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The year 1982 is often credited as the year that theoretical quantum computing was started with a
‘keynote speech’ by Richard Feynman who proposed a universal quantum simulator, the idea being
that if you had such a machine you could in principle “imitate any quantum system, including the
physical world”. With that in mind, we present a new algorithm for a continuous-variable quantum
computing architecture which gives an exponential speedup over the best-known classical methods.
Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonic quantum
field theory, a problem that is believed to be hard using a classical computer. Building on this, we
give an experimental implementation based on continuous-variable states that is feasible with today’s
technology.

PACS numbers: 42.50.Ex, 03.70.+k, 42.50.Dv, 03.67.Lx

I. INTRODUCTION

Quantum field theory (QFT) [1] unites the discipline
of quantum mechanics with special relativity to provide
us with our best understanding of the world around us
and what it is made of; notwithstanding that it has yet
to be reconciled with general relativity. Typically, the
best-known algorithms for calculations in field theories
are very difficult on classical computers. One method is
lattice field theory [2] which discretizes space into a fi-
nite set of points. Unfortunately, classical computations
on the lattice increase exponentially with the number of
sites, making it unfeasible. Quantum algorithms [3] have
been proposed to accomplish a variety of fundamental
tasks more quickly than any known classical counter-
part, most famously Shor’s factoring algorithm [4] and
Grover’s searching algorithm [5]. When Feynman first
proposed the notion of quantum computing [6], he had a
different idea in mind, namely the ability of one quantum
system to simulate another [7].

In this paper, we keep true to the spirit of Feynman’s
vision by presenting a method of calculating scattering
amplitudes in a scalar bosonic QFT with a quartic self-
interaction on a quantum computing substrate that faith-
fully encodes the field, i.e., a continuous-variable (CV)
quantum computer. In fact, we show one can obtain an
exponential speedup over the best known classical algo-
rithms. A discrete version of this algorithm was originally
shown in Refs. [8, 9] for a quantum computer based on
qubits. Further work extended this result to fermionic
QFTs [10], as well as using wavelets for multi-scale sim-
ulations [11]. Quantum simulators open the door to ad-
dressing challenging problems in field theories that would
otherwise be impossible with classical methods [12] and
this paper presents an important step in that direction.
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The field of quantum computing [13] using CVs [14, 15]
has also progressed significantly in the last few years.
From its original conception in 1999 [14], progress be-
gan to accelerate after a cluster state [16] version was
established in 2006 [17, 18], leading to something signifi-
cantly more tangible for experimentalists. This resulted
in numerous proof-of-principle demonstrations [19–22],
currently culminating in an extremely large 10,000 node
cluster [23] created ‘on-the-go’ along with a 60 node clus-
ter created simultaneously [24]. From a theoretical per-
spective, much progress has been made [25–34]. However,
one area that is significantly underdeveloped is that of
algorithms for a CV quantum computer. Thus far there
only exists CV versions of quantum searching [36] and
the Deutsch-Jozsa algorithm [37–40].

Typically, q and p are the CVs spreading across all
real numbers. To encode them in qubits, one needs a
whole register of qubits at each point in space. However,
with CVs, there is a 1-to-1 mapping to qumodes (the CV
equivalent of a qubit). In fact it is arguable that a CV
quantum computer is the natural choice for such a QFT
problem given that the fields are continuous variables.
Thus, the value of the field at a given point in space can
be mapped onto a qumode naturally. If qubits are used,
instead, the qumode needs to be replaced by a register
of M qubits which only allows the field to take on 2M

discrete values. Brennen et al. describe both possibil-
ities in Ref. [11], although they do not explain how to
implement the quartic phase gate with CVs, which we
do here. Furthermore, the quartic vertex in wavelets be-
comes very complicated. Implementing it would require
gates acting on more than two modes (resulting in loga-
rithmic overhead in complexity).

Another benefit to our approach is in the development
of the initial state. Here we show how to create the ini-
tial CV state as well as suggesting an experimental im-
plementation based on standard linear optics.

Our paper is structured in the following way. In Sec. II,
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we discretize space for a one-dimensional scalar bosonic
QFT while leaving the field and time as continuous pa-
rameters. Next, we show how to generate the initial
cluster state using only Gaussian operations in Sec. III.
In Sec. IV we outline the steps necessary to compute
a scattering amplitude including the required measure-
ment. We provide an explicit experimental implementa-
tion in Sec. V. Finally, the benefits of our approach over
classical methods are discussed in Sec. VI.

II. DISCRETIZATION IN ONE-DIMENSION

We consider a relativistic scalar field φ in one spa-
tial dimension including a quartic self-interaction. We
shall outline the discretization specifically in the one-
dimensional case so as not to clutter the notation un-
necessarily, but generalization to higher dimensions is
straightforward and is discussed in Appendix D. We note
that the field φ is a function of x and t (time), φ(x, t).
All three parameters are continuous. In our approach,
we discretize x, but not φ or t. In the case of qubits, one
would discretize x and φ, but not t. In classical lattice
calculations, one discretizes all three φ, x, and t.

In the continuum, the one-dimensional free scalar QFT
is given by the Hamiltonian

H0 =
1

2

∫ L

0

dx

[
π2 +

(
∂φ

∂x

)2

+m2φ2

]
(1)

where φ is the scalar field and π the conjugate momentum
field. They obey commutation relations [φ(x), π(x′)] =
iδ(x− x′) where we choose units in which ~ = 1.

We discretize space by letting x = na, n =
0, 1, . . . , N−1, where a is the lattice spacing and L = Na
is the finite length of the spatial dimension (L� a). We
choose units in which a = 1, for simplicity, and denote
Qn = φ(x), Pn = π(x). The discretized variables obey
standard commutator relations, [Qn, Pm] = iδnm. The
Hamiltonian becomes

H0 =

N−1∑
n=0

P 2
n +m2Q2

n

2
+

1

2

N−1∑
n=0

(Qn −Qn+1)2 (2)

where we employed periodic boundary conditions and de-
fined QN ≡ Q0.

We can write this Hamiltonian as

H0 =
1

2
PTP +

1

2
QTVQ (3)

where P ≡ [P0, P1, . . . , PN−1]T and Q ≡
[Q0, Q1, . . . , QN−1]T . The eigenvalues of the matrix V
and the components of the corresponding normalized
eigenvectors en are, respectively, ω2

n = m2 + 4 sin2 nπ
N ,

and enk = 1√
N
e2πikn/N , k = 0, . . . , N − 1. Notice that

the massless case is special because it contains a zero
mode (for m = 0, ω0 = 0), so the matrix V is not

invertible. To avoid the problems that arise, we can shift
the mass by a small amount ∼ 1/N , which vanishes in
the continuum limit (N →∞).

We also wish to add a quartic interaction, Hint =
λ
4!

∫ L
0
dxφ4 → λ

4!

∑
nQ

4
n which necessitates the addition

of a mass counter term Hc.t. = δm
2

∫ L
0
dxφ2 → δm

2

∑
nQ

2
n

due to renormalization, as explained in Appendix A. We
find that for weak coupling, the physically interesting
case is stable for λ > 0.

To diagonalize the Hamiltonian, we introduce new cre-

ation and annihilation operators, a†k and ak, respectively,

defined by ak =
√

ωk

2 (e†Q)k + i√
2ωk

(e†P)k where e is

the matrix of the eigenvectors. Notice that e is unitary,
e†e = I. These operators obey standard commutation

relations, [ak, a
†
l ] = δkl and the free Hamiltonian reads

H0 =

N−1∑
k=0

ωk

(
a†kak +

1

2

)
. (4)

In this form, it is straightforward to construct the states
in the Hilbert space.

III. INITIAL STATE PREPARATION

For the initial state, in Refs. [8, 11] the excited state
was created after creating the ground state. This is dif-
ficult because it involves manipulating a large number of
qubits. In our approach, we create a single photon state
in a single mode before creating the initial state. This is
more accessible, as it involves creating the state |1〉 for a
single mode. It can be done in a variety of ways, via a
heralded single photon source, for instance. At the end
of the computation, the field modes are all measured and
the distribution of single photons across them determines
the result.

To begin with, we build the system with N oscillators
representing the variables (Qn, Pn), n = 0, 1, 2, . . . . It is
useful to define creation and annihilation operators, A†n
andAn, respectively, byAn = (Qn+iPn)/

√
2. They obey

the commutation relations [An, A
†
m] = δnm. The nth

oscillator has a Hilbert space constructed by successive
application of the creation operator A†n on the vacuum
|0〉n, which is annihilated by An. Here |0〉n is shorthand
for a product state of vacuum fields

|0〉 = |0〉0 ⊗ |0〉1 ⊗ · · · ⊗ |0〉N−1 , (5)

with An|0〉 = 0. For a scattering process, we are given an
initial state typically consisting of a fixed number of par-
ticles, usually two, which undergoes evolution and then
a measurement is performed (detection of particles) on
the final state. Both initial and final states asymptote to
eigenstates of the free Hamiltonian H0. Thus quantum
computation starts with preparation of an eigenstate of
H0.

First, we consider the ground state of H0. It is the
state |Ω〉 annihilated by all ak, i.e., ak|Ω〉 = 0 for
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k = 0, 1, . . . , N − 1. It can be constructed from the vac-
uum state (5) by acting with the Gaussian unitary U†,
where an = U†AnU . Noticing the relationship between
the operators ak and Ak we can use the Bloch-Messiah
reduction [41] to determine U = V SW † as a decompo-
sition involving a multiport interferometer (V ) followed
by single mode squeezing (S) followed by a final multi-
port interferometer (W ). These unitary operators can be
realized with O(N2) quantum gates [42], although com-
puting the form of these gates requires O(N3) classical
arithmetic operations arising from Gaussian elimination.

To implement U we first perform the rotation

A0 → A′0 =

N−1∑
k=0

Ak

An → A′n =

N−1∑
k=0

cos
2πnk

N
Ak

AN−n → A′N−n =
N−1∑
k=0

sin
2πnk

N
Ak (6)

where 1 ≤ n ≤ N/2. This rotation can be expressed
as rotations each involving only two oscillators at a
time and this fact can lend itself well to the CV clus-
ter state framework [15]. In fact, one could re-imagine
the algorithm in a cluster state formalism, as all of the
requisite interference, squeezing and non-demolition are
present in the state preparation stage. Notice that if
N is even, AN/2 does not have a partner; we obtain

AN/2 →
∑
k(−)kAk. Next, we squeeze each mode as

A′n → A′′n = cosh rnA
′
n + sinh rnA

′
n
†

where e2rn = ωn
for n ≤ N/2, and e−2rn = ωn, for n > N/2. Fi-
nally, we untangle the pairs by rotating them, A′′k → ak
where a0 = A′′0 , an = (A′′n + iA′′N−n)/

√
2, and aN−n =

(iA′′n + A′′N−n)/
√

2. Excited states can be constructed
with the same number of gates, e.g., the single-particle

state |k〉 ≡ a†k|Ω〉 can be constructed by acting upon the

vacuum with A†k. This turns the initial state of the kth

mode into a one-photon state, A†k|0〉k, which can be ac-
complished in a variety of ways; see Appendix C. For
scattering, we need to create wavepackets. For a single-
particle wavepacket characterized by a profile fk, which
is sharply peaked around some k = k0, we need to cre-

ate the state
∑
k fkA

†
k|0〉. This is an entangled state and

can be created with standard techniques. Having en-

gineered the entangled state
∑
k fkA

†
k|0〉k, we then ap-

ply the Gaussian unitary U†, to obtain the one-particle
wavepacket ∑

k

fka
†
k|Ω〉 = U†

∑
k

fkA
†
k|0〉 (7)

Extending the above to the engineering of multi-
particle states, which will be wavepackets constructed
from the free Hamiltonian eigenstates |k1, k2, . . . 〉 ∝
ak1
†ak2

† · · · |0〉, is a straightforward extension of the pro-
cedure outlined above.

IV. QUANTUM COMPUTATION

We wish to calculate a general scattering amplitude,
which can be written as

A = 〈out|T exp

{
i

∫ T

−T
dt(Hint(t) +Hc.t.(t))

}
|in〉 (8)

in the limit T →∞, where time evolution is defined with
respect to the non-interacting Hamiltonian.

We start by preparing the initial state |in〉 as in the
previous section and define initial time as t = −T . Then
we act successively with evolution operators of the form

U(t) = exp {iδt(Hint(t) +Hc.t.(t))} (9)

Time dependence is obtained via the free Hamiltonian,

Qi(t) = eitH0Qi(0)e−itH0 (10)

Therefore, the evolution (9) can be implemented as

U(t) = eitH0eiδt(Hint+Hc.t.)e−itH0 (11)

We deduce

A = 〈out|
[
eiδtH0eiδt(Hint+Hc.t.)

]N
|in〉 (12)

where we divided the time interval into N = 2T
δt seg-

ments.
The coupling constants in (9) are turned on and off

adiabatically. This is achieved by splitting the time in-
terval [−T, T ] into three segments, [−T,−T1], [−T1, T1],
and [T1, T ]. For t ∈ [−T,−T1], we turn the coupling con-
stants on by replacing λ → λ(t), δm → δm(t), so that
λ(−T ) = δm(−T ) = 0, and λ(−T1) = λ, δm(−T1) = δm.
Then for t ∈ [−T1, T1] the coupling constants are held
fixed. Finally, for t ∈ [T1, T ], they are turned off adi-
abatically by reversing the process in the first time in-
terval. In the case of small λ, the time dependence of
the coupling constants can be chosen efficiently by mak-
ing use of perturbative renormalization. Renormaliza-
tion informs the choice (see Appendix A) λ(t) = T+t

T−T1
λ,

δm(t) = λ(t)
8π log 64

m2 , for −T ≤ t ≤ −T1.

The unitary operators eiδtH0 and eiδtHc.t. are Gaus-
sian and can be implemented with second order nonlinear
optical interactions and linear optics beam splitter net-
works. The interaction is implemented through a quartic
phase gate for each mode,

eiδtHint =
∏
n

eiγQ
4
n , γ = δt

λ

4!
(13)

The quartic phase gate may be implemented in a similar
manner to the cubic phase gate previously proposed [25].

After evolution, we must measure the system in a ba-
sis containing the projection corresponding to the state
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FIG. 1: (Color Online) Sketch of an experimental setup for electromagnetic field modes used as qudits in a QFT
calculation involving four field modes. The modes are encoded into electric field modes (colored red, blue, yellow,
green), which are then prepared via beam splitters, swap gates, and squeezers for the compute stage. The compute
stage consists of an interferometer, a quartic phase gate (black box, see Ref. [25]), and free propagation. An
uncompute stage, which is the inverse of the preparation stage, and a detection stage in the Fock basis, yield the
scattering amplitudes into the four QFT field modes.

|out〉. This is similar to the state |in〉, and its construc-
tion depends on the number of desired particles. The
latter are excitations created with a†n, so in general,

|out〉 = a†n1
a†n2
· · · |Ω〉 = U†A†n1

A†n2
· · · |0〉 (14)

It follows that the next step is to uncompute by applying
the Gaussian unitary U (which is the inverse operation
to the preparation of the initial state), and then measure
the number of photons in each mode. The final uncom-
pute step projects the set of output modes onto the Fock
basis which we then sample from. Thus, the scattering
amplitude calculation is a mapping from one set of field
modes on the input to a separate set of field modes on
the output, as expected. That is, for each click on the
photodetector for mode n, there is an operator a†n present
in the final state (14). If the QFT calculation involved
an initial input state with two excitations spread across
100 field modes, say, then the entire calculation would
involve two photons, for instance. We note that the cal-
culation has made use of a quartic phase gate up to this
point, and thus technically speaking a non-Gaussian op-
eration would not be necessary during this measurement
step in order to achieve an exponential speedup over the
classical QFT algorithm. However, in order to achieve
high accuracy in the final result, photon number resolv-
ing detectors with high efficiency [43] would be desirable
for the measurement phase.

V. EXPERIMENTAL IMPLEMENTATION

An example of the experimental implementation is
given in Fig. 1. For brevity the setup for calculating

four space time points is given. For the electromagnetic
field, the initial unitary rotation involves weighted beam
splitters with the appropriate splitting to achieve the de-
sired sums over the field operators (see Appendix B).
A swap gate is involved in the input state preparation
stage. We note that a swap gate contains essentially the
CV version of the CNOT operator along with parity op-
erators [44], but in some cases the gate can be simplified
to a beam splitter interaction [45] such as for the electro-
magnetic field. Here we use a mode label swap operator,
which is possible in systems with movable qubits, such
as CV optical fields. Next, Hc.t. is quadratic in position
quadrature operators, which can be implemented with a
series of phase shifts [45]. The non-Gaussian piece of the
computation is then the quartic phase gate contained in
Hint, which can be implemented via repeated application
of the photon number-dependent phase gate [25]. Lastly,
the free propagation H0 can be implemented by a cali-
brated free propagation before the uncompute stage. We
note that the QFT field modes are encoded into the qu-
dits which are themselves electromagnetic field modes,
meaning that the free propagation contained in H0 is
not arbitrary. It must conform to the calculated QFT
free propagation distance, and phase stability must be
maintained throughout.

VI. CONCLUSION

In conclusion, we developed a new algorithm for a
continuous-variable quantum computer which gave an
exponential speedup over the best known classical algo-
rithms. This algorithm was the calculation of the scat-
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tering amplitudes in scalar bosonic quantum field theory,
and as previously mentioned, arguably a natural choice
for a continuous variable quantum computer to solve. At
weak coupling, analytic calculations are possible, how-
ever, at strong coupling no such calculations are generally
available, and one has to rely on numerical techniques.
A widely used framework is lattice field theory which is
based on the discretization of space into a finite set of
points. The complexity of classical computations on a
lattice increases exponentially with the number of lattice
sites [2].

Quantum computations offer a distinct advantage (first
shown in Ref. [9] for qubits, and here for qumodes), since
complexity only grows polynomially. Finally, we also
gave an example of an experimental implementation on
a continuous-variable quantum computer that calculated
four space time points. We noted that such a scheme is
feasible with current linear optical technology and con-
sisted of a set of Gaussian operations along with the non-
Gaussian quartic phase gate.
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Appendix A: Renormalization

Define the Green function G(t1, t2) as

Gij(t1, t2) = 〈0|T (Qi(t1)Qj(t2))|0〉, (A1)

where T denotes the time-ordering operator. It obeys[
∂2
t1 + V

]
G(t1, t2) = −iIδ(t1 − t2). (A2)

Using the Fourier transform,

G(t1, t2) =

∫
dω

2π
eiω(t1−t2)G̃(ω) (A3)

we obtain

G̃(ω) = i
[
−ω2I + V

]−1
=
∑
n

−i
ω2 − ω2

n

ene
†
n, (A4)

exhibiting poles at ω2 = ω2
n.

When we switch on the interaction term,

Hint =
λ

4!

∫ L

0

dxφ4 → λ

4!

∑
n

Q4
n, (A5)

we have that at O(λ) the Green function is corrected by

δGij(t1, t2) = 〈0|T
[
Qi(t1)Qj(t2)

∫
dtHint(t)

]
|0〉.

(A6)

For the Fourier transform, we obtain

δG̃(ω) = λ[G̃(ω)]2
∫
dω′

2π
Tr G̃(ω′) (A7)

which leads to a shift of the poles,

G̃(ω) + δG̃(ω) =
∑
n

−i
ω2 − ω2

n − Σ
ene

†
n +O(λ2), (A8)

where

Σ =
λ

2N

∫
dω′

2π

∑
n

−i
ω′2 − ω2

i

=
λ

4N

∑
n

1

ωn
(A9)

The shift can be corrected by the addition of the counter
term

Hc.t. =
δm
2

∫ L

0

dxφ2 → δm
2

∑
n

Q2
n, (A10)

with δm = −Σ + O(λ2), i.e., the mass parameter in the
Hamiltonian is not physical, but bare,

m2
0 = m2 + δm = m2 − λ

4N

∑
n

1

ωn
+O(λ2). (A11)

For large N , the sum can be approximated by an integral,

Σ =
λ

4

∫ 1

0

dk√
m2 + 4 sin2 kπ

(A12)

which has a logarithmic divergence at small m2 (i.e.,
length scale 1/m large in units of lattice spacing, which
is the physically interesting limit). We easily obtain

Σ =
λ

8π
log

64

m2
+O(m2) (A13)

The bare mass is

m2
0 = m2 − Σ +O(λ2) = m2 − λ

8π
log

64

m2
+O(λ2,m2)

(A14)
Notice that for weak coupling (small λ), the physically
interesting case has m2

0 < 0 (a stable system, as long as
λ > 0).

Appendix B: Ground State Construction

To find the required transformation U , we work as fol-
lows. Notice that for n = 0,

a0 =
1

2
√
N

N−1∑
k=0

[(√
m+

1√
m

)
Ak +

(√
m− 1√

m

)
A†k

]
(B1)
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where we used ω0 = m. For n 6= 0, we consider pairs
(an, aN−n). We have

an + aN−n =
1

2
√
N

N−1∑
k=0

cos
2πnk

N

[(
√
ωn +

1
√
ωn

)
Ak

+

(
√
ωn −

1
√
ωn

)
A†k

]
an − aN−n =

i

2
√
N

N−1∑
k=0

sin
2πnk

N

[(
√
ωn +

1
√
ωn

)
Ak

−
(
√
ωn −

1
√
ωn

)
A†k

]
(B2)

where we used ωn = ωN−n.
The above expressions suggest that we transform An

into an in three steps, as shown in the main text.

1. Example: N = 4

To illustrate the above algorithm, we consider the case
in which space has been discretized to four points. The
rotation (A′ = OA) is described by the orthogonal ma-
trix

O =
1

2


1 1 1 1√
2 0 −

√
2 0

1 −1 1 −1

0
√

2 0 −
√

2

 (B3)

We have

O = R02

(π
4

)
S01R13

(π
4

)
R02

(π
4

)
(B4)

where Rij(θ) is a rotation in the ij-plane of angle θ and
Sij is the swap i ↔ j. Therefore the rotation O can be
implemented with four two-mode unitaries.

Next, we squeeze each mode as A′n → A′′n =

cosh rnA
′
n + sinh rnA

′
n
†
, where e2r0 = ω0, e2r1 = ω1,

e2r2 = ω2, and e−2r3 = ω3. Notice that r3 = −r1, be-
cause ω3 = ω1.

Finally, we perform the rotation, A′′1 → 1√
2
(A′′1 + iA′′3),

A′′3 → 1√
2
(iA′′1 +A′′3), to arrive at the desired modes,

a0 =
1

2

∑
n

[
cosh r0An + sinh r0

∑
n

A†n

]

a1 =
1

2

∑
n

in

[
cosh r1An + sinh r1

∑
n

A†n

]

a2 =
1

2

∑
n

(−1)n

[
cosh r2An + sinh r2

∑
n

A†n

]

a3 =
1

2

∑
n

(−i)n
[

cosh r3An + sinh r3

∑
n

A†n

]
(B5)

Each of the above steps is implemented with a Gaus-
sian unitary involving at most two modes.

Appendix C: Excited States

To generate the required one-photon state, two meth-
ods can be used. One can first squeeze the vacuum of the
kth mode with an optical parametric amplifier to

Sk(s)|0〉k , Sk(s) = e
s
2 (A†

k

2−A2
k) (C1)

Then pass the squeezed state through a (highly trans-
mitting) beam splitter of transmittance T , and place a
photodetector on the auxiliary output port. A click of the
detector heralds a successful photon subtraction, which
is described by the non-unitary operator

√
1− T TA

†
kAk/2Ak (C2)

The transmittance has to be high so that the probability
of detecting two or more photons is negligible. If no
photon is detected, the process is repeated until a photon

is detected. Finally, apply anti-squeezing S†k(s′).
We obtain the state (unnormalized)

S†k(s′)TA
†
kAk/2AkSk(s)|0〉k (C3)

If the squeezing parameters are chosen so that

T =
tanh s′

tanh s
(C4)

then it is straightforward to show that (C3) is the desired
state,

S†k(s′)TA
†
kAk/2AkSk(s)|0〉k ∝ A†k|0〉k. (C5)

Optionally, one may also use a heralded single pho-
ton source. Such a source would consist of a parametric
downconverter with a high efficiency heralding detector.
To obtain exactly one photon when operating the source
with high brightness (but on average less than one pair
per pulse), the heralding detector would consist of a high
efficiency photon number resolving detector, such as a
transition edge sensor.

Appendix D: Generalization to Arbitrary
Dimensions

Generalization to arbitrary spatial dimension d is
straightforward. The free-scalar Hamiltonian in the con-
tinuum reads

H0 =
1

2

∫
ddx

[
π2 + (∇φ)2 +m2φ2

]
(D1)

where x ∈ [0, L]d, with the fields obeying standard com-
mutation relations,

[φ(x) , π(x′)] = iδd(x− x′) (D2)
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Each coordinate xi (i = 1, . . . , d) is discretized as before,
xi = nia, ni = 0, 1, . . . , N − 1, and we define Qn ≡ φ(x),
Pn ≡ π(x), An = 1√

2
(Qn + iPn), where n ∈ ZdN .

The Hamiltonian (D1) can then be rendered in the
form

H0 =
1

2
PTP +

1

2
QTVQ, (D3)

where V has eigenvalues and corresponding normalized
eigenvectors,

ω2
k = m2 + 4

d∑
i=1

sin2 ki
2
,

enk =
1

Nd/2
eik·n (D4)

where k ∈ 2π
N ZdN (the dual lattice). The eigenvectors

form a unitary matrix.

The discretized Hamiltonian is diagonalized as

H0 =
∑
k∈Γ

ωk

(
a†kak +

1

2

)
(D5)

where ak is the annihilation operator (extended to d di-
mensions in an obvious way).

Introducing an interaction term, Hint = λ
4!

∑
nQ

4
n,

and the attendant counter term, Hc.t. = δm
2

∑
nQ

2
n, and

working as in the one-dimensional case, we obtain a shift
in the poles of the Green function,

Σ =
λ

4

∑
k∈Γ

1

ωk
+O(λ2) (D6)

which is related to the counter-term parameter δm via
δm = −Σ+O(λ2). For large N , the sum is approximated
by an integral over the hypercube [0, 2π]d. For d = 1, it
reduces to the previous result, whereas for d > 1, we
obtain at lowest order in m and λ,

Σ = Cdλ+ . . . (D7)

Numerically, C2 ≈ 0.16, and C3 ≈ 0.11.
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