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We present an ab initio calculation of the shear viscosity as a function of interaction strength in a
two-component unpolarized Fermi gas near the unitary limit, within a finite temperature quantum
Monte Carlo (QMC) framework and using the Kubo linear-response formalism. The shear viscosity
decreases as we tune the interaction strength 1

akF
from the Bardeen-Cooper-Schrieffer (BCS) side of

the Feshbach resonance towards Bose-Einstein condensation (BEC) limit and it acquires the smallest
value for 1

akF
≈ 0.4, with a minimum value of η

s

∣

∣

min
≈ 0.2 ~

kB
, which is about twice as small than

the value reported for experiments in quark-gluon plasma η
s

∣

∣

QGP
. 0.4 ~

kB
. The Fermi gas near

unitarity thus emerges as the most “perfect fluid” observed so far in Nature. The clouds of dilute
Fermi gas near unitarity exhibit the unusual attribute that, for the sizes realized so far in laboratory
or larger (less than 109 atoms), can sustain quantum turbulence below the critical temperature, but
at the same time the classical turbulence is suppressed in the normal phase.

PACS numbers: 03.75.Ss, 05.30.Fk, 05.60.Gg, 51.20.+d

The ultracold atoms provide an ideal laboratory for
very precise experimental and theoretical studies of an
enormous range of quantum mechanical phenomena. A
large set of studies focused on interacting Fermi gases at
unitarity, where such systems exhibit remarkable prop-
erties. The average inter-particle separation ≈ n−1/3

is large compared to the effective range of interaction
reff, but small compared to the scattering length |a|, i.e.

0 ← n1/3reff ≪ 1 ≪ n1/3|a| → ∞ (where n is parti-
cle density). In this limit these systems acquire univer-
sal properties and they have been widely studied over
last dozen of years both experimentally and theoretically
(see reviews [1–4]). A series of recent experiments [5–8]
revealed the nearly ideal hydrodynamic behavior of the
resonantly interacting Fermi gas, characterized by a very
low shear viscosity coefficient to the entropy density ra-
tio - very close to the conjectured bound originating from
holographic duality methods [9, 10], called KSS bound.
An “ideal fluid” which follows the laws of ideal hydrody-
namics, is a fluid in which dissipative processes are ab-
sent [11]. The superfluid component of a quantum fluid
below the critical temperature is treated as a physical
realization of an ideal fluid [12]. The normal component
is characterized by a finite viscosity, which in an infinite
medium tends to infinity at absolute zero temperature,
due to the contributions of phonons [12]. In a finite sys-
tem however the longest phonon wavelength is of the or-
der of the size of the container and with the number of
excited phonons ∝ T 3 this has the consequence that the
viscosity, while approaching the zero temperature, never
formally diverges and a liquid is effectively in a collision-
less regime.

A hypothetical physical system which saturates the
KSS bound and has the lowest possible value of the shear
viscosity is often referred to as “the perfect fluid”. A re-
cent measurement of the shear viscosity of a unitary gas
close to unitarity [8] provides the value η

s ≈ 0.5 ~

kB
, while

KSS bound is 1
4π

~

kB
≈ 0.08 ~

kB
. Thus the unitary Fermi

gas (UFG) appears as the system being very close to
“perfectness.” Another system is the quark-gluon plasma
created in relativistic heavy ion collisions [13], where the
value η

s

∣

∣

QGP
. 0.4 ~

kB
has been reported [14].

Simultaneously, an impressive effort has been made in
order to theoretically determine transport coefficients of
the UFG. A plethora of theoretical methods has been
used to estimate these transport coefficients, both for
homogeneous and trapped systems [15–24]. Typically
these theoretical predictions differ both quantitatively
and qualitatively. Among the methods used, only the
works [23, 24] present ab initio calculations, obtained
within the very powerful quantum Monte Carlo (QMC)
framework, where the errors can be quantified quite ac-
curately. In these papers however the shear viscosity has
been evaluated only at unitarity. In Fig. 1 we com-
pare these calculations with recent experimental data
for a uniform system extracted from measurements for
trapped system [8]. Agreement for absolute value of shear
viscosity has not been obtained, which however does not
rule out the QMC results. However, we observe a very
good qualitative agreement. Experimentally, the results
for uniform system [8] have been inferred from data for
trapped systems under a number of assumptions (see ap-
pendix of Ref. [8]). To what extent these assumptions are
valid, especially in the most interesting low temperature
regime, it is not clear. In particular, viscous hydrody-
namics has been used in Ref. [8] to describe the full dy-
namics of the cloud, even at the periphery of the cloud,
where the density is very low and the collision rate is
strongly suppressed and the system is in the collisionless
regime [25]. In both cases we observe the rapid decrease
of the shear viscosity well above critical temperature of
superfluid-normal phase transition Tc. It is notable that
this feature is present only in the QMC and the pseudo-
gap T -matrix theory [19] predictions.
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FIG. 1: (Color online) Comparison of the QMC predictions
taken from Ref. [24] (blue points) with the results extracted
from experimental data for trapped system (red points) [8].
Horizontal and vertical axis show the temperature in units of

Fermi energy εF =
~
2k2

F
2m

and the dimensionless shear viscos-
ity η/n respectively. The theoretical results are provided for
different lattice sizes Nx = 8, 10 and 12. The scatter of these
points is a measure of the numerical accuracy of the available
QMC predictions. The solid black line shows kinetic theory

prediction η
n

∼= 2.77
(

T
εF

)3/2

. The phonon contribution to

the viscosity, which is not accounted for in QMC calculations
in a finite volume [24] and evaluated in Ref. [16], is shown as
a dot-dashed (brown) line. The vertical black dotted lines in-
dicate the critical temperature of superfluid-to-normal phase
transition for Tc = 0.15(1) εF and the onset of Cooper pair
formation, T ∗

≈ 0.22 εF , respectively - both extracted from
QMC simulations in Refs [27] and [28].

Recently it has been reported that the system is even
closer to the prefect fluid limit if it is slightly beyond
the unitary point [26]. In this experiment it was revealed
that the lowest viscosity coefficient can be obtained for an
interaction strength corresponding to 1

akF
≈ 0.25, where

kF = (3π2n)1/3 is Fermi momentum. Since the QMC
method provides results which are at least in very good
qualitative agreement with experiment for the unitary
limit (i.e. 1

akF
→ 0), in this work we extend our studies

beyond unitarity point.

In order to determine the shear viscosity coefficient of
the ultracold atomic gas we employ the QMC technique
with auxiliary fields on the lattice, which provides numer-
ical results with controllable accuracy, up to quantifiable
systematic uncertainties (for details see Ref. [27]). These
simulations are very similar to those performed at unitar-
ity when |a| = ∞ Ref. [23, 24]. Here we briefly describe
the main aspects of the computational process, focusing
mainly on required modifications in order to study the
system beyond the unitarity. Henceforth we use the sys-
tem of units: ~ = m = kB = 1.

For simulations we employed a cubic lattice of size
Nx = Ny = Nz = 10, with lattice spacing l = 1 and

average number densities n ≃ 0.04. As shown in Sup-
plemental Material of Refs. [23, 28] the systematic errors
are no more than 10% for this lattice size and the er-
rors are related mainly to corrections coming from the
nonzero effective range reff and from the exclusion of the
universal high momenta tail in the occupation probabil-
ity due to the finite momentum cut-off kmax = π

l , where
l is simulation box size. In the context of computation
of transport coefficient it is important to have as small
as possible statistical errors, so as to minimize the errors
arising from the analytical continuation from the imag-
inary time to real frequencies as explained below. Thus
we generate an ensemble containing about 104 uncorre-
lated samples in order to get statistical accuracy below
1%.

In order to extract the shear viscosity within a QMC
framework one calculates the imaginary-time (Euclidean)
stress tensor-stress tensor correlator

GΠ(q, τ) =
1

V
〈Π̂(xy)

q
(τ)Π̂

(xy)
−q

(0)〉, (1)

at zero momentum q = 0. As shown in Ref. [18], for zero-
range interaction it is sufficient to use only the kinetic
part of the stress tensor:

Π̂
(xy)
q=0 =

∑

p,λ=↑,↓
pxpyâ

†
λ(p) âλ(p). (2)

The average is performed in the grand canonical ensem-
ble, at fixed temperature T = 1

β and chemical poten-

tial, Π̂
(xy)
q (τ) = exp[τ(Ĥ − µN̂)]Π̂

(xy)
q exp[−τ(Ĥ − µN̂)],

where Ĥ is the Hamiltonian of the system, µ is the chem-
ical potential, and N̂ is the particle number operator. In
order to capture the physics of a dilute fermionic gas
it is sufficient to use a zero-range two-body interaction
V (r1 − r2) = −gδ(r1 − r2), where the coupling constant
g can be tuned to fix the value of the s-wave scatter-
ing length a [27] using a standard renormalization pro-
cedure of the coupling constant on the lattice. After this
procedure the contact interaction acquires a finite effec-
tive range - for the parameters of presented simulation
kF reff ≃ 0.43. In this case the interaction part of the
stress tensor also contributes to the correlator. However,
we relegate all the corrections arising from the finite effec-
tive range to the systematic errors, which were estimated
to be less than 10% for used lattice (see supplemental ma-
terial of Ref. [28] for extensive discussion in context of
lattice computation of transport coefficients). It is legit-
imate to drop this contribution, particularly since in the
limit kF reff → 0 it is vanishing anyway, a fact also consis-
tent with previous QMC studies performed at unitarity
for different densities. We emphasize that the dominant
source of uncertainties is introduced by the analytic con-
tinuation procedure (described next). These are of the
order 10%, as one can judge from Fig. 1, where the er-
ror bars show contribution to the uncertainties only from
this source.

The frequency dependent shear viscosity η(ω) is ex-
tracted via the analytic continuation of the imaginary-
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time correlator to real frequencies. This procedure is
equivalent to solving the integral equation:

GΠ(q = 0, τ) =
1

π

∫ ∞

0

η(ω)ω
cosh [ω(τ − β/2)]

sinh (ωβ/2)
dω. (3)

The static shear viscosity η is defined as η = limω→0 η(ω).
The correlator GΠ is sampled only for a finite set of points
and in a finite imaginary-time interval, and its evaluation
is affected by the statistical noise, which we minimize by
using a quite high statistics. This integral equation (3)
belongs to a class of numerically ill-posed problems.
Therefore, the use of special techniques is warranted in
order to extract numerically stable results. We have em-
ployed an approach which combines two complementary
methods: the Singular Value Decomposition (SVD) and
the self-consistent Maximum Entropy Method (MEM),
both described in great detail in Ref. [29] and in the
Supplemental Material of Refs. [23, 28]. The stabiliza-
tion procedure requires a priori information about the
solution η(ω). The a priori information used is re-
lated to the known properties: the non-negativity of the
shear viscosity η(ω) > 0, the asymptotic tail behavior
η(ω → ∞) = C

15π
√
ω

, and the sum rule (see [30] with

subsequent corrections [18, 31])

1

π

∫ ∞

0

dω

[

η(ω)− C

15π
√
ω

]

=
ε

3
− C

12πa
, (4)

where C is Tan’s contact density [32], and ε is the energy
density. Both quantities are obtained within the same
QMC simulation. The contact density C was extracted
from the analysis of the tail of the numerically gener-
ated momentum distribution, which for sufficiently large
momenta decays as n(p) ∼ C

p4 ; a similar technique was

used in Ref. [33] and subsequent studies. Moreover, self-
consistent MEM requires an appropriately chosen class
of a priori models for the solution. Based on our past
experience for the unitary limit [23, 24], we determined
that the expected suitable models for the frequency de-
pendent shear viscosity η(ω) consist of Lorentzian-like
structures at low frequencies, smoothly evolving into the
asymptotic tail behavior:

M(ω, {µ, γ, c, α1, α2}) = f(ω, {α1, α2})
C

15π
√
ω

+[1−f(ω, {α1, α2})]L(ω, {µ, γ, c}), (5)

where

f(ω, {α1, α2}) = exp(−α1α2)
exp(α1ω)− 1

1 + exp(α1(ω − α2))
(6)

and

L(ω, {µ, γ, c}) = c
1

π

γ

(ω − µ)2 + γ2
. (7)

The parameters {µ, γ, c, α1, α2} describe admissible de-
grees of freedom of the model and are adjusted automat-
ically in a self-consistent manner.

In Fig. 2, the dimensionless static shear viscosity η
n

is shown for three selected temperatures T
εF

= 0.26, 0.4

and 0.5 as a function of interaction strength 1/(akF ).
Only one point, for T

εF
= 0.26 and 1

akF
= 0.2, cor-

responds to the system being in the superfluid phase,
while all other points correspond to the system either
in the normal phase or in the “pseudogap” regime. We
emphasize that our QMC simulations are fully consis-
tent with the existence of the “pseudogap” regime, i.e.
a temperature regime above the critical temperature Tc

where many Cooper pairs are present, even though the
superfluidity is lost [28, 34]. The presence of pairs above
the critical temperature is a property of the UFG well
established in ab initio calculations. Naturally, this is
also beyond controversy in the BEC limit as well, where
the critical temperature is well below the dimer binding

energy, Tc ≪ ~
2

ma2 . The presence of a pseudogap regime
is to some extent also confirmed by experiments [35–37].
The present QMC results clearly show that the static
shear viscosity decreases as we enter into BEC regime.
As we tune the system towards the BEC side of the Fes-
hbach resonance the number of Monte Carlo samples re-
quired to get an acceptable signal-to-noise ratio increases
rapidly. For this reason we were not able to perform re-
liable inversions of the Eq. (3) for interaction strengths
beyond 1

akF
> 0.2 for temperature T

εF
= 0.26 and beyond

1
akF

> 0.5 for temperatures T
εF

= 0.4 and 0.5. The ratio

of the shear viscosity to the number density η
n appears

to have a relatively weak temperature dependence above
Tc. This behavior appears to be confirmed by the exper-
iment [26] as well. Our results for temperatures T

εF
= 0.4

and 0.5 suggest that there exists a minimum for the static
shear viscosity located on BEC side of resonance for an
interaction strength corresponding to 1

akF
≈ 0.4. How-

ever, the present QMC uncertainties do not permit an
accurate determination of the minimum position.

Comparing our results with experimental data [26] we
find qualitative agreement. While the experiment re-
ports existence of minimum for the shear viscosity for
1

akF
≃ 0.25, the ab initio prediction sets it for slightly

higher strengths. In general the minimum position can be
temperature dependent, but experimental data suggest
that this dependence is rather weak, in apparent agree-
ment with our findings. Note, however that the measure-
ments are performed in trapped systems and only the
trap-averaged viscosity 〈 ηn 〉 = 1

N~

∫

η(r) d3r is reported

in Ref. [26]. The reduced temperature T
εF

as well as the

interaction strength 1
akF

are position dependent in a trap
and they diverge to infinity as one approaches the trap
edges, where the gas enters the collisionless regime and
where the hydrodynamical approach is inapplicable [25].
The trapped experiment probes all reduced temperatures
and interaction strengths, starting from the values at the
center of the cloud up to very high values. Moreover, the
regions further from the center of the trap also contribute
with increasingly higher weights in such averaged quanti-
ties, masking to a large extent the information about the
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FIG. 2: (Color online) The dimensionless static shear viscosity
η
n

as a function of interaction strength 1

akF
for a 103 lattice for

selected temperatures: T = 0.26εF - solid (red) circles, T =
0.4εF - (blue) squares and T = 0.5εF - (green) diamonds. The
error bars show contribution to the computation uncertainty
generated by the analytic continuation procedure only.

inner regions of the trap and making its evaluation very
challenging. To what extent the averaging procedure af-
fects the results for shear viscosity it is not clear at this
time, and since a reliable validation of the theoretical
predictions against the experimental data requires the
knowledge of the shear viscosity for all temperatures and
interactions strengths, such a comparison is beyond the
scope of the present work. A similar disagreement with
experimental values was noted in the analysis performed
by Bluhm and Schäfer [38]. For example, at unitarity the
values extracted in the experimental analysis of Ref. [8]
of the ratio η

n exceed unity at temperatures T
εF

> 0.3.

The calculated ratio η
n within the kinetic theory [38] at-

tains such values only for significantly larger tempera-
tures T

εF
≈ 1 at unitarity, see Fig. 1, and even greater

temperatures for positive values of the scattering length.
The kinetic theory is appropriate for temperatures above
T ∗, where pairs have completely dissociated and where
the collision integral is more or less well defined. Below
T ∗ a more complex kinetic approach is required, which
should include dimer-dimer, fermion-fermion, and dimer-
fermion collisions as well as a dimer-to-two-fermions and
its time-reverse processes. On the other hand, when ex-
trapolated, the kinetic theory and the present QMC re-
sults appear, surprisingly to some extent, to be in agree-
ment.

In order to confront the QMC results with the KSS
conjuncture one has to have information about the en-
tropy density s = S

V . This can be extracted from static
observables including the energy E, the chemical po-
tential µ, and the contact C, which are easily obtained
within the QMC framework. Combining the basic ther-
modynamic relation (where T , P and N are respectively
temperature, pressure and particle number):
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FIG. 3: (Color online) The ratio of the shear viscosity to en-
tropy density η

s
as a function of interaction strength 1

akF
for

a 103 lattice. The notation for theoretical series is identical
to Fig. 2. The black dashed line indicates KSS bound: 1

4π
.

The error bars encapsulate uncertainty originating from the
analytic continuation procedure and statistical uncertainty of
the entropy density determination. The inset shows corre-
sponding values of entropy per particle.

E = TS − PV + µN (8)

together with the Tan’s pressure relation [39]:

P − 2

3

E

V
=

C

12πaV
, (9)

one can show that

S(x, y)

N
=

ξ(x, y)− ζ(x, y) + 1
6π C̃(x, y)y

x
, (10)

where we introduced the following dimensionless quan-
tities: the reduced temperature x = T

εF
, the strength

of the interaction y = (akF )−1, the Bertsch parameter
ξ = 5E

3NεF
, the reduced chemical potential ζ = µ

εF
and

the reduced contact parameter C̃ = C
NkF

.
In Fig. 3 we show the ratio of the shear viscosity to

the entropy density η
s . These results suggest that there

is minimum for this ratio located at 1
akF
≈ 0.4. However

the present QMC uncertainties do not permit to make
a very precise determination of its location. Moreover,
the QMC data also reveal a rather weak temperature
dependence, similar to experimental findings.

The η
s ratio at the minimum η

s

∣

∣

min
≈ 0.2, is about

2.5 times smaller than its value at the unitary limit, and
only 2.5 times larger than the KSS holographic bound 1

4π .
In the inset we also provide the entropy dependence on
the coupling constant for our selected temperatures. For
the temperature T

εF
= 0.26 the value of the entropy for

1
akF

= 0.2, which visually appears to deviate from the
smooth pattern, reflects the fact that there is a phase
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transition from the normal to the superfluid state as we
increase interaction strength at a fixed temperature.

The viscosity is at the root of classical turbulence. In
an ideal fluid turbulence does not exists, while it can
develop in either a normal fluid or in a superfluid. In
superfluids viscosity was expected to play a minor role
(only in the normal component) and there was no clear
route to turbulence when the temperature tends to zero
and the viscosity therefore decreases. However, in 1955
Feynman [40] conjectured that in superfluids the cross-
ing and reconnection of quantized vortices could lead to
“quantum turbulence,” a field which since then is one of
the most active areas of research in the physics of liquid
helium 3 and 4 [41–43]. Feyman’s conjecture was demon-
strated to be the correct theoretical mechanism in a di-
lute Bose superfluid [44] and in a dilute Fermi superfluid
as well [45, 46]. The theoretical framework of classical
turbulence laid by Kolomogorov [47] appears to explain
many features (though not all) of quantum turbulence in
liquid helium [42]. At the same time many characteris-
tics, such as the non-Gaussian velocity distributions, are
drastically different [43] in classical and quantum tur-
bulence. The non-Gaussian velocity distributions have
been predicted to emerge also in the UFG [46]. The
quark-gluon plasma and the Fermi gas in the unitary
regime above the critical temperature are two physical
systems, which are not superfluid, but in which the the
shear viscosity attains extremely low values. Quantized
vortices do not exist either in the UFG above Tc or in
the quark-gluon plasma and the dynamics of these sys-
tems can be very close to that of a hypothetical classical
fluid with zero viscosity, called the ideal fluid, if exis-
tence of classical turbulence is prohibited. Indeed, this
is a case of ultracold fermionic gases produced experi-
mentally. Classical fluid hydrodynamics is governed by
dimensionless numbers, where the most important is the
Reynolds number Re = nmvL

η , v and L are characteristic

velocity and linear dimension describing flow. Classical
turbulence in 3D systems is achieved for values of the
Reynolds number of the order of 104.

In a UFG quantized vortices, and therefore quantum
turbulence, can exist in clouds with as little as 500-1000
fermions [45, 46] and for flow velocities v ≈ 0.7vF , which
are larger than the Landau’s critical velocity vc ≈ 0.4vF .
The largest cold atomic clouds created so far in the lab-
oratory have O(106) atoms.

One can estimate the Reynolds number for a UFG us-
ing as characteristic scales: number of atoms N in a
cloud that defines density n = N/L3, the critical veloc-

ity vc = 0.4vF = 0.4~(3π2N)1/3

mL ≈ 1.2N1/3
~/mL and the

minimal value of the shear viscosity η
n~ ≈ 0.2. With

this one obtains for the Reynolds number the values
Re . n~

η
mLvc

~
≈ 60 for N = 1000 and Re ≈ 620 for

N = 106. One can argue that one can attain higher

values of the Reynolds number by increasing the flow ve-
locity by a factor ≈ 10 so as to reach Re ≈ 104. In a
dilute Fermi gas near the unitary point the scattering
cross section is on average σ ≈ 4π/k2F . If the flow veloc-
ity is increased to v ≈ 10vF , the cross section decreases
by a factor of k2/k2F ≈ 100 and the mean free path 1/nσ
becomes very large, comparable or exceeding the size of
any atomic cloud created so far in the laboratory and
the system enters the collisionless regime. One could al-
ternatively contemplate an increase in the linear size of a
cloud by a factor of 10, thus up to cloud particle numbers
O(109) (a size likely difficult to achieve for condensates),
in order to increase the Reynolds number by an order of
magnitude.

The Fermi gas in the unitary regime is thus a rather
unique physical system; below the critical temperature
the system is superfluid and can sustain quantum tur-
bulence in rather small clouds, while above the criti-
cal temperature the turbulent dynamics is strongly sup-
pressed for any current experimental realizations for a
very wide range of flow velocities and cloud sizes. The
almost “death” of classical turbulence above Tc and its
revival into a new “body,” the quantum turbulence be-
low Tc, makes the unitary Fermi gas the unitary regime
a quite unique physical system. The small value of the
shear viscosity in a dilute Fermi gas near unitarity, which
is attained in the normal phase, requires that the onset of
classical turbulence be achieved in relatively large clouds,
so far not realized experimentally.

In summary, we have presented ab initio results for
interaction strength dependence of the static shear vis-
cosity and the shear viscosity to the entropy density ratio.
Both quantities decrease as we tune interaction strength
from the BCS side of the unitarity point towards the BEC
limit. The results suggest that the Fermi gas in the uni-
tary regime is the closest physical system known to being
a “perfect fluid,” for an interaction strength correspond-
ing to 1

akF
≈ 0.4, with a minimum value of shear vis-

cosity to entropy density η
s

∣

∣

min
≈ 0.2 ~

kB
about twice as

small than the value reported for the quark-gluon plasma
η
s

∣

∣

QGP
. 0.4 ~

kB
[14]. Our simulations qualitatively con-

firm the experimental observation of Ref. [26], that shear
viscosity attains a minimum on the BEC side of the uni-
tary point, albeit for a stronger value of the coupling
constant.
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