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Abstract

The electronic, rotational, and vibrational components of the ultrafast optical nonlinearity in H2 and D2

are measured directly and absolutely at intensities up to the ionization threshold of ∼1014 W/cm2. As the

most basic nonlinear interactions of the simplest molecules exposed to high fields, these results constitute a

benchmark for high field laser-matter theory and simulation.
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I. INTRODUCTION

The high field nonlinear polarizability of diatomic molecules is a topic of practical and funda-

mental importance. From optical frequency conversion [1, 2] to simulations and experiments in

high intensity propagation [3–9], understanding the atomic and molecular behaviour under high

laser fields is crucial for applications. Unlike in monatomic gases, the nonlinear molecular response

cannot be characterized by a single coefficient at a given optical frequency: processes at several

timescales contribute, and so the response depends on pulse duration [7, 8, 10–13]. At the fastest

timescale, the laser pulsewidth τ is shorter than the fundamental vibrational period and the fastest

rotational response time, τ ≪ Ω−1
v ≪ ∆trot, where Ωv is the fundamental vibrational frequency

and ∆trot ∼ 2T/[jmax(jmax + 1)] is the fastest rotational timescale, where T and jmax are the

rotational revival period and the quantum number of the maximally populated rotational state.

Optical laser excitation of vibrational and rotational states can occur by two-photon Raman exci-

tation, but for commonly used ∼50-100 fs optical pump pulses, there is insufficient laser bandwidth

(h̄∆ω < 0.04 eV) to excite vibrational modes in molecules of interest for atmospheric propagation

(h̄Ωv ∼ 0.3 eV for N2), and only rotational states are excited [13]. For example, h̄/∆trot ∼ 0.03

eV in N2, where jmax ∼ 10 at room temperature. However, for femtosecond pulse filamentation in

gases, significant pulse self-shortening and spectral broadening can occur so as to excite vibrational

modes even in H2 (in which h̄Ωv ∼ 0.5 eV), driven by pulse spikes thought to be as short as several

femtoseconds [14, 15]. Nevertheless, to our knowledge there has never been a controlled experiment

directly measuring the full, time-resolved electronic and rovibrational nonlinear response of a light

molecule.

Here, we measure the full absolute electronic and rovibrational nonlinear response of H2 and

D2 to intense ultrashort optical pulses up to the ionization threshold of ∼ 1014 W/cm2. We use

the technique of single-shot supercontinuum spectral interferometry (SSSI) [13, 16]. The 40 fs

pump pulse inducing the nonlinear response is sufficiently short to impulsively drive the rotational

nonlinearity, but, on its own, cannot drive vibrational modes as discussed above. However, the

vibrational component of the nonlinearity contributes to a two-beam coupling phase shift and

energy transfer [17–19], even for a long pump pulse. We use this phase shift, which is independent

of the amplitude of a sufficiently weak probe pulse, to also measure the vibrational component of

the optical nonlinearity.

The nonlinear response can be explored using single-beam experiments [10, 12, 20], but pump-

probe techniques allow direct time-resolved observation of the response [13, 19, 21–23] or the
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response reconstructed with an auxiliary model for the pump spatio-temporal dependence [11, 24,

25]. Single-shot techniques, in particular, eliminate laser pulse-to-pulse fluctuations as a source of

error [13, 16, 19, 21–23, 26]. However, it is crucial in pump-probe experiments to properly account

for two-beam coupling effects, as we recently showed for plasma and rotational nonlinearities [19].

Two-beam coupling for the case of a vibrational nonlinearity is a primary focus of this paper.

II. EXPERIMENT

In our SSSI setup, a regenerative Ti:Sapphire amplifier produces 3 mJ, 40 fs pulses centered

near 800 nm. Supercontinuum (SC) pulses covering the range 500 nm to 700 nm are generated by

weakly focusing a few hundred µJ split from the main pulse into a gas cell filled with approximately

2.5 atm SF6 or Xe. The SC pulse is strongly chirped (see later) and split into probe and reference

pulses separated by 2 ps, which are then collinearly combined with an 800 nm pump beam using a

dichroic mirror, with the reference pulse earliest in time and the pump and probe pulses temporally

overlapping. The collinear pulses propagate through either a thin laser-drilled stainless steel gas

flow tube in a vacuum chamber, or through the backfilled chamber without the tube. The probe

pulse picks up the wavelength-dependent phase and amplitude change induced in the H2 or D2

gas by the intense pump pulse, which are then extracted from the spectral interference pattern

collected in an imaging spectrometer, which also provides transverse 1D spatial resolution (x-

direction). The absolute nonlinear change in refractive index ∆n(x, t) = (k0Leff)
−1∆Φ(x, t) is then

determined, where k0 is the probe central wavenumber, Leff is the effective gas interaction length,

and ∆Φ(x, t) is the space and time resolved phase shift extracted from the spectral interferogram.

Full details on SSSI and the determination of the absolute index shift are found in references

[13, 22].

An example of the full nonlinear response measured by SSSI is shown in Fig. 1a, which plots

the phase shift ∆Φ(x, t) measured for H2 and D2 in a backfilled chamber filled to ∼ 0.3 atm for

a peak pump intensity of ∼ 46 TW/cm2 and pulsewidth 40 fs, where the probe pulse is polarized

parallel or perpendicular to the pump. At this intensity the contribution of free electrons from

ionization is negligible, without a detectable long timescale negative phase shift on the probe

[21, 23]. As can be seen, there is a prompt response near the center of the pump envelope at t = 0,

with electronic and vibrational contributions (to be discussed), followed by a modulated delayed

response caused by the beating of a coherent superposition of quantized rotational states. For a

peak pump intensity of ∼ 80 TW/cm2 (just below the ionization thresholds of H2 and D2) and a
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thin gas target to ensure a uniform axial pump intensity [22], we use the spatially-varying pump

intensity imprinted on ∆Φ(x, t = 0) to plot the phase shift as a function of pump intensity for

the probe pulse polarized parallel to the pump pulse in Fig. 1b. As in N2 and the noble gases

[21, 23], the prompt nonlinear response of H2 or D2 is linear in the intensity, with no saturation

in the electronic response observed below the ionization threshold, implying that the nonlinear

coefficients measured in this paper apply up to that limit. As before [23], we define the ionization

threshold as the peak intensity level at which we observe a long-lived negative probe phase shift

above the noise floor.

III. ROTATIONAL RESPONSE

We first discuss the rotational response, as it solely contributes for times long after the pump

pulse. In H2 and D2, it depends strongly on the pulse duration. The probe phase shift ∆Φ(x = 0, t)

is shown as a function of pump pulse width in Figs. 2a and 2b as solid curves, for fixed pump pulse

energy of 34 µJ. For efficient excitation of a long-lived rotational coherence, the pump pulse width

should be shorter than the characteristic response period. Here, for a Gaussian pulse of duration

τ , the efficiency of excitation of the j → k rotational coherence is proportional to e−τ2(Ej−Ek)
2/h̄2

and its contribution to the optical response depends on the initial population in states j and k

[13], where the rotational energies, including the centrifugal correction, are Ej = hcBj(j + 1) −

hcDj2(j + 1)2, where j is the rotational quantum number, B is the rotational constant, and D is

the centrifugal constant. Note the reduced modulation amplitude of the rotational mode beating

as the pump pulse duration increases; longer pulses become increasingly less efficient at exciting

the rotational coherences. The discrete Fourier transform of ∆Φ(x = 0, t) for t > 200 fs for the

shortest pulse width of ∼ 40 fs is shown in Figs. 2c and 2d. We observe the j = 0 → 2 and 1 → 3

transitions in both H2 and D2 and additionally the j = 2 → 4 and 3 → 5 transitions in D2.

In our determination of the absolute nonlinear response of H2 and D2 to intense fields, it is

important to note that all parameters needed are provided by our SSSI measurements. For the

rotational component of the response, the needed parameters are B, D and ∆α = α‖ − α⊥, the

molecular polarizability anisotropy. First, the oscillation frequencies measured in Figs. 2c and 2d

yield best fits of B = 58.9 (±3.0) cm−1, D = 0.05 (±0.02) cm−1 for H2, and B = 29.3 (±1.5)

cm−1, D = 0.021 (±0.008) cm−1 for D2, in good agreement with the literature values [27, 28]. The

dominant source of uncertainty in the measurements of B and D is from the chirp of the probe

pulse, which determines the mapping between frequency and pump-probe delay [16]. Quantum
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FIG. 1: (Color online) (a) Pump-induced 1D space- and time-resolved phase shift ∆Φ(x, t) for a 46 TW/cm2,

40 fs pulse in H2 and D2 for the pump Ee and probe Ep polarizations parallel and perpendicular. To increase

the signal to noise [26], ∆Φ(x, t) is extracted from the average of 200 single-shot interferograms. (b) Intensity

dependence of the peak phase shift in H2 (+) and D2 (×) extracted from the spatial profile of the response

∆Φ(x, t = 0) for a pump pulse of peak intensity ∼ 80 TW/cm2.
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FIG. 2: (Color online) Experimental data on the rotational molecular response in H2 and D2. (a,b) Time-

dependent phase shift for Ee ‖ Ep as a function of pump pulse duration for (a) H2 and (b) D2. Density matrix

simulations of the rotational phase response (using fitted values of the rotational constants as described in

the text) are shown as dashed lines. (c,d) The discrete Fourier transform (DFT) of the phase shift at times

after the 40 fs pump pulse for (c) H2 and (d) D2, showing which rotational coherences are excited. The

green dashed curves in (c,d) show the DFT of the fitted density matrix simulations.

mechanical density matrix simulations [13, 29] of the H2 and D2 rotational response (for t > 100

fs, after the prompt response) employing these values of B and D are shown in Fig. 2 as dashed

lines, indicating excellent agreement.

Determination of ∆α, which scales (as (∆α)2) the dependence of the molecular polarizability

on the rotational response, requires an absolute measurement of ∆n(x, t). Here, the experiment of
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Fig. 1 was repeated using a calibrated thin gas target [22], and the refractive index modulation for

t > 200 fs was compared to density matrix simulations [13, 29] of the rotational response to arrive

at best fit values of ∆α = (3.0± 0.6)× 10−25 cm3 for H2 and ∆α = (3.0± 0.4)× 10−25 cm3 for D2.

These values are in agreement with previous scattering-based measurements [30] and calculations

[31].

IV. VIBRATIONAL RESPONSE

The rotational contribution to the nonlinearity arises from the increased ensemble polarizability

as the initially randomly oriented molecules are torqued into alignment with the optical field [13].

Similarly, a vibrational contribution arises from the optical force pushing the molecule’s constituent

atoms apart and is expressed as the dependence of the molecular polarizability tensor α on changes

Q in the internuclear separation, α(Q) = α(0)+(∂α/∂Q)Q forQ small compared to the equilibrium

internuclear distance of < 1 Å. The vibrational frequencies in H2 and D2 are in the∼ 100 THz range,

so to observe vibrational excitation directly (as we are able to do with the rotational excitation)

one would need a few-cycle optical pulse, as discussed earlier. For a pulse longer than a few

optical cycles, the vibrational response is adiabatic. The laser-induced molecular stretch Q, and

thus the stretch-induced change in the polarizability, is proportional to the pulse intensity, causing

an effectively prompt response. One could in principle infer the size of the vibrational response

by observing a reduced nonlinear refractive index for a few-cycle pulse compared with a longer

pulse [20]. It appears impossible to distinguish the vibrational nonlinearity from the electronic

nonlinearity through pumping with a 40 fs pulse alone. However, we are able to separate them

another way. In a pump-probe experiment, interference between the pump and probe beams leads

to the generation of a nonlinear refractive index grating, which modifies the nonlinear phase shift of

the probe beam. This two-beam coupling phase shift was recently discussed in detail for the bound

and free electronic and the rotational components of the optical nonlinearity in diatomic molecules

[19]. Here, we use the two-beam coupling phase shift from rovibrational modes to measure the

rovibrational component of the optical nonlinearity in H2 and D2.

We model the molecular interaction with a pump plus probe field E(r, t) =

(1/2)(êeAe(t)e
i(ke·r−ωet) + êpAp(t)e

i(kp ·r−ωpt)) + c.c., where subscripts e and p refer to pump and

probe, Ae(t) and Ap(t) are complex field envelopes (for a weak probe |Ap/Ae| ≪ 1), and we define

∆ω = ωp−ωe. As described in the Appendix, for an ultrashort optical pulse, the full rovibrational

model [32] can be well approximated by replacing the j-dependent vibrational frequencies by a
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single vibrational mode of frequency Ωv, so that the total vibrational nonlinear response appears

as the polarization Pvib(t) = N(∂α/∂Q)〈Q〉tE, where α = (1/3)α‖ + (2/3)α⊥, N is the molecular

density, and 〈Q〉t is the time-dependent ensemble-averaged molecular stretch, given by

〈Q〉t ≈
1

4µΩv

∂α

∂Q

∫ t

−∞
sin[Ωv(t

′ − t)]E2dt′, (1)

where µ is the molecular reduced mass.

Inserting the expression for E into Eq. (1) and keeping slowly varying terms up to first order

in the probe field, we find

〈Q〉t = 〈Q〉st + (〈Q〉gt e
i∆k·r + c.c.), (2)

where ∆k = kp − ke, and

〈Q〉st =
1

4µΩv

∂α

∂Q

∫ t

−∞
sin[Ωv(t

′ − t)]|Ae(t
′)|2dt′, (3)

〈Q〉gt =
1

8µΩv

∂α

∂Q

∫ t

−∞
sin[Ωv(t

′ − t)]A∗
e(t

′)Ap(t
′)e−i∆ωt′dt′. (4)

The superscripts denote “smooth” and “grating” [19, 33]. The former refers to the ensemble

average stretch induced by the pump field only, and the latter to the stretch contribution induced

by interference between the pump and probe fields. These stretch terms are the origin of the

vibrational nonlinear response contributing to the polarization oscillating at frequencies near ωp

(which is measured in SSSI),

Pvib
p (t) = N

∂α

∂Q
[〈Q〉stAp(t)e

ikp·r−iωpt + 〈Q〉gtAe(t)e
ikp·r−iωet]. (5)

For pump pulses of duration longer than the vibrational period 2πΩ−1
v ∼ 8-12 fs in H2 and

D2, which applies to virtually all ultrashort pulse optical light sources, the vibrational response

is effectively instantaneous. We therefore consider the probe instantaneous nonlinear polarization

Pinst
p (t) = χeffAp(t)e

i(kp ·r−ωpt), where the effective nonlinear susceptibility χeff is related to the

nonlinear index shift by 2πχeff = ∆n = n2Ie, with n2 split into electronic plus vibrational com-

ponents: n2 = n2,elec + n2,vib, with n2,vib = ns2,vib + ng2,vib. Note that for a nonresonant electronic

response, the smooth and grating terms are the same, so n2,elec = ns2,elec + ng2,elec = 2ns2,elec. The

nonlinear refractive index for a weak probe pulse is a factor of two larger than for a pulse acting

on itself [19].

To gain immediate physical insight, we first consider the limit of CW pulses. Then we have for

the smooth component, using Eq. (3),

〈Q〉st =
1

4µΩv

∂α

∂Q
|Ae|

2

∫ t

−∞
sin[Ωv(t

′ − t)]dt′ =
1

4µΩ2
v

∂α

∂Q
|Ae|

2, (6)
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and for the grating term, using Eq. (4),

〈Q〉gt ≈ −
1

4µΩv

∂α

∂Q
A∗

eAp

∫ t

−∞
sin[Ωv(t

′ − t)]e−i∆ωt′dt′

≈ −
1

4µ(∆ω2 − Ω2
v)

∂α

∂Q
A∗

eApe
−i∆ωt. (7)

These expressions then yield

ns2,vib =
4π2N

n0cµΩ2
v

(

∂α

∂Q

)2

, (8)

ng2,vib =
4π2N

n0cµ(Ω2
v −∆ω2)

(

∂α

∂Q

)2

. (9)

Note that the vibrational nonlinear response picked up by the probe is greatly enhanced by

the grating term ng2,vib for ∆ω ∼ Ωv, and we exploit the dependence on ∆ω/Ωv of this resonant

two-beam coupling effect to measure the vibrational component of the refractive index. We note

that in continuous wave experiments, it is well known that the vibrational nonlinearity depends

strongly on such resonant coupling [34, 35]. Here we use the effect in the ultrafast domain to

separate the electronic and vibrational contributions to the prompt nonlinearity. The expression

above for ng2,vib is singular when ∆ω = Ωv because of the assumption of infinitely long pulses. For

a long, finite pump pulse of the form Ae(t) = Ae0e
−t2/(2t2e) (where te ≫ Ω−1

v ), it is straightforward

to derive a well-behaved expression for the grating vibrational nonlinearity by integrating Eq. (3),

ng2,vib =
4π2Nte
n0cµΩv

[F (te(∆ω − Ωv))− F (te(∆ω +Ωv))]

(

∂α

∂Q

)2

, (10)

where F (x) is the Dawson function.

A very useful representation of our resonant two-beam coupling results is a 2D plot of SC

probe spectral phase shift vs. ∆ω = ωp,overlap − ωe, where ωp,overlap is the probe frequency which

overlaps in time with the pump pulse, as shown schematically in Fig. 3a. Measurements and

simulations of SC probe phase shift vs. ∆ω in H2 are shown in Fig. 3b and for D2 in Fig. 3c.

The time delay of the SC frequency component at ω (left axes) is given by φ′(ω), where φ(ω)

is the chirped SC spectral phase (see Fig. 3 caption). For each value of ∆ω, scanning top to

bottom in the plots (negative to positive delay) shows the SC phase shift abruptly changing as the

molecular nonlinearity is excited by the arriving pump pulse. The initial perturbation is dominated

by the electronic and vibrational response, followed at longer times by rotational revivals. Near

∆ω ∼ 0.78 fs−1 in H2 (λp,overlap = 600 nm) and ∆ω ∼ 0.55 fs−1 in D2 (λp,overlap = 645 nm),

the phase changes strongly, consistent with resonant two-pulse coupling with molecular resonances

between the ground and first vibrational excited states. The frequency of the nth vibrational state
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FIG. 3: (Color online) Phase shift of chirped SC probe vs. ∆ω = ωp,overlap−ωe. The measured probe spectral

phase is φ(ω) = β2(ω − ω0)
2 + β3(ω − ω0)

3, with β2 = 1675 fs2, β3 = 396 fs3, and ω0 = 3.05 fs−1. The time

delay of the SC frequency component at ω (left axes) is given by φ′(ω). (a) Probe/reference SC interference

spectrum with variably delayed pump pulse superposed. The top axis shows the time corresponding to each

frequency component. (b) Experimental and best-fit rovibrational simulation plots for (b) H2 and (c) D2.

The best fit simulations enabled extraction of n2,elec and ∂α/∂Q, shown in Table I.

is given by ωn = (n+1/2)ωe− (n+1/2)2ωexe, where ωe (not to be confused with the pump central

frequency) is the harmonic frequency and ωexe is the first anharmonicity constant [27]. In H2,

ωe = 0.829 fs−1 and ωexe = 0.023 fs−1 and in D2, ωe = 0.567 fs−1 and ωexe = 0.012 fs−1 [28].

For the ground to first excited vibrational state transition, Ωv = ωe − 2ωexe, so the resonance

is predicted to occur at Ωv = 0.783 fs−1 in H2 and Ωv = 0.543 fs−1 in D2, consistent with our

experimental data.
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TABLE I: Measured electronic Kerr coefficient ns
2,elec at 1 atm (at probe wavelength of 600 nm and pump

wavelength of 800 nm), polarizability anisotropy ∆α, and polarizability derivative ∂α/∂Q. Comparison is

made with previous experimental and theoretical work. The rightmost column shows n2 estimates at 1 atm

based on our experimental results for a long pulse at 800 nm.

Gas ns
2,elec ∆α ∂α/∂Q n2 at 800 nm

(10−20 cm2/W) (10−25 cm3) (10−16 cm2) (10−20 cm2/W)

This expt. Ref. [35] This expt. Ref. [30] This expt. Ref. [31] Ref. [39] n2,rot n2,vib n2,tot

H2 6.5± 1.0 6.37 3.0± 0.6 3.14 1.3± 0.2 1.24 1.30± 0.10 2.7 1.0 10.2

D2 5.8± 1.3 6.20 3.0± 0.4 2.99 1.4± 0.3 1.22± 0.10 3.9 1.2 10.9

V. EXTRACTION OF NONLINEAR COEFFICIENTS

We previously found the rotational response parameters ∆α, B, andD from the response at time

delays following the pump pulse. Fitting the one-mode vibrational simulation to the measurements

of Fig. 3 now enables extraction of the two remaining nonlinear coefficients, n2,elec and ∂α/∂Q.

The best fit coefficients are listed in Table I, with their associated simulation results shown in

the right-hand panels of Figs. 3b and 3c. The n2,elec and n2,vib values we find are consistent with

previous measurements using long, low intensity pulses based on harmonic generation [36], the

optical Kerr effect [37], and coherent anti-Stokes Raman scattering [38], and the values of ∂α/∂Q

are consistent with previous calculations [31] and Raman scattering measurements [39]. The most

important source of error is the determination of the pump laser intensity, which relies on accurate

measurement of the spatial pump beam profile at the gas target.

The total prompt (non-rotational) nonlinear refractive index n2,prompt = 2ns2,elec+n
s
2,vib+n

g
2,vib

experienced by the probe in H2 is plotted as a function of ∆ω in Fig. 4a, as calculated for a

40 fs pump pulse and a broad chirped SC probe, both using the analytical expression [Eq. (10)]

and calculated numerically. The electronic and vibrational nonlinear coefficients are taken from

Table I. The electronic component of the nonlinear index 2ns2,elec is shown as a red dashed line for

comparison.

As described earlier, the nature of the rotational and vibrational response depends on the pulse

width; pulses that are too long to impulsively excite rotational or vibrational modes experience an

effective adiabatic response. To illustrate this, we calculate an intensity-weighted effective nonlinear

coefficient for a pulse of the form I(t) = I0g(t), where g(t) = exp(−t2/t2e),

n2,eff =
λ

2πLI0

∫∞
−∞∆Φ(t)g(t)dt
∫∞
−∞ g(t)dt

, (11)
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FIG. 4: (Color online) Calculated prompt nonlinear index n2,prompt = 2ns
2,elec + ns

2,vib + ng
2,vib of H2

experienced by the probe as a function of the pump-probe beat frequency ∆ω for a 40 fs pulse centered at

800 nm, calculated using Eq. (10) (dashed blue) and numerically (solid green). The electronic component

2ns
2,elec is shown as a red dotted line for comparison.

where λ is the laser wavelength, I(t) is the pulse intensity envelope, and ∆Φ(t) is the calculated

time-dependent phase shift over an interaction length L. The effective Kerr coefficient n2,eff is

plotted as a function of pulse full width at half maximum in H2 and D2 in Fig. 5.

The electronic component ns2,elec in each gas is shown as dashed lines. It can be seen that even at

the shortest pulse durations simulated, the effective nonlinearity is larger than ns2,elec because of the

vibrational contribution. Near 8 fs, n2,eff is approximately ns2,elec + n2,vib (shown as dotted lines).

For longer pulses, the rotational response contributes, and the effective nonlinearity eventually

levels off at ns2,elec + n2,vib + n2,rot (shown as dash-dotted lines).

An expression for the rotational adiabatic coefficient n2,rot, analogous to the vibrational expres-

sion given here [Eq. (8)], is given in Ref. [22]. Values of n2,rot and n2,vib and the total long pulse

nonlinear coefficient n2,tot = ns2,elec + n2,rot + n2,vib are given in the rightmost columns of Table I.

The long pulse coefficients n2,rot and n2,vib apply to pulses of duration greater than 1/f , where f is

the lowest frequency vibrational or rotational mode. Given the rotational mode spectrum shown in

Figs. 2c and 2d, the pulse duration above which the rotational response can be considered adiabatic

is ∼ 100 fs in H2 and ∼ 200 fs in D2, in agreement with the results in Fig. 5. Given the vibrational

mode frequencies, the vibrational adiabatic coefficient n2,vib should apply to pulses longer than
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FIG. 5: (Color online) Pulse width dependent effective n2 in H2 (solid blue) and D2 (solid green) calculated

from the experimental results. Horizontal dashed lines show ns
2,elec, dotted lines show ns

2,elec + n2,vib, and

dash-dotted lines show ns
2,elec + n2,vib + n2,rot for H2 (blue) and D2 (green).

approximately ∼ 8 fs in H2 and ∼ 12 fs in D2. These arguments support the results in Fig. 5.

VI. CONCLUSIONS

In summary, we have demonstrated single shot measurement of the full absolute electronic and

rovibrational nonlinear response of H2 and D2 to intense ultrashort optical pulses up to the ion-

ization threshold of ∼ 1014 W/cm2. The presence of the electronic, rotational, and vibrational

contributions all in one set of 2D experimental traces enables the determination of the relative

contribution of each to the nonlinear response. Importantly, one does not need a few femtosec-

ond pump pulse to excite the vibrational nonlinearity; our pump-probe configuration promotes its

excitation through two-beam coupling, even for much longer pump pulses. The nonlinear coeffi-

cients measured are applicable over a very wide range of laser pulse widths and intensities below

the ionization threshold, and because they apply to the very simplest molecules they constitue a

fundamental benchmark for theory and simulation.

13



Acknowledgments

The authors thank Y.-H. Chen for early discussions. This research was supported by the

National Science Foundation, the Air Force Office of Scientific Research, and the Army Research

Office.

Appendix A: Rovibrational model

We consider a nonrigid rotor system for a diatomic molecule where the atoms are assumed

to be bound by a spring with a natural frequency Ωv. This assumption is valid as long as only

the lowest two vibrational states are involved, which is a very good approximation for describing

the experimental conditions. We define Q as the change in atomic separation with respect to

equilibrium RE and θ and φ as polar and azimuthal angles, respectively. Eigenfunctions of the

nonrigid rotor are [32] ψnjm(Q, θ, φ) = Fnj(Q)Y m
j (θ, φ), where

Fnj(Q) =
1

2nn!

(

2µΩv

πh̄

)1/4

exp

[

−
µΩv

h̄

(

Q−
D

B
REj(j + 1)

)2
]

×Hn

[

(

2µΩv

h̄

)1/2(

Q−
D

B
REj(j + 1)

)2
]

, (A1)

Y m
j (θ, φ) is a spherical harmonic, and Hn(R) is a Hermite-Gaussian function. Here, n is the

vibrational quantum number, j is the total angular momentum quantum number, and m is the

quantum number for angular momentum along the z direction. The corresponding energies are

h̄ωnj = h̄Ωv

(

n+
1

2

)

+
h̄2j(j + 1)

µR2
E

−
h̄4j2(j + 1)2

Ω2
vµR

6
E

. (A2)

We treat the optical field E as a perturbation, using the potential

V = −
1

2
E2(α⊥ +∆α cos2 θ)−

1

2
E2 ∂α⊥

∂Q
Q−

1

2
E2 ∂∆α⊥

∂Q
Q cos2 θ. (A3)

Here α⊥ is the polarizability perpendicular to the optical axis and ∆α is the polarizability

anisotropy, both for the lowest vibrational state (we assume that the molecular polarizability

is independent of rotational state).

To find the nonlinear optical response for the probe field parallel to the pump field, we need

to calculate the polarization from the time-dependent, ensemble averaged induced dipole moment

along the optical field direction,

P (t) = N〈p〉t =

(

α⊥ +∆α〈cos2 θ〉t +
∂α⊥

∂Q
〈Q〉t +

∂∆α

∂Q
〈Q cos2 θ〉t

)

E(t) (A4)
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We find the expressions in angle brackets on the right hand side from the density matrix ρ, assuming

a thermally populated initial state. It is sufficient to calculate the first-order perturbation solution

ρ1 in V , which satisfies ∂ρ1njmn′j′m′/∂t = −i(ωnj − ωn′j′)ρ
1
njmn′j′m′ + (i/h̄)[ρ0, V ]njmn′j′m′ .

1. Rotational

The rotational response has been discussed in detail in previous papers [13, 19], and except for

the centrifugal change in rotational energies, it is unaffected by the nonrigidness of the molecule.

Therefore we just give the solution,

〈cos2 θ〉t =
1

3
+

2

15

∆α

h̄

∑

nj

j(j − 1)

2j − 1

(

ρ0n,j,n,j
2j + 1

−
ρ0n,j−2,n,j−2

2j − 3

)

∫ t

−∞
sin[ωn,j,n,j−2(t

′ − t)E2(t′)dt′,

(A5)

where ωn,j,n′,j′ = ωnj − ωn′j′ and ρ
0
n,j,n,j is the initial population in state (n,j).

2. Rovibrational

Using

〈n|Q|n′〉 =

(

h̄

4µΩv

)1/2

[(n′ + 1)δn,n′+1 + n′1/2δn,n′−1], (A6)

the purely vibrational term in the potential, in the basis of eigenfunctions, is

V vib
nn′ = −

1

2

∂α⊥

∂Q
〈n|Q|n′〉E2 = −

1

2

∂α⊥

∂Q

(

h̄

4µΩv

)1/2

[(n′ + 1)δn,n′+1 + n′1/2δn,n′−1]E
2. (A7)

The nonzero first-order perturbation solutions for this term in the potential are

ρ1n,n−1 = −
i

2h̄

∂α⊥

∂Q

(

h̄

4µΩv

)1/2

n1/2(ρ0n,n − ρ0n−1,n−1)

∫ t

−∞
exp[iωn,n−1t

′]E2(t′)dt′ (A8)

ρ1n,n+1 = −
i

2h̄

∂α⊥

∂Q

(

h̄

4µΩv

)1/2

(n+ 1)1/2(ρ0n,n − ρ0n+1,n+1)

∫ t

−∞
exp[iωn,n+1t

′]E2(t′)dt′. (A9)

In the basis of eigenfunctions, the rotational-vibrational term in the potential is

V rovib
njmn′j′n′ = −

1

2

∂∆α

∂Q
〈n|Q cos2 θ|n′〉E2 (A10)

= −
1

2

∂∆α

∂Q

(

h̄

4µΩv

)1/2

[(n′ + 1)δn,n′+1 + n′1/2δn,n′−1]

×

[

Bm
+ (j′)δj,j′+2 +Bm

− (j′)δj,j′−2 +

(

1

3
+Bm

0 (j′)

)

δjj′

]

E2, (A11)
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where Bm
+ (j), Bm

− (j), and Bm
0 (j) are given in [19]. The nonzero first-order perturbation solutions

for this term in the potential are

ρn,j,n−1,j = Kn1/2
(

1

3
+Bm

0 (j)

)

(

ρ0n,j,n,j − ρ0n−1,j,n−1,j

)

∫ t

−∞
eiωn,j,n−1,j (t′−t)E2(t′)dt′

ρn,j,n+1,j = K(n+ 1)1/2
(

1

3
+Bm

0 (j)

)

(

ρ0n,j,n,j − ρ0n+1,j,n+1,j

)

∫ t

−∞
eiωn,j,n+1,j(t

′−t)E2(t′)dt′

ρn,j,n−1,j−2 = Kn1/2Bm
+ (j − 2)

(

ρ0n,j,n,j − ρ0n−1,j−2,n−1,j−2

)

∫ t

−∞
eiωn,j,n−1,j−2(t

′−t)E2(t′)dt′

ρn,j,n+1,j−2 = K(n+ 1)1/2Bm
+ (j − 2)

(

ρ0n,j,n,j − ρ0n+1,j,n+1,j

)

∫ t

−∞
eiωn,j,n+1,j−2(t

′−t)E2(t′)dt′

ρn,j,n−1,j+2 = Kn1/2Bm
− (j + 2)

(

ρ0n,j,n,j − ρ0n−1,j+2,n−1,j+2

)

∫ t

−∞
eiωn,j,n−1,j+2(t′−t)E2(t′)dt′

ρn,j,n+1,j+2 = K(n+ 1)1/2Bm
− (j + 2)

(

ρ0n,j,n,j − ρ0n+1,j+2,n+1,j+2

)

∫ t

−∞
eiωn,j,n+1,j+2(t′−t)E2(t′)dt′

where K = −ih̄1/2/[2h̄(4µΩv)
1/2](∂∆α/∂Q).

Adding all these terms and using 〈Q〉t = Tr[ρ1(t)Q],

〈Q〉t =
∑

n,j

n

4µΩv

(

∂α⊥

∂Q
+

1

3

∂∆α

∂Q

)

(ρ0n,j,n,j − ρ0n−1,j,n−1,j)

∫ t

−∞
sin[ωn,j,n−1,j(t

′ − t)]E2dt′. (A12)

Further assuming that only the lowest vibrational state is initially populated, i.e. ρ0njnj = 0 for all

n > 0, we find

〈Q〉t = −
∑

j

1

4µΩv

(

∂α⊥

∂Q
+

1

3

∂∆α

∂Q

)

ρ00,j,0,j

∫ t

−∞
sin[ω1,j,0,j(t

′ − t)]E2dt′. (A13)

We can express this in terms of an isotropic polarizability derivative

∂α

∂Q
=
∂α⊥

∂Q
+

1

3

∂∆α

∂R
, (A14)

as

〈Q〉t = −
∑

j

1

4MΩv

∂α

∂Q
ρ00,j,0,j

∫ t

−∞
sin[ω1,j,0,j(t

′ − t)]E2dt′. (A15)

Using 〈Q cos2 θ〉t = Tr[ρ1(t)Q cos2 θ], we find

〈Q cos2 θ〉t =
1

4µΩv

∑

n,j

n

3

[

∂α⊥

∂Q
+

1

3

(

1 +
4

5

j + 1

(2j − 1)(2j + 3)

)

∂∆α

∂Q

]

(ρ0n,j,n,j − ρ0n−1,j,n−1,j)

∫ t

−∞
sin[ωn,j,n−1,j(t

′ − t)]E2dt′

+
1

4µΩv

∑

n,j

2

15

∂∆α

∂Q

j(j − 1)

2j − 1

[

n

(

ρ0n,j,n,j
2j + 1

−
ρ0n−1,j−2,n−1,j−2

2j − 3

)

∫ t

−∞
sin[ωn,j,n−1,j−2(t

′ − t)]E2dt′

+(n+ 1)

(

ρ0n,j,n,j
2j + 1

−
ρ0n+1,j−2,n+1,j−2

2j − 3

)

∫ t

−∞
sin[ωn,j,n+1,j−2(t

′ − t)]E2dt′

]

. (A16)
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Restricting the initial population to n = 0, we have

〈Q cos2 θ〉 =
1

4µΩv

∑

j

1

3

[

∂α⊥

∂Q
+

1

3

(

1 +
4

5

j + 1

(2j − 1)(2j + 3)

)

∂∆α

∂Q

]

(−ρ00,j,0,j)

∫ t

−∞
sin[ω1,j,0,j(t

′ − t)]E2dt′

+
1

4µΩv

∑

j

2

15

∂∆α

∂Q

j(j − 1)

2j − 1

[

−
ρ00,j−2,0,j−2

2j − 3

∫ t

−∞
sin[ω1,j,0,j−2(t

′ − t)]E2dt′

+
ρ00,j,0,j
2j + 1

∫ t

−∞
sin[ω0,j,1,j−2(t

′ − t)]E2dt′

]

. (A17)

Using the isotropic polarizability derivative as before,

〈Q cos2 θ〉 = −
1

4µΩv

∑

j

1

3

[

∂α

∂Q
+

(

4

15

j + 1

(2j − 1)(2j + 3)

)

∂∆α

∂Q

]

ρ00,j,0,j

∫ t

−∞
sin[ω1,j,0,j(t

′−t)]E2dt′

+
1

4µΩv

∑

j

2

15

∂∆α

∂Q

j(j − 1)

2j − 1

[

ρ00,j−2,0,j−2

2j − 3

∫ t

−∞
sin[ω1,j,0,j−2(t

′ − t)]E2dt′

−
ρ00,j,0,j
2j + 1

∫ t

−∞
sin[ω0,j,1,j−2(t

′ − t)]E2dt′

]

. (A18)

3. Total rovibrational model

Combining Eqs. (A15) and (A18), the rovibrational terms in Eq. (A4) are

〈Q〉
∂α⊥

∂Q
+ 〈Q cos2 θ〉

∂∆α

∂Q
= −

1

4µΩv







∂α⊥

∂Q

∑

j

∂α

∂Q
ρ00,j,0,j

∫ t

−∞
sin[ω1,j,0,j(t

′ − t)]E2dt′

+
∂∆α

∂Q

∑

j

1

3

[

∂α

∂Q
+

(

4

15

j + 1

(2j − 1)(2j + 3)

)

∂∆α

∂Q

]

ρ00,j,0,j

∫ t

−∞
sin[ω1,j,0,j(t

′ − t)]E2dt′

+
∂∆α

∂Q

∑

j

2

15

∂∆α

∂Q

j(j − 1)

2j − 1

[

ρ00,j−2,0,j−2

2j − 3

∫ t

−∞
sin[ω1,j,0,j−2(t

′ − t)]E2dt′

−
ρ00,j,0,j
2j + 1

∫ t

−∞
sin[ω0,j,1,j−2(t

′ − t)]E2dt′

]}

, (A19)
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and we can group terms and simplify this to

〈Q〉
∂α⊥

∂Q
+ 〈Q cos2 θ〉

∂∆α

∂Q
= −

1

4µΩv







(

∂α

∂Q

)2
∑

j

ρ00,j,0,j

∫ t

−∞
sin[ω1,j,0,j(t

′ − t)]E2dt′

+

(

∂∆α

∂Q

)2
∑

j

(

4

45

j + 1

(2j − 1)(2j + 3)

)

ρ00,j,0,j

∫ t

−∞
sin[ω1,j,0,j(t

′ − t)]E2dt′

+

(

∂∆α

∂Q

)2
∑

j

2

15

j(j − 1)

2j − 1

[

ρ00,j−2,0,j−2

2j − 3

∫ t

−∞
sin[ω1,j,0,j−2(t

′ − t)]E2dt′

−
ρ00,j,0,j
2j + 1

∫ t

−∞
sin[ω0,j,1,j−2(t

′ − t)]E2dt′

]}

. (A20)

In calculating the vibrational polarization (see Eq. (A4)) for pump polarization parallel to probe,

we neglect the terms containing ∂∆α/∂Q, because the magnitudes of ∂α/∂Q and ∂∆α/∂Q are of

the same order, and the terms containing ∂∆α/∂Q contain additional factors on the order of 1/10.

This leads to

Pvib ≈ −





N

4µΩv

(

∂α

∂Q

)2
∑

j

ρ00,j,0,j

∫ t

−∞
sin[ω1,j,0,j(t

′ − t)]E2dt′



E. (A21)

If we assume that all of the vibrational frequencies connecting various j states ω1,j,0,j ≈ Ωv, we

can use
∑

j ρ0,j,0,j = 1, yielding

Pvib ≈ −

[

N

4µΩv

(

∂α

∂Q

)2 ∫ t

−∞
sin[Ωv(t

′ − t)]E2dt′

]

E (A22)

≈ N〈Q〉t

(

∂α

∂Q

)

E, (A23)

where 〈Q〉t is given by Eq. (1).
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