between SALT and CFTD solution is understood, and
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can be accounted for by a modified version of SALT [27].
We focus here on the SALT-CFTD correspondence in the
synchronized regime, where it is important to properly
condition SALT.

The standard SALT algorithm uses an ‘adiabatic’ sweep
of pump power (not in the dynamical but computational
sense). In other words, the solution in the previous step of
pump power D0 is fed as a seed for the non-linear solver
for the next pump power. This practical procedure speeds
up the computation in a dramatic way. If this were done
blindly, then the two SALT solutions found in Fig. 6 for
β < Dth

sync would simply extend without any apparent
discontinuity to larger values of pump power, missing the
synchronized solution. In fact, SALT has multiple single-
frequency fixed points for β > Dth

sync, two of these are
composed of a single CF mode (i.e. single pole) and the
other two are composed of a particular balanced superposi-
tion of two CF modes (multi-pole solution). Interestingly,
one of the latter is the synchronized solution found in the

long-time limit of CFTD (shown using green markers in
Fig. 8). This indicates that SALT does capture the fact
that there is a single stable oscillation frequency and that
the spatial structure of this laser mode is such that it is
a particular superposition of the two spatial modes that
were oscillating independently at lower powers. Fig. 8(d,f)
indicate that three of these fixed points are stable, and
one is unstable, as revealed with different initializations
of the SALT non-linear solver (Fig. 8(c,e)). The unstable
solution is a synchronized solution that is orthogonal to
the stable synchronized solution. The stability of the two
”single-pole” solutions (only one shown in the frequency
window plotted) from the point of view of SALT is a per-
ceived one, and is due to the neglect of the non-stationary
terms in the inversion that in turn changes the stability
structure of the solutions. We conclude that care must be
exercised when conditioning SALT solutions for regimes
outside its stated validity, even when the SIA appears to
be a good approximation.
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