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We present an analytic Bogoliubov description of a BEC of polar molecules trapped in a quasi-
2D geometry and interacting via internal state-dependent dipole-dipole interactions. We derive the
mean-field ground-state energy functional, and we derive analytic expressions for the dispersion
relations, Bogoliubov amplitudes, and dynamic structure factors. This method can be applied to
any homogeneous, two-component system with linear coupling, and direct, momentum-dependent
interactions. The properties of the mean-field ground state, including polarization and stability, are
investigated, and we identify three distinct instabilities: a density-wave rotonization that occurs
when the gas is fully polarized, a spin-wave rotonization that occurs near zero polarization, and a
mixed instability at intermediate fields. These instabilities are clarified by means of the real-space
density-density correlation functions, which characterize the spontaneous fluctuations of the ground
state, and the momentum-space structure factors, which characterize the response of the system
to external perturbations. We find that the gas is susceptible to both density-wave and spin-wave
response in the polarized limit but only a spin-wave response in the zero-polarization limit. These
results are relevant for experiments with rigid rotor molecules such as RbCs, Λ-doublet molecules
such as ThO that have an anomalously small zero-field splitting, and doublet-Σ molecules such
as SrF where two low-lying opposite-parity states can be tuned to zero splitting by an external
magnetic field.

I. INTRODUCTION

The experimental realization of Bose-Einstein conden-
sation [1–3] and Fermi degeneracy [4, 5] in dilute samples
of alkali atoms enabled many new discoveries and ad-
vances in the field of ultracold degenerate gases including
the demonstration of the crossover from a Bose-Einstein
condensate (BEC) to a Bardeen-Cooper-Schrieffer super-
fluid state [6, 7] and the formation of self-assembled vor-
tex lattices [8, 9]. Additionally, the microscopic “spin”
degrees of freedom in these atomic systems have been
used to explore more unconventional states of quantum
matter, such as spin-orbit coupled Bose gases [10, 11] and
high-spin Bose gases [12, 13], which are host to a vari-
ety of novel quantum phases and phase transitions [14–
16]. In all of these systems, ultracold temperatures have
permitted the observation of coherent phenomena in the
presence of relatively weak interactions.

Currently, promising candidates for realizing strong in-
teractions are diatomic, heteronuclear molecules which
can possess large electric dipole moments and interact
strongly, even in very dilute molecular samples. Further,
dipole-dipole interactions (ddi) are inherently long-range
(∝ 1/r3) and anisotropic [17]. In recent years, exper-
imental groups have made remarkable progress toward
cooling molecular samples to quantum degeneracy [18–
34]. Thus, ultracold molecules are among the most ex-
citing prospects for future studies of strongly interacting
quantum many-body systems [35, 36].

For a large class of molecules (the “rigid rotors” e.g.
KRb, RbCs, etc.), the lowest-lying microscopic degrees of
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freedom are rotational in nature, with characteristic en-
ergy splittings on the order of B ∼ 1 GHz [17]. A number
of theoretical proposals have discussed how these rota-
tional levels can be manipulated to behave like “spins,”
and how the state-dependent dipole-dipole interactions
can be tuned (using a combination of DC electric and mi-
crowave fields) to emulate a broad class of quantum spin
models, and thus to study quantum magnetism in a com-
pletely new context [16, 37–48]. Other molecules, such
as Λ-doublet (e.g. ThO, TiO) or doublet-Σ (e.g. SrF)
molecules, possess a set of low-lying opposite-parity elec-
tronic states with anomalously small energy separations
∼ 10 kHz [17, 49, 50]. Recently, a sample of Λ-doublet
OH molecules was Stark-decelerated and evaporatively
cooled to temperatures . 5 mK, approaching the quan-
tum degenerate regime [28]. Unlike the rigid-rotors, the
ground state of these molecules forms an effective spin-
1/2 manifold, which is energetically far-removed from the
higher-lying rotational states. Even in a very dilute sam-
ple, the dipole-dipole interaction energy can approach
the doublet splitting, resulting in interesting dielectric
properties [51].

Motivated by the experimental progress in the cool-
ing and trapping of heteronuclear polar molecules, there
has been a great deal of theoretical interest in under-
standing the role that strong dipole-dipole interactions
play in BECs of molecules that possess spatial degrees
of freedom. Many predictions have been made, includ-
ing the emergence of a roton-maxon quasiparticle spec-
trum [52, 53], anisotropic superfluid flow [54], and struc-
tured vortex excitations [55, 56]. However, very little
work has been done to understand the role that the mi-
croscopic molecular structure plays in such systems.

In this paper, we present a robust theoretical descrip-
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tion of bosonic molecules cooled to quantum degeneracy
in which the microscopic nature of the molecules plays
an important role. We investigate the mean-field ground
state and mesoscopic structure of low-energy excitations
by way of Bogoliubov-de Gennes perturbation theory.
We present a general, analytic procedure for diagonal-
izing the fluctuation Hamiltonian, which results in an-
alytic expressions for both the dispersion relations and
Bogoliubov amplitudes, in terms of which we can calcu-
late important many-body quantities such as two-point
correlation functions and response functions. This pro-
cedure generalizes the method developed in Ref. [57] for
the case of momentum-dependent couplings that arise as
a consequence of the long-range nature of the interac-
tions.

Using these methods, we investigate a quasi-2D BEC
of polar molecules in the presence of an external electric
field that couples two low-lying molecular states where
the molecules interact via state-dependent dipole-dipole
interactions. We investigate the properties of the mean-
field ground state by way of a Gaussian ansatz for the ax-
ial wave functions. By carefully investigating the nature
of the two-point density-density and spin-spin correlation
functions, we arrive at a complete physical picture of the
dynamical instabilities that arise at large densities. We
identify three distinct mechanisms for these instabilities,
and we conclude with a discussion of three different can-
didate molecules and the associated parameter regimes
(zero-field splitting, field strength, and density) to which
these results apply.

The paper is organized as follows. In Sec. II, we present
the theory for the internal structure of the molecules,
developing a two-state approximation that allows for a
unified treatment of a variety of different molecules. In
Sec. III, we present the many-body treatment of the sys-
tem where the many-body Hamiltonian, the Bogoliubov-
de Gennes expansion, and the ground state energy func-
tional in a Gaussian approximation are developed. In
addition, we present the full analytic diagonalization of
the fluctuation Hamiltonian, and thereby derive analytic
expressions for important quantities such static response
functions. In Sec. IV, we analyze the ground state energy
functional and the behavior of energy and polarization of
the mean-field ground state, including important limits.
In Sec. V, we present analyses of the dispersion relations,
depletions, static structure factors, and correlation func-
tions all in the context of understanding the nature of the
instabilities that appear for large enough density in the
low-, intermediate-, and high-field regimes. In Sec. VI,
we develop a full physical picture of the instabilities seen
these regimes through analysis of the static structure fac-
tors and correlation functions. Finally, in Sec. VII, we
conclude with a discussion of the implications of these re-
sults, including how to experimentally access the behav-
ior using the candidate molecules addressed in Sec. II.

II. SINGLE MOLECULE THEORY

In this paper, we consider a gas of polar molecules
interacting via the dipole-dipole interaction in the pres-
ence of an external electric field E. In such systems, the
net polarization P of the gas and the external field to-
gether induce a dipole moment d in a particular molecule,
which in turn modifies the overall polarization. In a semi-
classical treatment [58], we solve for both d and P self-
consistently. Here, we are explicitly interested in the role
that the microscopic molecular structure plays in deter-
mining the many-body behavior of a quantum degenerate
gas of polar molecules. We build in a microscopic, quan-
tum mechanical description of polarizability in molecular
systems by including two low-lying opposite-parity states
of the molecule that are coupled by an external field. This
two-state approximation is general enough to provide a
unified treatment of a wide class of molecules, includ-
ing Λ-doublets, doublet-Σ’s, and rigid rotor molecules.
We note that this description provides a unified picture
of both dielectric physics—by building in the microscopic
description of molecule polarizability—and of spin- 1

2 sys-
tems with long-range interactions.

This description takes the form of a two-state molecu-
lar Hamiltonian, given by

Hmol = h0σz + hcσx, (1)

where σx and σz are Pauli matrices, h0 = dE, hc =
∆/2, d is the effective dipole moment of the molecule in
the strong-field limit, E is the strength of the applied
electric field, and ∆ is the zero-field splitting between
two low-lying molecular states, the nature of which we
will discuss below in the context of specific molecules.
This Hamiltonian is written in the basis {|↑〉 , |↓〉} that
diagonalizes the d0, where d0 is the matrix of the dipole
operator that lies along the molecular axis restricted to
the lowest two molecular eigenstates. In this case,

d̂→
[
d↓ 0
0 d↑

]
. (2)

We interpret the states in this basis as “dipole states” for
which the dipole moment of the molecule is aligned (|↑〉)
or anti-aligned (|↓〉) with the external field.

This description is convenient for multiple reasons.
It provides a clear physical picture of the emergent
physics, and it eliminates exchange interactions between
molecules in the many-body Hamiltonian, enabling a
fully analytic solution of the problem within the Bogoli-
ubov de-Gennes framework. In addition, this allows for a
unified many-body description of a wide class of dipolar
BEC’s.

We have identified three classes of polar molecules rel-
evant to modern experiments that are good candidates
for experimentally realizing the results in this paper.
These candidate classes are the rigid rotor molecules,
Λ-doublets, and doublet-Σs. The specific candidate
molecule in the class of rigid rotors is RbCs, which has
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been cooled by means of both STIRAP [25, 29] and pho-
toassociation [59]. In the class of Λ-doublets, we con-
sider ThO, which is a candidate for eEDM searches [50].
In the class of doublet-Σ’s, we consider SrF, which has
been laser cooled [60, 61] and is a candidate for realizing
magnetic Frenkel excitons in an optical lattice filled with
such molecules [62].

The following discussions of rigid rotor and Λ-doublet
molecules closely follow the discussions in Ref. [49]. The
discussion of the doublet-Σ molecules closely follows the
discussion in Ref. [62]. In Sec. VI, we give a detailed
accounting of the parameter regimes relevant to realizing
the results discussed later in this paper for a subset of
the molecules described in the following subsections.

A. Rigid rotors

The Hamiltonian of a rotating molecule in the presence
of an external electric field E is given by

Ĥmol = BĴ2 − d̂ ·E, (3)

where B is the rotational constant, J is the total spatial

angular momentum of the molecule, and d̂ is the dipole
moment operator in the body-fixed frame. In the basis
{|J,M〉} of eigenstates of Ĵ2 and Ĵz, the Hamiltonian is
given by

Ĥmol =
B

2

∑
J,M

J (J + 1) |J,M〉 〈J,M |

−
∑
q

Eq
∑

JJ ′MM ′

〈J,M |d̂q|J ′,M ′〉|J,M〉〈J ′,M ′|,

(4)

and the matrix elements of the dipole operator compo-

nents d̂q can be compactly expressed in terms of 3j sym-
bols as

〈J,M |d̂q|J ′,M ′〉 = d (−1)
M+q

√
(2J + 1) (2J ′ + 1)

×
(

J 1 J ′

−M q M ′

)(
J 1 J ′

0 0 0

)
. (5)

The 3j symbols enforce the selection rules q + M ′ = M
and J+1+J ′ are even. Assuming that the external field
is homogeneous and point along the lab-frame z-axis, the
only term that survives is the q = 0 term.

The external electric field acts to mix angular mo-
mentum states according to Eq. (5). By diagonalizing

Ĥmol, we can systematically include the mixing in of
higher rotational states while still treating the system
in a two-state approximation. In Fig. 1, we have plotted
the lowest nine eigenergies of Ĥmol. We keep the lowest
eigenstates |1〉 and |2〉 of Ĥmol, which are adiabatically
connected at zero field to the states |00〉 and |10〉, respec-
tively. In this truncated basis, the molecular Hamiltonian
takes the diagonal form,

Ĥmol =
ε

2
|2〉 〈2| − ε

2
|1〉 〈1| , (6)
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FIG. 1. (Color online.) The first nine eigenenergies of the
Hamiltonian of the rigid rotor molecule in the presence of an
external electric field. We restrict to the lowest two m = 0
states |1〉 and |2〉 (solid blue) coupled by the external field.
The first second and third dashed curves correspond to de-
generate eigenstates with ±m 6= 0.

where the splitting ε is a function of the field strength
E, and we have subtracted off a field-dependent energy
offset in order to write the Hamiltonian in this form. This
offset is field-independent in the low-field limit, as can be
seen in Fig. 1; for the purposes of this paper, we work in
the low-field limit. An effective dipole operator can be
written in this truncated basis as

d̂
(eff)
0 =

∑
λλ′

dλ′λ |λ′〉 〈λ| , (7)

where the matrix elements dλ′λ in the basis {|1〉 , |2〉} are

calculated by constructing d̂0 in the |J,M〉 basis using

Eq. (5), transforming to the eigenbasis of Ĥmol, and re-
stricting to the two lowest states |1〉 and |2〉.

As noted previously, it is convenient to work in the
eigenbasis {|↓〉 , |↑〉} of the effective dipole moment oper-
ator, in which case the molecular Hamiltonian takes the
form of Eq. (1) with

h0 =
1

2

ε√
δ2 + d2

12

δ, (8a)

hc =
1

2

ε√
δ2 + d2

12

d12, (8b)

δ =
d11 − d22

2
. (8c)

The dipole moments are given by

d↑ =
d11 + d22

2
+
√
δ2 + d2

12, (9a)

d↓ =
d11 + d22

2
−
√
δ2 + d2

12. (9b)

In Fig. 2, we have plotted the matrix elements of both

d̂0 and Ĥmol as a function of d0E. For d0E . 2B, hc
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FIG. 2. Matrix elements of (a) the dipole operator d̂0 and

(b) the molecular Hamiltonian Ĥmol in the eigenbasis of d̂0
restricted to the lowest two eigenstate of Ĥmol. For values of
dE . B, the dipole moments and the off-diagonal elements of
the Hamiltonian are approximately constant, and the diago-
nal elements of the Hamiltonian grow linearly with the field
E.

and dκ are constant, and h0 varies linearly with the ex-
ternal field. We therefore interpret the state |↑〉 (|↓〉) as a
molecular state with dipole moment d↑ (d↓ = −d↑) that
is aligned (anti-aligned) with the external field. We inter-
pret 2hc as a zero-field splitting of the molecule, and the
energies ±h0 of the dipole states display a linear Stark
shift. This interpretation requires that we work in the
low-field limit where the effects of higher-lying rotational
states are minimized; as noted earlier, this is required in
order for the Hamiltonian to take the form of Eq. 6.

B. Λ-doublets

In a certain class of molecules, there exist two low-
lying states |1〉 and |2〉 of opposite parity whose splitting
∆ is much smaller than the rotational spitting B. These
two states are said to comprise a Λ-doublet [49]. The
Hamiltonian for such molecules is given by

Ĥmol =
∆

2
(|2〉 〈2| − |1〉 〈1|)− d0E (|1〉 〈2|+ |2〉 〈1|) ,

(10)
where E = Eẑ is an external electric field oriented along
the molecular axis, ∆ � B is the zero-field splitting of

the molecule, and d0 is a function of the total electronic
and rotational angular momentum quantum numbers of
the states |2〉 and |1〉.

In the basis {|↑〉 , |↓〉} that diagonalizes d̂0, the molec-
ular Hamiltonian again takes the form of Eq. (1), where
h0 = d0E and hc = ∆/2, and the dipole moments are
given by d↑ = d0 = −d↓. We again interpret these two
states as dipole states that either align or anti-align with
the external field. These states are the strong-field states
of the Hamiltonian, and since ∆� B, we can interpolate
between the weak-field limit d0E � ∆ and the strong
field limits d0E � ∆ while still neglecting the effects of
rotations of the molecule.

C. Doublet-Σ

Following the discussion in Ref. [62], the Hamiltonian
for a 2Σ molecule in the presence of external electric and
magnetic fields can be written as

Ĥmol = Ĥro−vib + γSRŜ · N̂− d̂ ·E + 2µBŜ · B̂, (11)

where the first term includes both vibrational and ro-
tational terms, Ŝ is the molecular spin, N̂ is the rota-
tional angular momentum, d̂ is the molecular dipole mo-
ment and µB is the Bohr magneton. We assume that the
molecules are in their vibrational ground states and can
be approximated as rigid rotors. It is shown in Ref. [62]
that there are two low-lying states |1〉 (N = 0) and |2〉
(N = 1) of opposite parity that can be tuned to zero split-
ting via the external magnetic field. The electric field is
the only term in the Hamiltonian that couples opposite-
parity eigenstates, so this crossing is exact at zero-field.
Restricting our attention to only these two states, we
can write the Hamiltonian in the form of Eq. (10), where
∆ can now be tuned by an external magnetic field to
be much smaller than the rotational splitting. We again

work in the basis where the dipole moment operator d̂0 is
diagonal, and everything carries over from the Λ-doublet
section.

III. MANY-BODY HAMILTONIAN AND
BOGOLIUBOV-DE GENNES ANALYSIS

In this section, we present the general many-body
treatment of a molecular BEC interacting via electric
dipole interactions in the case where the molecules can
be treated in a two-state approximation, as discussed in
Sec. II. Using a Bogoliubov-de Gennes analysis, we de-
rive both the ground-state energy functional K0 and the
second-order fluctuation Hamiltonian K̂2 in the grand-
canonical ensemble via a Gaussian ansatz for the axial
(trap-axis) wave functions. We analytically diagonalize
the fluctuation Hamiltonian. This procedure results in
analytic expressions for the low-energy dispersion rela-
tions and Bogoliubov amplitudes, in terms of which we
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can write important many-body properties such as the
quantum depletion and static structure factors.

A. Many-body Hamiltonian in the dipole basis

The full many-body Hamiltonian is given by

Ĥ = Ĥ0 + Ĥint

=

∫
d3rΨ̂† (r)

(
HCM (r) 1̂ + Ĥmol

)
Ψ̂ (r)

+
1

2

∫
d3r

∫
d3r′Ψ̂† (r) Ψ̂† (r′)

× Û (r− r′) Ψ̂ (r) Ψ̂ (r′) , (12)

where HCM (r) is the single-particle Hamiltonian for the
center-of-mass motion of the molecule, and

Û (r1 − r2) = d̂
(1)
0 d̂

(2)
0

1− 3 cos2 θr1−r2

|r1 − r2|3
, (13)

where we have assumed that the induced dipoles lie along
the z-axis.

Expanding the field operator as a two-component
spinor

Ψ̂ (r) =
∑

κ∈{↑,↓}

ψ̂κ (r) |κ〉 , (14)

the interaction Hamiltonian becomes

Ĥint =
1

2

∑
κ,κ′

dκdκ′

∫
d3r

∫
d3r′V (r− r′)

× ψ̂†κ (r) ψ̂†κ′ (r
′) ψ̂κ′ (r

′) ψ̂κ (r) , (15)

where

V (r− r′) =
1− 3 cos2 θr−r′

|r− r′|3
. (16)

The rotation to the single-molecule strong-field basis re-
moves any exchange interactions in the Hamiltonian, and
we are left with only direct interaction terms.

The remaining terms in the Hamiltonian (Eq.(12)) can

be expressed in terms of the field operators ψ̂κ (r), and
the result is

K̂ = Ĥ0 −
∑
κ

µκN̂κ + Ĥlin + Ĥint, (17)

where Ĥ0, given by

Ĥ0 =
∑
κ

∫
d3rψ̂†κ (r) (h0 (r) + h0 (δκ,↓ − δκ,↑)) ψ̂κ (r) ,

(18)

is the single-molecule Hamiltonian, and Ĥlin, given by

Ĥlin = hc

∫
d3r

(
ψ̂†↑ (r) ψ̂↓ (r) + ψ̂†↓ (r) ψ̂↑ (r)

)
, (19)

is the Hamiltonian for the linear coupling between dipole
states that arises as a consequence of the zero-field split-
ting. We introduced chemical potentials µκ to work in
the grand-canonical ensemble, and N̂κ, given by

N̂κ =

∫
d3rψ̂†κ (r) ψ̂κ (r) , (20)

which is the number operator for the internal state κ. We
consider a gas of polar molecules harmonically trapped
in quasi-2D, in which case the Hamiltonian is given in
cylindrical coordinates by

HCM (r) = − ~2

2m
∇2
ρ +HCM (z) , (21a)

where

HCM (z) = − ~2

2m
∇2
z +

1

2
mω2z2. (21b)

B. Bogoliubov Theory

Here, we perform a Bogoliubov-de Gennes analysis of
the full many-body Hamiltonian derived above. When
the axial trapping is sufficiently tight, we can expand

the field operator ψ̂κ (r) as the product of an axial wave
function and a field operator for the in-plane motion. We
further expand the field operator as a sum of condensate
and fluctuation terms, yielding

ψ̂κ (x) =
fκ (z)√
A

eiθκ√Nκ +
∑
k6=0

eik·ρâk,κ

 , (22)

where Nκ is the number of particles occupying molecular
state |κ〉, k is an in-plane wave vector, fκ (z) is a normal-
ized, state-dependent axial wave function, and A is the
in-plane area of the system. Neglecting the fourth-order
terms in the expansion, Eq. (17) becomes

K̂ ≈ K0 + K̂2 , (23)

where K0, given by

K0 =
∑
κ

(εκ − µκ + h0 (δκ,↓ − δκ,↑))Nκ

+
√
N↑N↓

(
e−i(θ↑−θ↓)α+ c.c.

)
+

1

2

∑
κ,κ′

NκNκ′
l2

A
λκκ′ , (24)

is the ground-state energy functional, and K̂2, given by
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K̂2 = −1

2

∑
k6=0

∑
κ

Nκ
l2

A
λk,κκ

+
∑
k 6=0

∑
κ

(
~2k2

2m
+ εκ − µκ + h0 (δκ,↓ − δκ,↑) +

∑
κ′

Nκ′
l2

A
λκκ′

)
â†k,κâk,κ +

∑
k6=0

αâ†k,↑âk,↓ +H.c.

+
∑
k 6=0

∑
κ,κ′

√
NκNκ′

l2

A

λk,κκ′

2

(
eiθκ â†k,κ + e−iθκ â−k,κ

)(
eiθκ′ â†−k,κ′ + e−iθκ′ âk,κ′

)
, (25)

is the second-order fluctuation Hamiltonian. These terms
are expressed in terms of the single-particle parameters,

εκ =

∫
dzf∗κ (z)HCM (z) fκ (z) , (26)

α = hc

∫
dzf∗↑ (z) f↓ (z) , (27)

and the interaction parameters,

λk,κκ′ =
dκ′dκ
l2

∫
d3r

∫
d3r′ |fκ (z)|2 e

−ik·ρ
√
A

× V (r− r′) |fκ′ (z′)|
2 eik·ρ

′

√
A
, (28a)

λκκ′ = λk=0,κκ′ , (28b)

where l =
√

~/mω is the oscillator length associated with
the axial trapping potential.

These equations are general for the case where the par-
ticles interact exclusively via direct interactions and via
a state-independent central potential V (see Eq. (15)).
In the case of dipole-dipole interactions between dipoles
aligned with the trap-axis, the interaction parameter can
be written in the simple form (see Appendix A)

λk,κκ′ =
dκ′dκ
l2

8π

3

∫
dz |fκ (z)|2 |fκ′ (z)|2

− dκdκ′

l2
2πk

∫
dzdz′e−k|z−z

′|

× |fκ (z)|2 |fκ′ (z′)|
2
. (29)

In order to calculate the parameters, we need the axial
wave functions fκ. We can minimize the ground state
energy with respect to θ and the population-normalized
axial wave functions Fκ (z) =

√
Nκ/Nfκ (z), and enforce

the normalization condition 1 =
∑
κ

∫
dz′ |Fκ (z′)|2. Ex-

tremizing with respect to θ yields θ = π. Extremizing
with respect to Fκ results in a set of coupled differential
equations, given by

0 = (h0 (z) + (δκ,↓ − δκ,↑)h0 − µκ) fκ (z)

+ hc cos θ

(
δκ,↑

√
N↓
N↑

f↓ (z) + δκ,↓

√
N↑
N↓

f↑ (z)

)

+
8π

3

∑
κ′

Nκ′dκdκ′

A
|fκ′ (z)|2 fκ (z) , (30)

which is constrained by both the normalization condition
above and the equilibrium condition, µ↑ = µ↓.

Here, we instead employ a Gaussian ansatz for the ax-
ial wave functions, given by

fκ (z) =
1√
l
√
π
e−z

2/2l2 . (31)

By employing this ansatz, we are assuming that the
molecules are fixed in the vibrational ground state of the
axial potential. This approximation is quantitatively ac-
curate in the limit of small applied electric field or small
dipolar interactions (in the weakly interacting regime
within the mean-field framework), and becomes less ac-
curate in the limit of strong external field with strong
dipolar interactions. For the purposes of this work, the
physically interesting phenomena we are concerned with
occur in the low field limit where the gaussian ansatz is
the most accurate. Further, this approximation allows
us to find analytic expressions for the interaction pa-
rameters, and we find good qualitative agreement with
the results obtained by using the numerical solutions of
Eq. (30) in all regimes discussed here. The parameters
in Eq. (24) can be evaluated analytically, and the ground
state energy per particle can be written as

K0

N
=

(
~ω
2
− µ↑ − h0

)
ν↑ +

(
~ω
2
− µ↓ + h0

)
ν↓

+ 2α cos θ
√
ν↑ν↓

+
1

2
ν2
↑nλ↑↑ +

1

2
ν2
↓nλ↓↓ + ν↑ν↓nλ↑↓, (32)

where θ = θ↑ − θ↓ is the relative phase between the two
components, n = Nl2/A is the total 2D areal density
scaled by l−2, νκ = Nκ/N is the relative number of
molecules occupying molecular state |κ〉, and the inter-
action parameter is given by

λκκ′ =
4
√

2π

3

dκdκ′

l3
. (33)
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In order to find the ground state energy, we minimize
Eq. (32) with respect to θ and νκ, yielding θ = π and

µ↑ = ε↑ − h0 + α cos θ

√
ν↓
ν↑

+
∑
κ

nνκλ↑κ, (34a)

µ↓ = ε↓ + h0 + α cos θ

√
ν↑
ν↓

+
∑
κ

nνκλ↓κ, (34b)

which determines the relative population via the equilib-
rium condition, µ↑ = µ↓.

In light of the Gaussian ansatz and energy minimiza-
tion procedure, the fluctuation Hamiltonian (Eq. (25))
can be written as

K̂2 = −1

2

∑
κ,k6=0

νκnλk,κκ

+
∑
κ,k6=0

(
~ω (kl)

2

2
− α cos θ

√
δκ,↓ν↑ + δκ,↑ν↓

νκ

)
â†k,κâk,κ

+ α
∑
k 6=0

â†k,↑âk,↓ +H.c.

+
∑
k6=0

∑
κ,κ′

(cos θ)
1−δ

κκ′
√
νκνκ′nλk,κκ′

2

×
(
â†k,κ + â−k,κ

)(
â†−k,κ′ + âk,κ′

)
, (35)

where the interaction parameter is explicitly given by

λk,κκ′ = λκκ′F

(
kl√

2

)
(36a)

where

F (x) = 1− 3
√
π

2
xex

2

erfc (x) , (36b)

and erfc(x) is the complementary error function.

C. Diagonalization of the fluctuation Hamiltonian

In Ref. [57], the Bogoliubov diagonalization procedure
was generalized in order to deal with a coherently coupled
two-state BEC whose atoms interact via contact interac-
tions. Here, we generalize this procedure for the case
of the momentum-dependent couplings (Eq. (36)) that
arise when the particles interact via an anisotropic, long-
range interaction. We note that this procedure can be ap-
plied to any BEC with a linear coupling term and state-
dependent, momentum-dependent interaction couplings,
as long as there are only direct interactions (see Eqs. (28)
and (25)). The diagonalization procedure results in ana-
lytic expressions for the Bogoliubov amplitudes, and they
can be combined with (if necessary) numerical values of
the interaction parameters to yield important quantities
such as response functions.

The diagonalization procedure consists of the following
steps: (1) a canonical transformation of the plane-wave

operators âk,κ that removes the linear coupling between
the two modes; (2) a transformation to a set of non-
Hermitian coordinate operators scaled in such a way that
the momentum terms are left invariant under a further
rotation of the coordinate operators; (3) a rotation of
the coordinate operators that decouples the two compo-
nents; and (4) a transformation back to a set of bosonic
operators in terms of which the fluctuation Hamiltonian
is diagonal. Since in-plane center-of-mass momentum is
conserved in this system, this procedure is identical for
each block of the Hamiltonian corresponding to a partic-
ular momentum.

For purposes of clarity, in what follows, we make the
replacement (↓, ↑)→ (1, 2).

The first transformation is given by

âk,1 = d̂k,1 cos η − d̂k,2 sin η, (37a)

âk,2 = d̂k,1 sin η + d̂k,2 cos η, (37b)

where

cos η =
√
ν2

1− cos θ

2
+
√
ν1

1 + cos θ

2
, (38a)

sin η =
√
ν1

1− cos θ

2
+
√
ν2

1 + cos θ

2
, (38b)

and it can be easily shown that the new creation and an-

nihilation operators d̂k,σ and d̂†k,σ satisfy the canonical
boson commutation relations. Under this transforma-
tion, the Hamiltonian takes the form

K̂2 = −1

2

∑
κ,k6=0

νκnλk,κκ +
∑
k 6=0

∑
σ

εk,σd̂
†
k,σd̂k,σ

+
∑
k6=0

∑
σ,σ′

√
νσνσ′nΛk,σσ′

2

×
(
d̂†k,σ + d̂−k,σ

)(
d̂†−k,σ′ + d̂k,σ′

)
(39)

where

εk,2 =
~2k2

2m
− 1 + cos θ

2

α
√
ν1ν2

, (40a)

εk,1 =
~2k2

2m
+

1− cos θ

2

α
√
ν1ν2

, (40b)

are the single-particle energies, and

ν1Λk,11 = ν1λk,11 cos2 η + ν2λk,22 sin2 η (41a)

+
√
ν1ν2 Re (λk,12) sin 2η cos θ,

ν2Λk,22 = ν2λk,22 cos2 η + ν1λ11 sin2 η (41b)

−
√
ν1ν2 Re (λk,12) sin 2η cos θ,

√
ν1ν2Λk,12 =

ν2λk,22 − ν1λk,11

2
sin 2η

+
√
ν1ν2

(
λk,12 cos2 η − λk,21 sin2 η

)
cos θ,

(41c)

are a set of dressed momentum dependent interaction
parameters.
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We next define a set of non-Hermitian coordinate op-
erators via the transformation,

x̂k,σ =

√
ωk,1

εk,σ

d̂†k,σ + d̂−k,σ√
2

, (42a)

p̂k,σ =

√
εk,σ
ωk,1

d̂k,σ − d̂†−k,σ
i
√

2
, (42b)

where

ωk,σ =
√
εk,σ (εk,σ + 2nνσΛk,σσ), (43)

are the dispersion relations in the absence of interactions
between anti-aligned dipoles. These coordinate operators

are non-Hermitian—i.e. x̂†k,σ = x̂−k,σ and p̂†k,σ = p̂−k,σ—
but they still satisfy the canonical position-momentum
commutation relations. Under this transformation, the
Hamiltonian is

K̂2 = −1

2

∑
k6=0

∑
σ

(εk,σ + νσnλk,σσ)

+
∑
k 6=0

∑
σ

ωk,1

2
p̂−k,σp̂k,σ

+
∑
k 6=0

∑
σ

ω2
k,σ

2ωk,1
x̂k,σx̂−k,σ

+
∑
k 6=0

√
ν1ν2εk,1εk,2

ωk,1
(Λk,12x̂k,1x̂−k,2 + H.c.) .

(44)

The next step is to decouple modes 1 and 2 by defining
a new set of coordinate operators,

P̂k,+ =

√
ωk,1

Ωk,+

(
p̂k,1 cos γk + p̂k,2e

−iφk sin γk
)
, (45a)

P̂k,− =

√
ωk,1

Ωk,−

(
p̂k,2 cos γk − p̂k,1eiφk sin γk

)
, (45b)

X̂k,+ =

√
Ωk,+

ωk,1

(
x̂k,1 cos γk + x̂k,2e

iφk sin γk
)
, (45c)

X̂k,− =

√
Ωk,−

ωk,1

(
x̂k,2 cos γk − x̂k,1e−iφk sin γk

)
, (45d)

where

Ω2
k,± =

1

2

(
ω2
k,1 + ω2

k,2

)
± 1

2

√(
ω2
k,1 − ω2

k,2

)2

+ 16ν1ν2n2|Λk,12|2εk,1εk,2,
(46)

and the angle functions are given by

cos γk =

√√√√1

2

(
1 +

ω2
k,1 − ω2

k,2

Ω2
k,+ − Ω2

k,−

)
, (47a)

sin γk =

√√√√1

2

(
1−

ω2
k,1 − ω2

k,2

Ω2
k,+ − Ω2

k,−

)
, (47b)

φk = arg (Λk,12) . (47c)

Again, these operators are not Hermitian, but they do
satisfy the canonical position-momentum commutation
relations. Under this transformation, the Hamiltonian
takes the form

K̂2 = −1

2

∑
k6=0

2∑
σ=1

(εk,σ + νσnλk,σσ)

+
∑
k6=0

∑
s=±

Ωk,s

2

(
P̂k,sP̂−k,s + X̂k,sX̂−k,s

)
. (48)

The final transformation, given by

b̂k,s =
X̂−k,s + iP̂k,s√

2
, (49)

results in the diagonal Hamiltonian,

K̂2 =
1

2

∑
k6=0

(∑
s=±

Ωk,s −
2∑

σ=1

(εk,σ + νσnλk,σσ)

)
+
∑
k6=0

∑
s=±

Ωk,sb̂
†
k,sb̂k,s, (50)

where the operators b̂k,s satisfy canonical bosonic com-
mutation relations. The first term in Eq. (50) is a state-
independent offset, due to quantum fluctuations, which
can be absorbed into the ground state energy. From
the second term, it is apparent that Ωk,± are the two
branches of the dispersion relation for this system. Fur-
thermore, in the case where the dressed coupling constant
Λk,12 uniformly vanishes, these two dispersion relations
reduce to ωk,σ. We will see in Sec. V that these two
decoupled modes can be interpreted as spin-wave and
density-wave modes. The presence of interactions be-
tween molecules in different dipole states couples these
two modes, and this leads to a rich quasi-particle spec-
trum in which either density- or spin-wave behavior can
dominate.

Since we have explicit expressions for the operator
transformations, we can write the original plane-wave op-

erators âk,κ in terms of the quasi-particle operators b̂k,s
as

âk,κ =
∑
s=±

(
uk,κs+b̂k,s + v∗−k,κsb̂

†
−k,s

)
, (51)

where the u’s and v’s are known as Bogoliubov ampli-
tudes. Many quantities that characterize the system—
such as structure factors and correlation functions—can
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be written in terms of these amplitudes, and we therefore
quote the results here. They are

uk,1+ =
Γ2
k,1+ + 1

2Γk,1+
cos γk cos η

−
Γ2
k,2+ + 1

2Γk,2+
e−iφk sin γk sin η, (52a)

uk,1− = −
Γ2
k,1− + 1

2Γk,1−
eiφk sin γk cos η

−
Γ2
k,2− + 1

2Γk,2−
cos γk sin η, (52b)

v∗−k,1+ =
Γ2
k,1+ − 1

2Γk,1+
cos γk cos η

−
Γ2
k,2+ − 1

2Γk,2+
e−iφk sin γk sin η, (52c)

v∗−k,1− = −
Γ2
k,1− − 1

2Γk,1−
eiφk sin γk cos η

−
Γ2
k,2− − 1

2Γk,2−
cos γk sin η, (52d)

and

uk,2+ =
Γ2
k,1+ + 1

2Γk,1+
cos γk sin η

+
Γ2
k,2+ + 1

2Γk,2+
e−iφk sin γk cos η, (52e)

uk,2− = −
Γ2
k,1− + 1

2Γk,1−
eiφk sin γk sin η

+
Γ2
k,2− + 1

2Γk,2−
cos γk cos η, (52f)

v∗−k,2+ =
Γ2
k,1+ − 1

2Γk,1+
cos γk sin η

+
Γ2
k,2+ − 1

2Γk,2+
e−iφk sin γk cos η, (52g)

v∗−k,2− = −
Γ2
k,1− − 1

2Γk,1−
eiφk sin γk sin η

+
Γ2
k,2− − 1

2Γk,2−
cos γk cos η, (52h)

where

Γk,σs =

√
εk,σ
Ωk,s

. (53)

The Bogoliubov amplitudes satisfy the relations,

v∗−k,σs = vk,σs, (54a)

u∗−k,σs = uk,σs. (54b)

and the orthonormality conditions,

δκκ′ =
∑
σ=±

(
uκσu

∗
κ′σ − vk,κσv∗k,κ′σ

)
, (55a)

0 =
∑
σ=±

(
vk,κσu

∗
k,κ′σ − uk,κσv∗k,κ′σ

)
. (55b)

D. Many-body characterization of the ground state
and low-energy excitations

Access to analytic expressions for the Bogoliubov am-
plitudes allows us to find analytic expressions for many
important quantities that characterize the nature of both
the ground state and the low energy excitations. The mo-
mentum distribution 〈n̂κ (k)〉, where

n̂κ (k) = ψ̂†κ (k) ψ̂κ (k)

=
1

A

∫
d2ρ

eik·ρ√
A

∫
d2ρ′

e−ik·ρ
′

√
A

ψ̂†κ (ρ) ψ̂κ (ρ′) ,

(56)

can be written as the sum of the condensate density
nκδk,0 and the density of fluctuations δn̄k,κ, given by

δn̄k,κ =
1

A

∑
s=±

v∗k,κsvk,κs, (57)

where we have used the expansions in Eqs. (22) and
(51). The expectation value is taken in the mean-field
ground state, i.e. the quasi-particle vacuum |0〉, where

b̂κ,σ |0〉 = 0. The total momentum-space density is then

n̄k =
∑
κ

(nκδk,0 + δn̄k,κ) (58)

Bogoliubov theory requires that the “leakage” from
the condensate to the non-condensate (excitation) com-
ponent be small. The size of this leakage is given by the
quantum depletion, which is the difference between the
total density and the density of the condensate,

δn̄ =
∑
κ

δn̄κ =
∑
κ

(n̄κ − nκ) , (59)

where n̄κ, given by

n̄κ = 〈n̂κ (ρ)〉 = 〈ψ̂†κ (ρ) ψ̂κ (ρ)〉, (60)

is the total density of the condensate and fluctuations
of component κ, and we are working in oscillator units
(i.e. nκ = l2Nk/A). Due to the translational symmetry
in the plane perpendicular to the trap axis, this quantity
is independent of ρ and is hence equal to the average
density n̄ =

∑
k n̄k. Therefore, the component depletions

are given by

δn̄κ =

∫
d2k

(2π)
2

∑
s=±

v∗k,κsvk,κs, (61)
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in the thermodynamic limit. The condition for the
Bogoliubov-de Gennes approximation to be valid is that
δn̄� n.

To characterize the ground state and low-energy ex-
citations, we are interested in the behavior of the spon-
taneous fluctuations of the system and of the response
of the system to small perturbations. In particular, we
will be interested in density fluctuations and spin fluc-
tuations, characterized by the position-space, density-
density and spin-spin correlation functions, respectively.
Alternatively, we are interested in the response of the sys-
tem to fluctuations in the external potential and in the
applied field, characterized by the corresponding static
susceptibilities.

The density-density correlation function G
(2)
n (ρ) can

be written as

G(2)
n (ρ) = 〈n̂ (ρ) n̂ (0)〉 − 〈n̂ (ρ)〉 〈n̂ (0)〉

− δ (ρ) 〈n̂ (0)〉 , (62)

where n̂ (ρ), given by n̂ (ρ) =
∑
κ n̂κ (ρ) is the total den-

sity of the system at position ρ. The term proportional
to the delta function has been included to remove the
singular part of 〈n̂ (ρ) n̂ (0)〉 at ρ = 0. Roughly speak-

ing, the function G
(2)
n (ρ) gives the relative probability

for detecting a particle at position ρ given that we have
already detected a particle at position 0. Since the sys-
tem is translationally invariant in the longitudinal direc-
tion, the origin 0 is arbitrary. The spin-spin correlation

function G
(2)
∆ (ρ) can be written as

G
(2)
∆ (ρ) = 〈∆̂ (ρ) ∆̂ (0)〉 − 〈∆̂ (ρ)〉〈∆̂ (0)〉

− δ (ρ)
∑
κ

d2
κ 〈n̂κ (0)〉 ,

where ∆̂ (ρ), given by

∆̂ (ρ) =
∑
κ

dκn̂κ (ρ) , (63)

is the polarization operator. Again, the term propor-
tional to the delta function has been included to remove
the singular part of 〈∆̂ (ρ) ∆̂ (0)〉 at ρ = 0. We have sub-
tracted off the long-distance behaviors, given by

〈n̂ (ρ)〉 〈n̂ (0)〉 = n̄2, (64)

and

〈∆̂ (ρ)〉〈∆̂ (0)〉 = d2 (n̄↑ − n̄↓)2
. (65)

The two correlation functions can be written in terms
of the Bogoliubov amplitudes defined in Eq. (52e) by ex-
panding the field operators using Eqs. (22) and (51), and
the results are

G(2)
n (ρ) = n

∫
d2k

(2π)
2 e
ik·ρ (Sn (k)− 1) , (66)

G
(2)
∆ (ρ) = nd2

∫
d2k

(2π)
2 e
ik·ρ (S∆ (k)− 1) , (67)

where we have defined the density and polarization struc-
ture factors,

Sn (k) =
∑
κ,κ′

Sκκ′ (k) , (68)

S∆ (k) =
∑
κ,κ′

(−1)
1−δκκ′ Sκκ′ (k) , (69)

and

Sκκ′ (k) = (−1)
1−δκκ′

√
νκνκ′

∑
s=±

× (uκs (k) + vκs (k)) (u∗κ′s (k) + v∗κ′s (k)) .
(70)

Up to constants, these structure factors are merely the
Fourier transforms of the two-point correlation functions.
They act as the connection between the correlation func-
tions that characterize fluctuations of the ground state
and the static susceptibility functions that characterize
the response of the system to external perturbations. See
Appendix B for careful definitions of the response func-
tions. In Sec. V, we use these expressions to clarify the
nature of the instabilities that emerge at large densities
for both high and low fields.

IV. PROPERTIES OF THE MEAN-FIELD
GROUND STATE

In the remaining sections of this paper, we apply the
general theory outlined above to the specific system of a
BEC of dipolar molecules interacting via dipole-dipole in-
teractions, trapped in quasi-2D, and experiencing a con-
stant electric polarizing field oriented perpendicular to
the plane. We begin our discussion of the behavior of this
system by investigating the properties of the mean field
ground state, including the extrema of the variational en-
ergy functional and the polarization of the ground state.
We employ the Gaussian ansatz for the axial wave func-
tions (Eq. 31).

The ground state energy functional (Eq. 32) can be
written as

K0 = N
~ω
2
−N~ωβγ (ν↑ − ν↓) +N~ωγ cos θ

√
ν↑ν↓

+ 2
√

2πN~ωD (ν↑ − ν↓)2
(71)

where γ = 2hc/~ω is the effective zero-field splitting of
the molecule, β = h0/2hc is the electric field coupling—
i.e. half the linear Stark shift—relative to the zero-field
splitting, and D = nd2/3~ωl3 is an effective density-
dependent interaction parameter. In the 3D homoge-
neous case, a gas of dipolar molecules is automatically
unstable but can be stabilized via a repulsive contact
interaction characterized by a scattering length a. The
condition for stability is exactly D < na/l [63]. In the
quasi-2D case, however, the gas is stabilized by the pres-
ence of the trapping potential rather than a repulsive
contact interaction.
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FIG. 3. Ground state energy functional as a function of the
normalized polarization ν↑ − ν↓ for θ = π (solid), θ = 0
(dashed), β = 0, 0.5, and 1, and D = 0, 1, and 2. The
system at all times has a single ground state (indicated as a
point in the plot) that is driven towards large polarization by
the external field and zero polarization by the inter-particle
interactions.

The energy functional exhibits markedly different be-
haviors in different parameter regimes. This is illustrated
in Fig. 3, where the two branches of the energy functional
are plotted as a function of the polarization ν↑ − ν↓ for
γ = 2, with the θ = π branch as a solid curve and the
θ = 0 branch as a dashed curve. In all parameter regimes,
there is a single global minimum in the π branch, indi-
cating the existence of a universal ground state. This
is in contrast to Fig. 1 in Ref. [57] where there can ex-
ist two minima and one maximum in the π-branch and
is due to the fact that the interactions always drive the
system towards zero polarization. It is only the exter-
nal field that can increase the population imbalance, as
shown in the subplots of Fig. 3 in which there are no in-
teractions (D = 0). As the external field is increased, the
ground state becomes more polarized in the direction of
the external field. The gas is essentially fully polarized
by the time β ≈ 2. In addition, the energy has a global
maximum in the 0 branch. This state is highly polarized
anti-parallel to the external field and is thus significantly
higher in energy than the universal ground state.

The situation changes when the interaction strength—
or equivalently, the density—is increased. The interac-
tion drives the mean-field ground state in the π-branch
toward zero polarization due to attractive in-plane inter-
actions between unlike dipoles and repulsive interactions
between like dipoles. In addition, at a particular interac-
tion strength, the global maximum in the 0-branch splits
into two local maxima that bound one local minimum,
which is actually a saddle point due to this being the
branch that maximizes the energy in θ. This pushes
the global maximum to even larger negative polarization,
while the 0-branch minimum remains of slightly larger
polarization than the global minimum for all values of D

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

D/ γ

β

one min, one max one min, two max

FIG. 4. Critical threshold for the existence of three local
extrema in the θ = 0 branch of the ground state energy func-
tional.

larger than this threshold.
This threshold value of D is actually a function of

β, and the relationship can be computed by minimiz-
ing both the the energy and the first derivative of the
energy, resulting in the relationship

β =
1

2

(
4

3
√

2π

(
D

γ

)2/3

− 1

)3/2

. (72)

This relationship is plotted in Fig. 4. For small values
of the effective interaction strength D, there is only ever
one extremum on the upper branch, but for values above
a critical value Dc = γ/16π, there are two possibilities
for the number of extrema, depending on the value of
β. These extra extrema in the ground-state energy func-
tional may be of additional physical importance; for in-
stance, it is possible that such states correspond to dy-
namically stable states along the lines of Ref. [64]. This
is left for future study.

In Fig. 5, we have plotted the energy of the global
minimum—that is, the ground state energy—as a func-
tion of β and D for γ = 2 and γ = 20. It is apparent from
these plots that the energy decreases with field strength,
indicating that the dipoles are aligning with the external
field and displaying a Stark shift, and that the energy
increases with interaction strength, indicating that the
interactions are driving the system towards a state of
zero polarization.

These two limits are clarified in Fig. 6, in which we plot
the ground state energy as a function of D for β = 1 and
β forD = 0.5. We show the limiting cases as dashed lines.
In (b), we can see that in the limit of large β, the ground
state energy decreases linearly with β. In the asymptotic
limit where β is large, the gas is fully polarized, and the
ground state energy functional (Eq. 71) becomes

K0

N~ω
→ 1

2
+ 2
√

2πD − βγ, (73)
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FIG. 5. (Color online.) Contour plot of the ground state
energy as a function of β and D for (a) γ = 2 and (b) γ = 20.

which is exactly the equation for the dashed line. The
energy decreases linearly with the external field, which is
the well-known linear Stark shift.

On the other hand, in (c), it appears that the energy
converges to a constant value in the limit of large D.
Indeed, in this limit, the energy is given exactly by

lim
D→∞

K0

N
= ~ω

(
1

2
− γ

2

)
, (74)

which is the equation for the dashed line. Tellingly, this
quantity is independent of β. This energy is exactly the
energy of a single particle in the ground state of the trap
plus the zero-field ground state energy of the molecule.
The strong interactions drive the system to a state of zero
polarization, and in this case the gas is perfectly screened,
eliminating the effects of both the external field and the
interactions.

0

1

2

3

4

5

β

-6-4-202

E (units of Nℏω)

0.0 0.5 1.0 1.5 2.0
-1.8
-1.6
-1.4
-1.2
-1.0
-0.8
-0.6

D

E
(u
ni
ts
of
N
ℏ
ω
)

(a)

(c)

(b)

FIG. 6. (Color online.) (a) Contour plot of the ground state
energy for γ = 2 as a function of β and D. See Fig. 5(a)
for color map. (b) The ground state energy is plotted as
a function of β for D = 0.5 (vertical line in (a)). In the
asymptotic limit β → ∞, the energy decreases linearly with
β (dashed line), which is the well-known linear Stark shift.
(c) The ground state energy is plotted as a function of D
for β = 1 (horizontal line in (a)). The energy approaches a
universal (at fixed γ) limit asD →∞ (dashed line), indicating
that interactions have driven the system into a state of zero
polarization where both the effects of the external field and
of interactions vanish as a result of screening.

It is clear from the preceding that there is a compe-
tition between the external field, which drives the sys-
tem towards a larger polarization, and the interactions,
which drive the system towards zero polarization. This
can be seen explicitly in Fig. 7, in which we have plot-
ted the polarization as a function of β and D for γ = 2
and γ = 20. It is clear immediately that the interac-
tion reduces the polarization whereas the external field
increases it. Furthermore, the polarization increases with
β until it saturates at the maximum value of Nd where
the gas is fully polarized, and the polarization is zero for
large enough D. This behavior is exactly the behavior
of a dielectric material in which the internal fields cre-
ated by the individual molecules partially cancel out the
applied field, self-consistently leading to smaller dipole
moments. In the semi-classical picture, it is the fields
generated by the molecules that give rise to the dielec-
tric behavior. Here, the dielectric behavior manifests as a
competition of the two energy scales associated with the
inter-particle interactions and the interaction between a
single molecule and the external field.

At the mean-field level, the gas is perfectly stable in
the ground state, and increasing the interaction strength
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FIG. 7. (Color online.) Contour plot of the ground-state
polarization (ν↑ − ν↓) as a function of β and D for (a) γ = 2
and (b) γ = 20. The ground state is driven toward zero
polarization (dark shades) with increasing D and toward ν↑−
ν↓ = 1 (light shades) with increasing β.

by increasing the density merely drives the system into
a perfectly screened state in which the polarization is
zero. However, it is well known that in the case of a fully
polarized, dipolar gas in quasi-2D, an instability known
as a density-wave rotonization emerges at a critical den-
sity [65]. The instability arises due to the fact that at
large densities, the energy cost associated with the har-
monic trapping is not large enough to keep the molecules
from locally piling up end-to-end. This instability oc-
curs in our model in the limit of large fields, β � γ,
where the gas is fully polarized. At small β, however,
increasing density drives the system very quickly toward
zero polarization, stabilizing the gas against the collapse
just described. Nonetheless, an instability arises that
has a markedly different character than the one just de-
scribed [51]. This instability is a polarization wave insta-
bility in which the macroscopic, mean-field polarization
is zero, but mesoscopic spin fluctuations arise when it be-
comes energetically favorable for nearby domains of spins
to be anti-aligned. The investigation of the spontaneous
fluctuations that emerge in the system that give rise to
these instabilities is the subject of the next section.

V. MANY-BODY CHARACTERIZATION OF
THE GROUND STATE AND LOW-ENERGY

EXCITATIONS

We have seen that there is a competition between the
energy scales associated with the inter-particle dipole-
dipole interactions and the molecule-field interaction: the
external field drives the system towards maximum polar-
ization whereas the interactions drive the system towards
zero polarization. There is an additional competition be-
tween the attractive interactions between aligned dipoles
lined up end-to-end and the external trapping potential
confining the molecules to be in-plane. Finally, there is a
competition between attractive interactions between in-
plane anti-aligned dipoles and the energy cost of flipping
a single dipole against the field. As a result of these
competing energy scales, mesoscopic fluctuations in both
the density and polarization arise. In this section, we in-
vestigate the consequences of this behavior. We first in-
vestigate the dispersion relations and identify roton-like
features that soften as the interaction strength increases,
which lead to the instabilities discussed briefly in the last
section. We move on to characterizing these instabilities
by way of response functions and correlation functions.

As an issue of nomenclature, we will use the terms
spin-wave and polarization wave interchangeably in the
following discussion. “Polarization-wave” is the correct
terminology in the context of this paper, since we are
discussing a gas of polar molecules polarized by an ex-
ternal electric field. However, the formalism carries over
exactly for a spin-1

2 system with long-range interactions,
in which the term “spin-wave” is relevant.

A. Dispersion relations

If we carefully examine the diagonalization procedure
outlined in Sec. III, we can conclude that the two quasi-
particle modes characterized by the full dispersion rela-
tions Ωk,± arise from coupling the two modes character-
ized by ωk,σ through the dressed interaction parameter
Λk,12. In the limit as β → 0, the gas has zero polarization
and is therefore perfectly screened. It is straight-forward
to show that in this limit, the coupling Λk,12 vanishes,
and so the dispersion relations are exactly given by ωk,σ.
In the limit of no interactions (D = 0), these are just two
free-particle dispersions gapped at zero momentum due
to the linear coupling. These modes correspond exactly
to the symmetric and anti-symmetric superpositions of
|↑〉 and |↓〉—that is, they are just the opposite parity
eigenstates of the molecule that are coupled by the exter-
nal field (see Sec. II). As D increases, the upper branch
ωk,1 develops a minimum at finite momentum. When
β 6= 0, the modes ωk,σ are coupled and above a critical
interaction strength undergo an avoided level crossing at
some finite momentum. The combination of the avoided
crossing and the minimum in the upper branch leads to
the emergence of a roton-maxon-like feature in the lower
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FIG. 8. Full and decoupled dispersion relations Ωk,s (solid)
and ωk,σ (dashed), respectively, plotted for γ = 2 and β = 0.4
at (a) D = 0, (b) D = 0.6 and (c) D = 0.74. (a) For small
interaction strengths, the dispersion relations consist essen-
tially of two free-particle branches. (b) Interactions introduce
a minimum in the upper branch at finite momentum, and the
upper branch will cross the lower branch for large enough D,
creating an avoided crossing. (c) This behavior results in a
roton-like feature that softens for increasing D.

branch of the dispersion. As long as the crossing is nar-
row, the character of the lower-energy state switches at
the avoided crossing; at low momenta, the lower branch
is anti-symmetric, whereas at high momenta above the
crossing, the lower branch is symmetric. This behavior
is shown in Fig. 8, where we have plotted both Ωk,± and
ωk,σ at γ = 2 and β = 0.4 for D = 0, D = 0.6, and
D = 0.74. At D ≈ 0.7459, the energy of the roton-like
feature is zero, and above this value the dispersion rela-
tion is complex, signifying a dynamical instability.

In the high-field limit (Fig. 9), the situation is
markedly different. In this case, the gas is fully polar-
ized, and the dispersion relation has two branches that
are well-separated in energy. The upper branch is ap-
proximately a free-particle dispersion but nonzero at zero
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FIG. 9. Full and decoupled dispersion relations Ωk,s (solid)
and ωk,σ (dashed), respectively, plotted for γ = 2 and β = 3
at (a) D = 0.2 and (b) D = 0.388. As shown by the almost-
perfect overlap between the full and decoupled dispersion
curves, the density-wave and spin-wave dispersions are decou-
pled in this limit, and the lower branch is purely density-wave
in character.

momentum. The lower branch, on the other hand, dis-
plays a roton-maxon character that is already very well-
understood. This is exactly the density-wave roton that
arises in a gas of fully polarized molecules, and it is the
softening of this roton that leads to the instability dis-
cussed previously (see Sec. IV and Ref. [66]). The mecha-
nism by which this roton arises is very different than that
of the roton that arises at small fields. In this high-field
limit, the two dispersions ωk,σ are essentially decoupled
due to the large gap. Therefore, Ωk,± and ωk,σ coincide,
as can be seen in Fig. 9, where we have plotted both at
γ = 2 and β = 3 for D = 0.2, and D = 0.388. Because
the two modes are decoupled, the roton does not arise
due to the avoided crossing between the two branches
that correspond to spin-wave and density-wave modes,
and in fact the lower branch of the dispersion always has
density-wave character. As is well known, the roton al-
ready appears in the dispersion for the single-component,
fully-polarized dipolar BEC.

Finally, in Fig. 10, we have plotted both Ωk,± and ωk,σ

at γ = 2 and β = 1.75 for D = 0.3, and D = 0.645. These
parameters correspond to the cross-over region between
the high-field and low-field limits (filled circles in Fig. 11).
As can be seen from Fig. 10(b), the density-wave and
spin-wave modes are appreciably coupled in this regime,
leading to a widening of the gap between the upper and
lower branches of the dispersion relation. This coupling
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FIG. 10. Full and decoupled dispersion relations Ωk,s (solid)
and ωk,σ (dashed), respectively, plotted for γ = 2 and β =
1.75 at (a) D = 0.3 and (b) D = 0.645. The spin wave and
density wave dispersion relations ωk,σ are strongly coupled in
this regime, leading to a mixed density and spin wave roton
feature.

leads to a roton-like feature in the lower branch that con-
tinues to soften as the interaction strength is increased.
Near D ≈ 0.645, the dispersion relation goes complex,
leading again to a dynamical instability. This instability
has both density-wave and spin-wave character due to
the appreciable coupling between the two branches.

Based on this discussion, we have identified three dis-
tinct mechanisms for the formation of a roton-like feature
in the dispersion relation. This suggests that the phys-
ical mechanisms for these instabilities are different, and
we continue to explore this in the next sections.

B. Stability

In each of the three regimes discussed above, a roton-
like feature in the lower branch of the dispersion softens
as the interaction strength is increased. At a critical
value of D, the energy of the roton minimum is zero,
and above this threshold, the dispersion is complex, in-
dicating the onset of a dynamical instability. We can
map out the stability threshold by finding the values D
at which Ωk,− goes complex for each β. In Fig. 11, we
have plotted the stability threshold for the cases γ = 2
and γ = 20. In order to understand the nature of the
instabilities, it is necessary to understand the behavior
of the decoupled modes ωk,1 and ωk,2 that correspond to
spin waves and density waves, respectively. In Fig. 11,

we have mapped the values (D,β) at which ωk,1 and ωk,2

go complex. These are shown as a dashed curve (ωk,2)
and a dot-dashed curve (ωk,1).

At high fields, the stability threshold matches that cor-
responding to ωk,2. This is the limit of the density-wave
rotonization. As the field is decreased, the density-wave
threshold moves out to higher densities. The molecules
become less polarized at lower fields, leading to a smaller
effective interaction strength. Therefore, higher densities
are necessary in order to access the instability. At small
enough fields, no density-wave instability occurs, because
D is large enough that the gas has been driven to a state
of near-zero polarization, which screens the interaction.
This leads to a region of stability for large D and large
β.

At low fields, the stability threshold matches that cor-
responding to ωk,1. As we will see, the spontaneous
fluctuations of the system near this threshold are purely
spin-wave in character, meaning that there is a separa-
tion of domains of anti-aligned spins. These domains
attract, and at large enough interaction strengths, cause
the gas to destabilize. At higher fields, D must be large
enough to drive the system into a state of near-zero po-
larization before this instability sets in. The spin-wave
threshold therefore gets pushed out to larger densities at
higher fields, which is why this instability disappears in
the higher-field regime.

In the cross-over region, the stability threshold
smoothly interpolates the high-field and low-field limits,
leaving a large unstable region in a parameter regime
that is stable in the case where the density- and spin-
wave modes are decoupled. Our picture of the cross-over
region is then one of a spin-wave-assisted density-wave
instability.

C. Momentum distributions, structure factors, and
correlation functions

Since the instabilities are the result of spontaneous
fluctuations setting up spin- and density-waves of charac-
teristic wavelengths, the instabilities should be signaled
by divergences in the non-condensate momentum distri-
bution, i.e. the depletion. In Fig. 12, we have plotted the
momentum distributions δn̄k for a range of values of D
from 0 to near the stability threshold for the high field,
mid-field, and low-field cases. We have included a fac-
tor of k that comes from the measure d2k, which renders
δn̄k finite at zero momentum. As D increases, a peak
at the position of the roton minimum in the dispersion
emerges, and this peak diverges as D goes to the critical
value at the stability threshold. As the field strength β is
increased, the position of the peak moves towards smaller
k.

The peak in the momentum distribution suggests that
the fluctuations arise at a characteristic wavelength.
To further explore the nature of the instability, we
consider both the response of the system to external
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FIG. 11. (Color online.) The stability diagram for (a) γ = 2
and (b) γ = 20, plotted above the density plots for the
ground-state polarization from Fig. 7. The solid curve is the
stability threshold for the full system, and the dashed and
dot-dashed curves are the stability thresholds correspond-
ing to the density-wave and spin-wave instabilities, respec-
tively. The points indicated correspond to parameters chosen
in Figs. 8–14.

perturbations—characterized by the static structure fac-
tors Sn(k) and S∆(k)–and the spontaneous fluctuations
of the ground state—characterized by the two-point cor-

relation functions G
(2)
n (ρ) and G

(2)
∆ (ρ). In Figs. 13a, 14a,

and 15a, we have plotted Sn(k) and S∆(k) for a range
of values of D that approach the stability threshold in
the low-field limit, the cross-over region, and the high-
field limit, respectively. Figures 13b, 14b, and 15b show

G
(2)
n (ρ) and G

(2)
∆ (ρ) near the instability threshold in each

of these regimes.
In the low-field limit (Fig. 13), we observe a nearly

featureless density structure factor, indicating that the
system will respond only weakly to fluctuations in the
external confining potential. In other words, the system
is not susceptible to density-wave fluctuations. On the
other hand, in S∆(k) we observe a strong feature appear-
ing at k ≈ 2.1/l that diverges as D approaches the sta-
bility threshold. This indicates that the system is highly
susceptible to spin-wave fluctuations and will therefore
respond strongly to fluctuations in the external field. In
addition, the instability emerges due to the destabiliza-
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FIG. 12. (Color online.) Non-condensate momentum dis-
tribution (quantum depletion) for γ = 2 and β = 3 with
D = 0, 0.1, 0.2, 0.3, 0.35, 0.38, 0.388 (solid, black); β = 1.75
with D = 0.645 (dashed, blue); and β = 0.4 with D = 0.74
(dot-dashed, red). The largest values of D correspond to the
points near the stability thresholds in Fig. 11. The peak in the
distribution rises as the interaction strength increases, and the
position of the peak moves towards larger k as β decreases.

tion caused by the onset of spin-wave fluctuations. The
onset of spin-waves without the simultaneous onset of
density-wave arises as a consequence of the dielectric na-
ture of the system, and hence we dub this a dielectric in-
stability. This discussion is further clarified by analyzing
the correlation functions. Apart from a well-known di-
vergence at small k [67], the density-density correlation

function G
(2)
n (ρ) is small for all values of k, indicating

that there are little to no density-density correlations.
That is, there are no spontaneous density-wave fluctua-
tions.

In contrast, in the high-field limit (Fig. 14), we observe
that both spin-wave and density-wave fluctuations arise.
In the limit of high fields, Sn(k) and S∆(k) are identi-
cal, and we see a strong feature in both structure factors
appearing at k ≈ 1.6/l. As D approaches the stability
threshold, the feature diverges, indicating a destabiliza-

tion. The correlation functions G
(2)
n (ρ) and G

(2)
∆ (ρ) are

also identical and indicate that the onset of the spin-
wave is a consequence of the onset of the density-wave,
in that the gas is fully polarized, and therefore the den-
sity fluctuations trivially give rise to polarization fluctua-
tions through the spatial separation of domains of aligned
dipoles. At the stability threshold, these density fluctua-
tions are large enough to destabilize the gas, and the gas
collapses in the way described before.

Finally, in the cross-over region (Fig. 15), we observe
that the structure factors are featureless far from the
stability threshold, but as the stability threshold is ap-
proached, strong features again arise in both structure
factors at k ≈ 1.9/l. in contrast to both the low-field
and high-field limits, in this regime, the density- and
spin-wave branches of the dispersion relation are strongly
coupled. This indicates that fluctuations in the external
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FIG. 13. (Color online.) (a) Density (black) and spin (red)
static structure factors for γ = 2 and β = 0.1; D = 0.74 cor-
responds to the point near the stability threshold in Fig. 11.
(b) Density-density (solid black) and spin-spin (dashed red)
correlation functions at D = 0.74. There are virtually no
density correlations, indicating that the instability is purely
spin-wave in character.

field will induce a response in the density, and fluctua-
tions in the external potential will induce a response in
the polarization.

VI. PHYSICAL PICTURE OF THE
INSTABILITIES

A full picture of the instabilities seen in this system is
as follows.

In a spherical trap, the attractive interaction between
molecules lined up end-to-end and the repulsive interac-
tion of laterally aligned dipoles cause the gas to stretch
in the axial direction at the expense of an increase in po-
tential energy associated with the trap. At large enough
density, this stretching is enough to cause a collapse but
can be stabilized by introducing repulsive contact inter-
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FIG. 14. (Color online.) (a) Density (black) and spin (red)
static structure factors at γ = 2 and β = 0.4; D = 0.388 cor-
responds to the point near the stability threshold in Fig. 11.
(b) Density-density (solid black) and spin-spin (dashed red)
correlation functions at D = 0.388. The density and spin
behaviors are identical, indicating that the spin fluctuations
arise as a trivial consequence of the spin separation cause by
the density fluctuations.

actions between the dipoles [66]. By contrast, in quasi-
2D, the roton mode softens and is mixed into the ground
state at finite momentum, leading to density fluctuations.
These fluctuations arise at a large wavelength, giving rise
to local instabilities analogous to the collective instability
occurring in spherically trapped systems [52, 66]. In our
system, this should occur at large β, as increasing den-
sity will quickly drive the gas toward this density-wave
instability. This process is illustrated schematically in
Fig. 16.

In this high-field limit, the gas is fully polarized. The
low-energy excitations above the mean-field ground-state
are described by a single dispersion branch that dis-
plays a roton-maxon character at large enough interac-
tion strengths (Fig. 9). The roton minimum appears
at finite wavelength because for large enough interaction
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FIG. 15. (Color online.) (a) Density (black) and spin (red)
static structure factors for γ = 2 and β = 1.75; D = 0.645
correspond to the point near the stability threshold in Fig. 11.
(b) Density-density (solid black) and spin-spin (dashed red)
correlation functions at D = 0.645. In this intermediate
regime, both density- and spin-wave behaviors are important.

strengths, it is energetically favorable for the molecules
to locally pile up end-to-end, despite the energy cost asso-
ciated with the axial trapping. This leads to a clumping
of molecules with a characteristic wavelength of about
four times the trap length l (Fig. 14). Therefore, within
one of these clumps, the aspect ratio of the gas is nearly
unity, and the clump locally collapses in a manner per-
fectly analogous to the case of a fully polarized, dipole
BEC in a spherically symmetric trap [66]. This picture is
verified by means of the two-point, density-density cor-
relation functions, which display strong correlations over
large distances (∼ 10l) at a wavelength of about 4l, in-
dicating the presence of a density-wave fluctuation. In
addition, the density structure factor develops a strong
feature at this wavelength which diverges as the stability
threshold is approached (D ≈ 0.388), indicating that the
system will respond strongly to small fluctuations in the
trapping potential.

(a)

(b)

FIG. 16. (Color online.) Schematic of the density-wave in-
stability. (a) The gas is fully polarized with uniform density
for small interaction strengths. (b) Density-wave fluctuations
arise, leading to local clumping of the gas where it is energet-
ically favorable for the dipoles to line up end to end, despite
the energy cost of the transverse harmonic trapping. The red
dashed curve in (b) illustrates the fact that the quasi-particle
excitations arise with a characteristic wavelength.

(a)

(b)

FIG. 17. (Color online.) Schematic of the spin-wave insta-
bility. (a) The system has a uniform density and uniform
zero polarization at small interaction strengths. (b) For large
enough interaction strengths, the system still has a zero aver-
age polarization, but there are domains of oppositely aligned
polarization, giving rise to strong interactions between these
domains. The red dashed curve in (b) illustrates the fact
that the quasi-particle excitations arise with a characteristic
wavelength.

In the low-field limit (Fig. 17), the system has nearly
a zero polarization. Since increasing the interaction
strength drives the system toward zero polarization and
therefore a perfectly screened mean-field ground state,
the system is not susceptible to density-wave fluctua-
tions. The dispersion relations above this mean-field
ground state consists of two weakly-coupled modes that
cross at large enough interaction strengths (Fig. 8). One
of the modes is a spin-wave mode gapped at zero mo-
mentum that undergoes an avoided crossing with the
gapless density-wave mode, leading to a roton-like fea-
ture at finite momentum that softens as D is increased.
The avoided crossing is narrow, which means that the
character of the lower branch of the full dispersion re-
lation switches, and the instability that arises therefore
has a spin-wave character. Thus, far from the stability
threshold, the polarization is uniform, but as the stabil-
ity threshold is approached, fluctuations arise at a wave-
length of about 3l that give rise to domains of oppo-
site polarization. This is explained by the fact that at
large enough density, the energy cost for flipping domains
of dipoles against the external field becomes on the or-
der of the energy benefit from attractive interactions be-
tween nearby domains of oppositely-aligned dipoles. Ef-
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fectively, the local field due to nearby domains of dipoles
nearly cancels out the external field, zeroing out the en-
ergy cost of aligning dipoles against the field. These fluc-
tuations are of pure spin-wave character, as density-wave
fluctuations are suppressed due to the net zero polariza-
tion of the mean-field ground state. This is shown in
Fig. 13, where the density-density correlation functions
are featureless, whereas the spin-spin correlation func-
tions display strong correlations over large distances. The
spin structure factor develops a strong feature at a wave-
length of about 3l, and this feature diverges at the sta-
bility threshold. The instability is caused by the strong
lateral interactions between adjacent domains of oppo-
site polarization, indicating that the instigated collapse
should be longitudinal.

The two instabilities just described are characterized
by different competitions of energy scales. The density-
wave roton arises due to the competition of trap and
interaction energy scales, whereas the spin-wave roton
arises due to the competition between the zero-field split-
ting and the interaction energy scales. In the high-field
limit, the gas is fully polarized, and the zero-field splitting
is irrelevant, whereas in the low field limit, the influence
of the zero-field splitting dominates over the influence of
the external field.

Finally, in the intermediate regime, our picture is one
of a spin-wave-assisted density-wave instability, as shown
schematically in Fig. 18. The argument is as follows. At
intermediate fields, a roton-like feature appears in the
lower branch of the dispersion relation due to the strong
coupling between the spin-wave and density-wave modes
(Fig. 8), although it is not the result of a crossing be-
tween the modes. At interaction strengths where this
roton appears, strong features appear in both the den-
sity and spin structure factors (Fig. 13). Spontaneous
fluctuations in the system can set up a density wave in
which the regions of higher density have a polarization
small enough that there is no local collapse, indicating
that there is no density-wave instability at intermediate
field strengths (see dashed curve in Fig. 11). However,
at the same time, the gas is susceptible to spontaneous
spin-wave fluctuations with a wavelength comparable to
that of the density-wave, leading to larger polarizations
within the high-density regions, thereby hastening the
local collapse.

VII. CONCLUSION

We have identified three distinct mechanisms for the
collapse of a two-state, dipolar BEC in quasi-2D un-
der the influence of an external polarizing field. The
strong-field behavior is the well-understood density-wave
rotonization that occurs in fully polarized dipole BEC’s
trapped in quasi-2D. It is a consequence of the competi-
tion between energy scales of the attractive interactions
between dipoles lined up end-to-end and the confinement
induced by the trapping. In contrast, the low-field and

(a)

(b)

FIG. 18. (Color online.) Schematic of the spin-wave-assisted
density-wave instability. (a) A density-wave is set up in
which the polarization is essentially uniform. The polariza-
tion within the high-density regions is small enough that the
self-attraction within the domain is too small to destabilize
the gas. (b) Spin-wave fluctuations create neighboring do-
mains of opposing polarizations, leading to a larger density
of aligned spins in the high density regions. The red dashed
curves illustrate the fact that the quasi-particle excitations
arise with a characteristic wavelength.

intermediate-field behaviors are consequences of the di-
electric character of the system, where the polarizability
of the individual molecules in the condensate plays a cru-
cial role. At very low fields, the gas is stabilized against
density-wave fluctuations due to screening in the ground
state, and interactions tend to drive the system towards
zero polarization. However, the attractive interactions
that arise when adjacent domains of opposite polariza-
tion appear are strong enough to overcome the energy
cost associated with flipping dipoles against the external
field. In the intermediate field, the system is stabilized
against a density-wave collapse due to the fact that in-
teractions drive the system towards a low polarization,
partially screened state. However, superposed polariza-
tion and density-waves lead to local polarizations large
enough to instigate a collapse analogous to the instability
that occurs in the high field limit.

We have also identified three molecules that are can-
didates for experimentally realizing these results. While
gases composed of rigid-rotor molecules such as RbCs
are closest to being made quantum degenerate, the den-
sities required for accessing the dielectric instability are
experimentally inaccessible. Even if the densities were
achievable, it is likely that three-body losses would dom-
inate in those regimes [68, 69]. For this reason, we focus
on the molecules with either a Λ-doublet or a doublet-Σ
structure.

The zero-field splitting of the Λ-doublet in ThO is
∆ = 30 kHz (∆ = 4.6× 10−12 au) [50, 70]. Given a trap
frequency of 5 kHz, this corresponds to γ = 2, which is
what we have used for the majority of the results pre-
sented in this paper. The zero-field dielectric instability
occurs at D = 0.75, and since the maximum dipole mo-
ment (in strong applied fields) of ThO is d0 = 3.89 D
(d0 = 1.53 au) [50, 70], this corresponds to a 2D den-
sity of n2D = 7.75 × 107/cm2. The maximum 3D den-
sity n2D/

√
πl occurs at the center of the trap, and for

this choice of parameters, n3D = 8.45 × 1012/cm3. In
molecules such as SrF, there are two low-lying states of
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opposite parity whose splitting can be tuned via an exter-
nal magnetic field. The splitting is zero at 5370 G and is
approximately 100 MHz at 5370±40 G [62], allowing ex-
perimenters to easily access small values of γ, and there-
fore small values of D and reasonable values of n. The
combination of a tunable zero-field splitting and the fact
that a gas of SrF molecules can be laser-cooled [60, 61]
makes SrF an enticing candidate for future experimental
investigation of the results presented in this paper.

In real systems, the gases are confined in all three di-
mensions in a so-called “pancake” geometry. In these
setups, a low-momentum cutoff is introduced due to the
finite size of the system, and the correlations seen in the
density-density, two-point correlation functions manifest
as density striping [54, 71, 72]. In the low-field limit
of our model, we expect polarization striping to appear
in the absence of density striping when the gas is har-
monically confined in the plane, which is the subject of
ongoing investigation.

The theoretical methods presented in the first part
of this paper comprise a general method for investi-
gating the mean-field ground state and low-lying exci-
tations of a BEC of dipolar molecules purely analyti-
cally. The long-range nature of the dipole-dipole interac-
tions result in momentum-dependent coupling constants
in the Bogoliubov-de Gennes fluctuation Hamiltonian,
but this Hamiltonian can be diagonalized analytically
at every non-zero momentum with a sequence of phys-
ically motivated canonical transformations. This proce-
dure generalizes to situations where the internal states
of the molecules in a BEC are linearly coupled, and the
molecules interact via direct, long-range interactions.

We acknowledge many fruitful discussions with
J. L. Bohn, B. L. Johnson, R. V. Krems, C. Ticknor,
E. Timmermans, and H. R. Sadeghpour. This work was
partially funded by NSF Grant Nos. PHY-1516337 and
PHY-1516421.

Appendix A: Interaction Parameters

In this appendix, we outline the derivation showing
that the interaction parameter,

λκκ′ (k,k
′) =

dκ′dκ
l2

∫
d3x |fκ (z)|2 e

−ik·ρ
√
A

×
∫
d3x′V (x− x′) |fκ′ (z′)|

2 eik
′·ρ′

√
A

,

(A1)

where

V (r) =
1− 3 (n̂ · r̂)

2

r3
, (A2)

can be written as

λκκ′ (k,k
′) = δk,k′λk,κκ′ , (A3)

where

λk,κκ′ =
dκdκ′

l2
4π

(
n2
z −

1

3

)∫
dz |fκ (z)|2 |fκ′ (z)|2

− πdκdκ
′

l2

(
nz − i

(
n̂ · k̂

))2

kFκκ′ (k)

− πdκdκ
′

l2

(
nz + i

(
n̂ · k̂

))2

kFκ′κ (k) ,

(A4a)

Fκκ′ (k) =

∫ ∞
0

due−ku
∫ ∞
−∞

du′

×
∣∣∣∣fκ(u′ + u

2

)
fκ′

(
u′ − u

2

)∣∣∣∣2 . (A4b)

When a Gaussian ansatz for the axial wave functions is
employed, given by

fκ (z) =
1√
lκ
√
π
e−z

2/2l2κ , (A5)

the integrals in Eq. (A4) can be readily computed, and
the result is

λk,κκ′ = λκκ′F

(
lκκ′√

2
k

)
, (A6)

λκκ′ =
4
√

2π

3

dκdκ′

l3
l

lκκ′

3n2
z − 1

2
, (A7)

F (x) = 1− 3

2

√
π

2n2
z − 2 (n̂ · x̂)

2

3n2
z − 1

xex
2

erfc (x) , (A8)

where erfc is the complementary error function, and

lκκ′ =

√
l2κ + l2κ′

2
. (A9)

We start by transforming to center-of-mass-like coor-
dinates,

x =
R + r

2
, (A10)

x′ =
R− r

2
, (A11)

in which case

λκκ′ (k,k
′) =

dκ′dκ
l2

1

8

∫
dz

∫
dz′

×
∣∣∣∣fκ(z + z′

2

)∣∣∣∣2 ∣∣∣∣fκ′ (z′ − z2

)∣∣∣∣2
×
∫
d2ρ

e−ik·ρ/2√
A

V (r)
e−ik

′·ρ/2
√
A

×
∫
d2ρ′

e−ik·ρ
′/2

√
A

eik
′·ρ′/2
√
A

, (A12)

where

r = (ρ, z) , (A13)

R = (ρ′, z′) . (A14)
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The last integral evaluates to 4δk,k′ , in which case we
define

λk,κκ′ =
dκ′dκ
l2

1

2

∫
dz

∫
dz′

×
∣∣∣∣fκ(z + z′

2

)∣∣∣∣2 ∣∣∣∣fκ′ (z′ − z2

)∣∣∣∣2 (A15)

×
∫
d2ρ

e−ik·ρ

A
V (r) . (A16)

The next step involves three convenient identities in-
volving the dipole-dipole interaction. The first gives the
interaction as the sum of a short-range and a long range
piece, given by [73]

V (r) =
1− 3 (n̂ · r̂)

2

r3
= −4π

3
δ (r)− (n̂ ·∇r)

2 1

r
. (A17)

The second identity,

(n̂ ·∇r)
2

=

(
n̂ ·
(
ẑ
∂

∂z
+ ∇ρ

))2

= n2
z

∂2

∂z2
+ 2nz

∂

∂z
(n̂ ·∇ρ) + (n̂ ·∇ρ)

2
,

(A18)

allows us to explicitly separate the axial and transverse
dependence of the interaction. Finally, making use of the
fact that

∂2

∂z2
= ∇2

r −∇2
ρ, (A19)

we can write

∂2

∂z2

1

r
= −4πδ (r)−∇2

ρ

1

r
, (A20)

in which case

1− 3 (n̂ · r̂)
2

r3
=

8π

3

3n2
z − 1

2
δ (r)

+
(
n2
z∇2

ρ − (n̂ ·∇ρ)
2
) 1

r

− 2nz
∂

∂z
(n̂ ·∇ρ)

1

r
. (A21)

Using properties of the Fourier transform and the iden-
tities

J0 (kR) =

∫ 2π

0

dφ
e−ikR cosφ

2π
, (A22)

e−k|z|

k
=

∫ ∞
0

dρ
ρJ0 (kρ)√
z2 + ρ2

, (A23)

the interaction parameter can be written as

λk,κκ′ =
dκ′dκ
l2

8π

3

3n2
z − 1

2

∫
dz |fκ (z)|2 |fκ′ (z)|2

− dκdκ′

l2
π
(
nz − i

(
n̂ · k̂

))2

kFκκ′ (k)

− dκ′dκ
l2

π
(
nz + i

(
n̂ · k̂

))2

kFκ′κ (k) , (A24)

where

Fκκ′ (k) =

∫ ∞
0

dze−kz
∫ ∞
−∞

dz′

×
∣∣∣∣fκ(z′ + z

2

)
fκ′

(
z′ − z

2

)∣∣∣∣2 . (A25)

We note that

λk,κκ′ = λ∗k,κ′κ = λ−k,κ′κ, (A26)

which implies that

Λk,σσ′ = Λ∗k,σ′σ = Λ−k,σ′σ, (A27)

by way of Eq. 41. In the case where the external field is
transverse, i.e. parallel to the trap axis,

nz = 1, (A28)

n̂ · k̂ = 0, (A29)

in which case

λk,κκ′ =
dκ′dκ
l2

8π

3

∫
dz |fκ (z)|2 |fκ′ (z)|2

− dκdκ′

l2
2πk

∫
dzdz′e−k|z−z

′|

× |fκ (z)|2 |fκ′ (z′)|
2
. (A30)

Appendix B: Linear response theory

In this appendix, we outline the specific definitions
used for the response functions [74]. If the many-body
system is subject to a perturbing Hamiltonian of the
form,

δĤ (t) = −
∫
d2ρÂ (ρ, t) f (ρ, t) , (B1)

then, according to linear response theory, the response of
the observable B̂ to this perturbation is given by

δ〈B̂ (ρ, t)〉 =

∫ ∞
−∞

dt′
∫
d2ρ′χBA (ρ, t;ρ′, t′) f (ρ′, t′) ,

(B2)
where

χBA (ρ, t;ρ′, t′) =
i

~
〈[B̂ (ρ, t) , Â (ρ′, t′)]〉Θ (t− t′) ,

(B3)
is called the response function, or susceptibility, and
the expectation value is taken in the quasi-particle vac-
uum. This system is both time-translation and space-
translation invariant, in which case we can replace the
response function with

χBA (ρ, t) = χBA (ρ, t; 0, 0) . (B4)
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We are interested in the static parts of these susceptibil-
ities, given by

χ̃BA (k) =

∫
dω

∫ ∞
−∞

dteiωt
∫
d2ρ

2π
e−k·ρχBA (ρ, t) .

(B5)

Specifically, we are interested in the response of the po-
larization ∆̂ to small changes in the external electric field
and the response of the density n̂ to external perturba-
tions in the trapping potential. Thus, we are interested

in the cases where ∆̂ = B̂ = Â and n̂ = B̂ = Â. It
can be shown that the polarization and density response
functions can be written as

χ̃n (k) = i
n

4~

(
δn̄

n
+ Sn (k)

)
, (B6)

χ̃∆ (k) = i
nd2

4~

(
δn̄

n
+ S∆ (k)

)
. (B7)

Since the depletions must satisfy δn̄ � n, it is apparent
that the susceptibilities are characterized completely by
the structure factors Sn (k) and S∆ (k).
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