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Abstract

We obtain the phase diagram of spin-imbalanced interacting Fermi gases from measurements of

density profiles of 6Li atoms in a harmonic trap. These results agree with, and extend, previous

experimental measurements. Measurements of the critical polarization at which the balanced su-

perfluid core vanishes generally agree with previous experimental results and with quantum Monte

Carlo (QMC) calculations in the BCS and unitary regimes. We disagree with the QMC results in

the BEC regime, however, where the measured critical polarizations are greater than theoretically

predicted. We also measure the equation of state in the crossover regime for a gas with equal

numbers of the two fermion spin states.

PACS numbers: 03.75.Ss, 67.85.Lm, 67.85.Pq, 05.70.Fh
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Strongly interacting Fermi gases are found in a variety of settings, including superfluid

3He, quark matter, superconducting materials, and ultracold atomic gases [1–3]. The prop-

erties of such systems, including the nature of any superfluid or superconducting order,

strongly depend on the interactions between particles. At sufficiently low temperatures

the short-range interaction between opposite spin atomic fermions may be characterized by

the parameter 1/kFa, where kF is the Fermi momentum, and a is the s-wave scattering

length. For 1/kFa & 1, opposite spins may form tightly bound bosonic pairs which re-

pel each other, thus creating a Bose-Einstein condensate (BEC) of molecules. For weaker

attraction, where 1/kFa . −1, an ultracold atomic gas may form a conventional Bardeen-

Cooper-Schrieffer (BCS) superfluid of loosely bound pairs. In between these extremes is the

unitarity regime, −1 < 1/kFa < 1, corresponding to resonant two-body interactions. This

BEC–BCS crossover has been studied extensively over the past decade in the context of

ultracold atomic Fermi gases [4–6].

When the two spin states have equal populations, the crossover between the BEC and

BCS limits has no phase transitions as a function of 1/kFa. Additional phases can appear,

however, when an effective magnetic field couples to the spin-1/2 fermions, favoring an im-

balance (or polarization) in the number of fermions in each spin state [7, 8]. In thin-film

electronic superconductors, such a coupling can come from a real in-plane magnetic field [9].

In the present setting of cold atomic gases, this imbalance is accomplished by creating un-

equal populations of the two hyperfine levels comprising the pseudo-spin-1/2 system. In the

BCS regime, a sufficiently large chemical potential difference, known as the Chandrasekhar-

Clogston (CC) limit [10, 11], will suppress pairing. A spin imbalance can be accommodated

in the BEC regime, however, resulting in a Bose-Fermi mixture that remains a superfluid.

The exotic Fulde-Ferrell–Larkin-Ovchinnikov (FFLO) state, featuring pairs with non-zero

momentum, has been proposed as the ground state of a spin-imbalanced superconductor

under certain conditions [12, 13]. There have been no definitive observations of FFLO su-

perconductivity, but an experiment on spin-imbalanced fermions confined to one dimension

has produced a phase diagram with a large polarized region consistent with FFLO [14].

Neglecting any exotic superfluid phases (such as the FFLO), the phase diagram of the

three dimensional (3D) spin-imbalanced Fermi gas as a function of interaction strength and

polarization, exhibits four phases [15]: (i) fully polarized, non-interacting normal (NFP),
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(ii) partially polarized normal (NPP), (iii) partially polarized superfluid (SFP), and (iv)

unpolarized superfluid (SF0) [16]. Additionally, constraining the system to fixed particle

number leads to regions of phase-separated mixtures of these phases. The local polarization,

defined as the effective magnetization divided by the density, p = (n↑−n↓)/(n↑+n↓), vanishes

in the SF0 phase, p = 1 in the NFP phase, and 0 < p < 1 in the NPP and SFP phases. The

majority and minority species are defined by n↑ ≥ n↓.

Experimentally, atoms are generally trapped in potentials resulting in inhomogeneous

density distributions. In the local density approximation (LDA) the local state of the gas

is determined by its local chemical potential, so the density profiles can reveal transitions

between phases. Observations of phase separation in spin-imbalanced Fermi gases were

obtained at Rice and MIT by direct in-situ imaging of the density distributions [17–19], and

by imaging the distributions in time-of-flight [20]. The distributions in the Rice experiment

were out-of-equilibrium due to an evaporative depolarization mechanism at work in their

highly elongated confining potential [21, 22], and could not, therefore, be compared with

distributions calculated assuming equilibrium. Density profiles obtained by the MIT group

at unitarity and on the BEC side of resonance [23] agree quantitatively with the theory of

Bertaina and Giorgini (BG) computed using quantum Monte Carlo (QMC) and the LDA [24].

In the unitary regime, these profiles contain a jump in the local polarization p that indicates

a first-order phase transition between the superfluid and the normal phases [23, 24]. The

ENS group measured thermodynamic properties of the imbalanced gas by extracting the

equation of state from doubly-integrated density profiles [25]. In this paper, we report new

measurements of the density profiles of Fermi gases for −1 . 1/kFa . 2 and use these

measurements to better constrain the low-temperature phase diagram. These measurements

largely confirm the results of previous investigations and extend the range of interactions

studied.

Our method for producing an imbalanced degenerate gas in the lowest two hyperfine

states of 6Li, F = 1/2, mF = 1/2 (|↑〉) and F = 1/2, mF = −1/2 (|↓〉), has been discussed

previously in detail [14, 17, 19]. In brief, we sympathetically cool 6Li with 7Li in an Ioffe-

Pritchard magnetic trap, then load the 6Li into a single-beam optical dipole trap formed

by a focused infrared laser beam. We control the spin imbalance by varying the power of

an adiabatic RF transfer from |↑〉 to |↓〉 at a field of 835 G. After the RF transfer, we
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evaporatively cool the cloud in the single-beam trap by reducing its depth. We evaporate at

835 G to study interactions on the BCS side of the broad Feshbach resonance at 832 G [26, 27],

while for fields on the BEC side of resonance we quickly ramp the field to 765 G before

evaporation. After evaporation, atoms are loaded into the final trap formed by two focused

infrared laser beams crossing at right angles while the single-beam trap is slowly (100 ms)

ramped off. The crossed beams each have 1/e2 radii of 55 µm × 235 µm, resulting in

an ellipsoidal crossed-beam trap with a measured axial frequency of ωz/2π = 78 Hz and

measured radial frequencies of ωx/2π = 248 Hz and ωy/2π = 274 Hz, at a trap depth of

1.5 µK. The number of |↑〉 atoms, N↑, is typically around 2× 105, and varies by about 10%

shot-to-shot. The cloud polarization P =
N↑−N↓
N↑+N↓

varies from shot-to-shot by about 30%

for a given RF power, so data must be post-selected using the measured P . After loading

into the crossed-beam trap, we ramp the magnetic field to its final value B at a rate from

0.4–2.0 G/ms; the final bias field has an uncertainty of 2 G.

We use in situ phase-contrast polarization imaging, described previously [14, 28] to

record the spatial distribution of the trapped atoms. The probe beam propagates per-

pendicular to the bias magnetic field, which is parallel to the axial trap direction. The

column densities, nc↑,↓(x
′, z), of each spin state are extracted from two images taken

within several µs of each other at different probe detunings. Here the imaging plane

(x′, z) is rotated 30◦ from the (x, z) plane defined by the trap potential. To improve

the signal-to-noise ratio, we fit nc to find the cloud center (x′ = 0, z = 0), then av-

erage the four quadrants to obtain the column density distributions of the majority,

ncq↑(x
′, z) = [nc↑(x

′, z) + nc↑(−x′, z) + nc↑(x
′,−z) + nc↑(−x′,−z)] /4, minority ncq↓(x

′, z),

and their difference, which is related to the spin density. The top row of Fig. 1 shows the

average of these column densities for several experimental realizations with fixed parameters,

for several values of B and P . The majority and minority cloud radii, R↑ and R↓, are ob-

tained from axial cuts of the column densities for each experimental run, then averaged over

several runs. We also determine the radius, Rs, where the spin column density, ncq↑ − ncq↓,

is maximum (the ‘cusp’). Within the LDA, a cusp with a discontinuous derivative would

indicate the location of a first-order phase transition for a uniform gas. These mean radii

are indicated by the vertical lines in Fig. 1.

We reconstruct the density distributions n↑,↓(r) using inverse Abel transforms of the
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averaged ncq↑,↓. The bottom row in Fig. 1 shows axial cuts of these density distributions.

The SF0 core radius, Rc, is the radius at which the spin density first rises above zero. The

mean radii for several experimental realizations are indicated by the vertical lines in the

bottom row of Fig. 1. Experimentally, we determine Rc by finding where the spin density

first rises above the background spin density noise, which is the standard deviation of the

spin density for z > R↑. To reduce bias toward obtaining smaller values of Rc due to noise,

we smooth the profiles with a 7-pixel-wide Hann window before computing Rc. We also

confirm our determination of Rc by fitting the spin density profiles near Rc with a function

that increases linearly from 0 for z > Rc; the fit results are consistent to within shot-to-shot

variation.

Temperatures are measured by fitting the ferromagnetic wings of nc↑ for clouds with high

P to non-interacting Thomas-Fermi distributions. We find that for B ≥ 743 G the fitted

temperature T . 0.08TF , where TF ≈ 1.5 µK is the Fermi temperature of N↑ non-interacting

atoms. For lower values of B, however, we measure higher temperatures, which are likely a

result of heating from inelastic molecular decay collisions. At B = 725 G, for example, we

find T ≈ 0.11TF .

The boundary locations R↑, R↓, Rs, and Rc, are plotted as functions of P in Fig. 2, for

several different interaction strengths, 1/kF↑a, ranging from the BEC to the BCS regimes.

These boundary radii are normalized by Rz = (48N↑)
1/6az(ωxωy/ω

2
z)1/6, the axial Thomas-

Fermi radius for a non-interacting gas with N↑ atoms, where az = (~/mωz)
1/2 is the axial

harmonic oscillator length. The interaction strength is determined from kF↑ = (48N↑)
1/6/āho

and a = a(B) [27], where āho = (~3/m3ωzωxωy)
1/6 is the mean harmonic oscillator length,

and B is the bias magnetic field. For a given B, the systematic variation in N↑ with P

produces up to a factor of 1.2 variation in 1/kF↑a. Due to this variation, experiments at a

given field trace out the P–1/kF↑a phase diagram along non-vertical lines. To account for

day-to-day variation in trap frequencies, we scale Rz for all the data at a given B so that

R↑/Rz goes to 1 as P goes to 1—this variation is less than 5%.

The radii plotted in Fig. 2 provide detailed information about the phases of trapped

imbalanced Fermi gases as a function of the imposed population imbalance. One common

feature is the existence of a balanced SF0 core with radius Rc that decreases with increasing P

until it vanishes at a critical cloud polarization, Pc. To extract Pc we fit Rc(P ) for each field,
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shown by the green data points in Fig. 2, to an empirical function which vanishes as (Pc −

P )1/2 for P < Pc. The results are indicated by vertical green arrows in Fig. 2. At unitarity,

we measure Pc = 0.79(4), where the error bar accounts for the uncertainty in measuring P

for a single cloud as well as systematic uncertainty in the best fit parameters. This result

is in good agreement with previous measurements giving Pc = 0.77 [18], 0.76(3) [29], and

0.75 [25], and with theoretical predictions of Pc = 0.77 [24, 30], all slightly higher than an

initial measurement of Pc = 0.70(3) [20].

The work of BG, following earlier calculations of Pilati and Giorgini [16], involved calcu-

lating the phase diagram of trapped Fermi gases by combining the LDA with fits to QMC

calculations to characterize the ground-state energies of the strongly interacting balanced

SF0 phase and the partially polarized normal phase NPP. The ground-state energy of the

SFP was taken to consist of contributions from a balanced superfluid of pairs (given by the

SF0 equation of state), a noninteracting Fermi gas of the excess |↑〉 spins, and a leading-

order interaction between |↑〉 spins and pairs characterized by the atom-pair scattering length

abf = 1.18a. This characterization of the SFP state was found by Pilati and Giorgini to agree

quite well with their QMC calculations. In addition, we have repeated the BG calculations

including additional terms in the expression for the ground-state energy. The theory of BG

includes an interaction between Cooper pairs, with density ∝ n↓, and excess |↑〉 spins, with

density ∝ n↑ − n↓, resulting in an interaction strength ∝ n↓(n↑ − n↓). Work by Alzetto and

Leyronas has found a higher-order correction with strength ∝ n↓(n↑−n↓)4/3 [31]. However,

we find that including this correction (contained in Eq. (53) of Ref. [31]) within the BG

formalism does not appreciably alter the value of Pc for any interaction strength. Thus, we

expect the BG result for Pc as a function of interaction strength to be a robust theoretical

prediction that we can test with our measurements.

We also determine Pc by finding the value of P where the local polarization at the center

of the cloud, p0 = p(z = 0), first rises above zero by fitting p0(P ) to a function that

increases with P for P > Pc. For 1/kF↑a > 0.5, where we find a continuous SF0–SFP phase

boundary, we assumed that p0(P ) increases with a sum of terms going like (P − Pc)
3/2 and

(P − Pc)
5/2. This form is motivated by the mean-field result for the magnetization M vs.

6



chemical potential difference in the SFP state of a 3D Fermi gas [8],

M =
2

3

m3/2

√
2π2~3

(√
h2 − |∆|2 − |µ|

)3/2
Θ(h− hc), (1)

with m the atom mass, h the chemical potential difference, µ the chemical potential and ∆

the local pairing amplitude. As seen by the presence of the Heaviside step function Θ(h−hc),

the magnetization is nonzero only for h > hc =
√
|µ|2 +∆2 and, close to hc the onset of M

is a sum of terms going as (h−hc)3/2 and (h−hc)5/2. If we furthermore assume that, at low

P , the cloud polarization scales linearly with h, then we have justified our assumed form for

the behavior of p0(P ), allowing us to extract Pc.

Away from the deep BEC regime, for 1/kF↑a < 0.5, where we find a first-order phase

transition SF0→NPP [24], we fit p0(P ) with a function that is linear in (P −Pc), the expected

magnetization for a Pauli paramagnetic phase. The values of Pc obtained from these fits are

indicated by vertical orange arrows in Fig. 2. While our two methods should ideally produce

the same Pc, they differ slightly because we only consider non-negative radii, which leads to

slight overestimates of Rc near Pc when averaging several profiles. The magnitude of this

effect is smaller than the uncertainty in determining P . Furthermore, due to noise in the

density profiles, we cannot distinguish an SF0 core from an SFP phase with p < 0.03.

The dependence of the critical polarization Pc on 1/kF↑a determined by both methods is

shown in Fig. 3. Pc reaches a maximum near 1/kF↑a = 0.7 and decreases as the interactions

are tuned in either direction. Our measured values of Pc agree with the values from the

MIT [18, 20] and ENS [25, 29] groups for 1/kF↑a ≤ 0.75, where our measurement ranges

overlap. Our measurements also agree with the zero-temperature BG theory [24] in this

regime.

According to theory, Pc begins to drop for 1/kF↑a > 0.7, as the BCS pairs transition

to more tightly bound, bosonic molecules [16]. As 1/kF↑a increases, the superfluid becomes

more bosonic in character than fermionic, and since the bosonic superfluid can accommodate

free fermions, the SF0 core begins to vanish. For 1/kF↑a < 0.7, the transition from SF0 to

NPP is predicted to be first order, while for 1/kF↑a > 0.7 the transition from SF0 to SFP is

continuous [16]. In this Bose-Fermi regime, we observe critical polarizations for loss of the

unpolarized core to be somewhat higher than predicted by BG [24]. It is unlikely that this

discrepancy is due to the elevated temperatures we obtain in the BEC regime, since Pc is
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expected to decrease with increasing T [32]. Thus, the effect of finite T is to diminish the

SF0 phase in favor of the SFP phase, while we actually observe a more robust SF0 phase.

Another possible explanation is that the discrepancy arises from the experimental challenge

of observing a small central polarization that increases from zero continuously with increasing

P , rather than as a first-order jump, as in the BCS regime.

As we have discussed, the critical polarization Pc indicates where the balanced superfluid

core of a trapped gas disappears. The data also reveal information about the uniform density

phase diagram, assuming the LDA holds. To study these phase boundaries, we measure the

local polarization ps at the radius of maximum column density difference, ps = p(Rs), for

each cloud. According to the LDA, jumps in the atom density as a function of chemical

potential in a uniform imbalanced gas lead to jumps in the density profile in the trapped

gas. These jumps occur at radii of maximum column density difference, implying that ps can

indicate the critical polarization for a first-order phase transition in the uniform system [24].

In Fig. 2, the second and fourth rows show the dependence of ps on the cloud polarization

P . We can identify three distinct regimes showing qualitatively different behavior. First,

in the deep BEC regime, 1/kF↑a > 0.7, we observe that ps increases to 1 as P goes to 1.

This behavior indicates that, in this regime, ps does not measure the position of a uniform

system phase boundary within the LDA, but is instead simply a local maximum of p within

an SFP phase. In this coupling range, therefore, the critical polarization for the superfluid

transition of a uniform gas is pc = 1 [32].

Near the unitary region, for 1/kF↑a < 0.3, ps is seen to be approximately independent of

P for a wide range of P (see, e.g., Fig. 2p). The presence of the plateau indicates that the

LDA holds, and that the point of maximum column density difference indeed represents a

jump in p and a corresponding phase transition in the uniform system at pc between SF0

and NPP phases. We take pc to be the mean value of the plateau for P < Pc.

Finally, in between these two regimes, for 0.3 < 1/kF↑a < 0.7, we find that ps increases

monotonically with P , but that ps = 1 is never reached. This is the regime, predicted

by BG, in which there is an SFP phase, but only for sufficiently small P . Here, we take

pc to be the asymptotic value of ps evaluated at Pc. The values of pc extracted in these

regimes are plotted in the phase diagram (Fig. 4), and show excellent agreement with QMC

calculations [16].
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Possible evidence for finite temperature, and perhaps finite imaging resolution, is the

absence of clear jumps in the minority density profiles shown in Fig. 1 for the unitarity

and BCS regimes where a first order transition between SF0 and NPP phases is expected.

Systematic effects are also evident in the phase diagrams of Fig. 2. In the unitarity/BCS

regimes, Rs should correspond to Rc, whereas in the BEC regime for 1/kF↑a ≥ 1, Rs should

correspond to R↓, since the transition is between SFP and NFP phases [24]. While the

predicted trends are observable in the data the agreement is not exact.

Finally, the Equation of State (EoS) of a balanced (P = 0) gas is given by ξ(1/kF↑a) =

(ESF − N
2
Eb)/(

3
5
NEF ), where ESF is the ground state energy of the superfluid, EF is the

Fermi energy, N is the total number of atoms, and Eb = −~2/ma2 is the binding energy for a

molecular pair when a > 0 [16, 25]. For a harmonically trapped gas at unitarity, the EoS can

be rewritten as ξ(0) = (Rp/Rz)
4, where Rp is the radius of the superfluid core and Rz is the

Thomas-Fermi radius of a non-interacting gas with N↑ particles [33, 34]. Although (Rp/Rz)
4

only approximates the EoS away from unitarity, we nonetheless present our measurements

of this quantity in Fig. 5, and compare them with previous measurements and theoretical

calculations of the EoS. In the BEC regime, we fit the column density profiles to a sum

of Thomas-Fermi and Gaussian distributions. Since we find that the Thomas-Fermi radius

corresponds to Rs for low P , we find Rp by linearly extrapolating Rs to P = 0. At unitarity

and in the BCS regime, where the superfluid is unpolarized, we take Rp = R↓ for data with

P = 0. At unitarity, we find ξ(0) = 0.39(3), in good agreement with theoretical calculations

of the Bertsch parameter [35–40] and recent measurements [25, 41].

In conclusion, we have measured density profiles of spin-imbalanced Fermi gases across the

BEC-BCS crossover. From these profiles, we determined the critical polarization for both

harmonically trapped and uniform gases above which the balanced superfluid phase SF0

is suppressed. The agreement with previous measurements and QMC theory is generally

good, although we find a more robust SF0 core in the BEC regime than predicted by theory.

Although this discrepancy may be explained by very small polarizations that are difficult to

detect, the data show that we are able to resolve p0 as small as 0.03. It may also be possible

that small adjustments to the theory could result in relatively large changes to Pc. Finally,

we have measured the equation of state in the crossover regime, which is consistent with

theory from the BCS to the BEC regimes.
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FIG. 1. (Color online) (a)–(e) Axial cuts of the quadrant-averaged column density ncq↑,↓(z) and

(f)–(j) their corresponding density profiles n↑,↓(z). Values of B and P are indicated for each column,

and the corresponding values of 1/kF↑a are: (a, f) 1.6; (b, g) 0.6; (c, h), (d, i) 0; (e, j) −0.4. The

uncertainty in 1/kF↑a is as large as 0.07 based on a combination of a 10% systematic uncertainty

and shot-to-shot variation in N↑, 3% uncertainty in the trap frequencies, and 2 G uncertainty

in the bias magnetic field. Each plot is an average of 3–9 experimental realizations that have P

within a range ∆P = 0.02 centered on the given value. Black, blue and red curves correspond to

the majority spin |↑〉, minority spin |↓〉, and their difference, respectively. In the upper row, the

blue and black vertical lines indicate the mean of the minority and majority edges, R↓ and R↑,

respectively, and the purple vertical lines indicate the radius of maximum column density difference

Rs. In the lower row, the vertical green lines indicate the mean boundary of the SF0 core, Rc. For

each vertical line, the standard error of the mean is indicated by the line’s thickness. We estimate

a systematic uncertainty in the radii of 4 µm, dominated by the resolution limit of our imaging

system. For (d, i), P > Pc so that Rc = 0, and Rs is not meaningful.
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FIG. 2. (Color online) (a)–(e), (k)–(o) Radii extracted from density and column density profiles

at several interaction strengths: the majority R↑, (N), minority R↓ (H), cusp Rs (�), and SF0 core

Rc (•) radii as functions of P , scaled by the axial Thomas-Fermi radius, Rz, of a non-interacting

Fermi gas with N↑ particles. (f)–(j), (p)–(t) Local polarization at the cloud center, p0 (•), and at

Rs, ps (�). Each data point is the average of several realizations of the experiment, binned with

width ∆P = 0.02. Some of the phase boundaries Rs and Rc could not be identified for small P

due to poor signal-to-noise, and for high P there is no identifiable Rs. In these instances, the data

points are omitted. The values for 1/kF↑a have uncertainty less than 0.07, resulting from 10%

systematic uncertainty and shot-to-shot variation in N↑, 3% uncertainty in the trap frequencies,

and 2 G uncertainty in the bias magnetic field. However, due to systematic variation of N↑ with

P , 1/kF↑a varies with P for a given B, particularly in the deep BCS and BEC regimes. In these

cases, we list a range of values from 1/kF↑a at P = 0 to the value at P = 1, otherwise, we list

the mean value. For each interaction strength, Rc decreases as P increases, until vanishing at Pc

(green arrow), which we determined with a fit (see text). We also fit p0 to determine Pc (orange

arrows), as described in the text.
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FIG. 3. (Color online) Critical polarization of a trapped gas, Pc, as a function of the interaction

parameter 1/kF↑a in the BEC-BCS crossover. An unpolarized superfluid core exists for P < Pc.

The green points are the value of P at which the SF0 core radius vanishes based on the fits described

in Fig. 2. The orange points show the value of P above which the polarization at the center of the

cloud is nonzero based on fitting to the appropriate function (see text). Vertical error bars include

the uncertainty in determining P of 0.03, measured by preparing a series of known balanced clouds

and finding the variation of P , as well as uncertainties in fitted parameters. From unitarity to the

BCS side, our results agree with previous experimental results from MIT [18, 20], (open and closed

red circles, respectively) and from ENS (black line) [25], as well as with the theory of BG (red

dashed line) [24]. For 1/kF↑a > 0.7, we find Pc to be higher than predicted by BG.

14



−1.0−0.500.51.01.52.00

0.2

0.4

0.6

0.8

1.0

Theory [16]
MIT [23]
Current Work

FIG. 4. (Color online) Critical local polarization of a homogeneous imbalanced gas, extracted by

finding the polarization pc at the cusp location (where a first order phase transition occurs), as a

function of the interaction parameter 1/kF↑a in the BEC-BCS crossover. Vertical error bars reflect

the standard deviation of ps(P ) for P within ∆P = ±0.05 of Pc. Our results agree with theory,

shown as a green line [16], though we find somewhat higher pc than previous experimental results,

indicated by red points [23].
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FIG. 5. (Color online) The Equation of State (EoS) ξ(1/kF↑a) = (ESF − N
2 Eb)/(

3
5NEF ) for an

unpolarized gas. The data points show (Rp/Rz)
4, where Rp is the superfluid core radius, and Rz

is the axial Thomas-Fermi radius of a non-interacting Fermi gas with N↑ atoms. At unitarity, and

on the BCS side of resonance, we take Rp = R↓ at P = 0, while on the BEC side, we determine Rp

by extrapolating Rs to P = 0. Since N↑ varies with P for a given field, the values of 1/kF↑a for

P = 0 differ slightly from those at P = Pc, as in Figs. 3 and 4. At unitarity, we find ξ(0) = 0.39(3)

in agreement with a previous measurement from MIT [41] (red point). Although (Rp/Rz)
4 only

approximates the EoS away from unitarity, our results agree with theoretical predictions of the

EoS [16] (dashed green line), and with experimental results from ENS [25] (black line).
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