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Performing a systematic Bogoliubov-de Gennes spectral analysis, we illustrate that stationary
vortex lines, vortex rings and more exotic states, such as hopfions, are robust in three-dimensional
atomic Bose-Einstein condensates, for large parameter intervals. Importantly, we find that the
hopfion can be stabilized in a simple parabolic trap, without the need for trap rotation or inho-
mogeneous interactions. We supplement our spectral analysis by studying the dynamics of such
stationary states; we find them to be robust against significant perturbations of the initial state.
In the unstable regimes, we not only identify the unstable mode, such as a quadrupolar or hexap-
olar mode, but we also observe the corresponding instability dynamics. Furthermore, deep in the
Thomas-Fermi regime, we investigate the particle-like behavior of vortex rings and hopfions.

I. INTRODUCTION

Atomic Bose-Einstein condensates (BECs) have of-
fered, over the last two decades, a fertile playground for
the exploration of nonlinear matter waves [1–3]; see also
for some recent summaries Refs. [4–6]. While a large vol-
ume of the early work along this vein focused on solitons
and vortices, the remarkable advancement of computa-
tional resources has rendered more accessible the frontier
of three-dimensional (3D) structures. Arguably, the most
prototypical among the latter, not only in superfluid but
also in regular fluid settings [7, 8], is the vortex ring (VR).
VRs have not only been theoretically predicted, but also
experimentally observed [3, 4, 9].

In addition to the VRs and vortex lines (VLs) ex-
tensively studied in earlier BEC experiments (see, e.g.,
Refs [10, 11] and a more recent experimental realization
in Ref. [12]), BECs may support more complex topolog-
ical structures, such as Skyrmions in multi-component
settings. In its simplest realization, originally proposed
in Refs. [13, 14], the Skyrmion consists of a VR in one-
component, coupled to a VL in the second component.
Interestingly, more complex Skyrmion states involving
three-component spinor BECs were realized experimen-
tally in both two- [15] and three-dimensions [16] involv-
ing, respectively, coupled states of topological charge
S = −1, 0, 1 and S = 0, 1, 2, and described in the recent
theoretical work of Ref. [17]. Of increasing interest of
late is the one-component counterpart to the Skyrmion,
namely the so-called hopfion state [18, 19]. This state
consists of a VR and VL in the same component, with the
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axis of the VR coinciding with that of the VL. A stable
hopfion state has so far only been predicted in somewhat
complicated experimental configurations. These include,
for instance, elaborate radially increasing nonlinear inter-
actions [18], or a rotation of the trap [19]. Here we show
that the hopfion can, in fact, be stable for large chemical
potential ranges and simple trapping configurations, i.e.,
inside a parabolic trap.

Our main aim is to provide a systematic stability anal-
ysis of VRs, hopfions and, in passing, VLs. By a detailed
understanding of the pertinent modes of the Bogoliubov-
de Gennes (BdG) linearization, we are able to explain
when the relevant stationary states are stable or unsta-
ble. We also elucidate how such properties depend on ge-
ometric characteristics, such as the trap aspect ratio, and
what instabilities one may encounter in different param-
eter intervals. These results should pave the way for the
experimental identification of such coherent structures in
state-of-the-art experimental setups of 3D BECs.

Our presentation is organized as follows. First, in
Sec. II, we discuss the stability properties of the VR from
an analytical perspective. Then, in Sec. III, we corrobo-
rate these analytical predictions of the relevant modes by
means of highly-intensive numerical spectrum computa-
tions. We thus show how the stability of the VR and the
VL implies the potential stability of the hopfion pattern,
and confirm this with our numerics. Furthermore, we
provide an exploration of the unstable dynamics of the
VR and hopfion states informed by both spectral proper-
ties and direct numerical simulations. Finally, in Sec. IV,
we summarize our conclusions and discuss interesting di-
rections for future studies.
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II. ANALYTICAL CONSIDERATIONS

We begin with the 3D Gross-Pitaevskii equation
(GPE):

i~
∂ψ

∂t
= − ~

2

2m
∇2ψ + V (r)ψ + g|ψ|2ψ, (1)

where ψ is the wavefunction of the 3D Bose-gas near
zero temperature, g = 4π~2as/m, with as being the s-
wave scattering length and m the particle mass. The
potential assumes the prototypical form of the harmonic
oscillator, V (x, y, z) = mω2

rr
2/2+mω2

zz
2/2, with ωr and

ωz being the planar and transverse trapping strengths,
respectively. The case of ωz > ωr leads to an oblate BEC,
while the reverse inequality produces a prolate BEC.
In earlier work, following on the steps of, e.g., [20], we

explored the bifurcation of a VR near the linear limit of
low density, either from a planar or from a ring dark soli-
ton [21]; here, our focus will be on the opposite limit. In
particular, we consider the case of large chemical poten-
tial (small healing length), where the VRs can be consid-
ered as particle-like objects in their behavior and dynam-
ics. Notice that in what follows the chemical potential is
used as a parameter, bearing in mind its one-to-one cor-
respondence to the experimentally measurable number
of atoms [1, 2]. Reference [22], following the pioneering
work of Ref. [23], explored the dynamics of the single
VR in the presence of a trap. This is also examined in
Ref. [24], where the results of Ref. [22] are utilized. In
particular, the expression for the velocity of a vortex line
element is given by

v(x) = Λ

(

κb̂+
t̂×∇V
F (r, z)

)

, (2)

where Λ = (−1/2)ln(
√

R−2
r + κ2/8/

√
2µ) and κ denotes

the curvature of the element; thus, for a VR κ = 1/r,

while for a VL κ = 0. We denote by b̂ the binormal
vector (for the axisymmetric VR, it is ẑ), while t̂ denotes

the tangent vector (equal to θ̂ for the VR). The quan-
tity F (r, z) = max{µ− V (r), 0}, represents the Thomas-
Fermi (TF) density profile, relevant to the large den-
sity case, equivalent to large chemical potential, analyzed
here; the corresponding radial and axial TF radii are
given by Rr,z = (2µ/ω2

r,z)
1/2. Note that Λ is accurate

up to logarithmic corrections, which will be responsible
for the approximate nature of the analytical results (in
comparison to numerical findings) in what follows.
Assuming that Λ(r) varies slowly with r (indeed loga-

rithmically), the following equations of motion are then
derived for a single VR inside the trap [24]:

1

Λ(r)
ṙ =

ω2
zz

F (r, z)
, θ̇ = 0,

1

Λ(r)
ż =

−ω2
rr

F (r, z)
+

1

r
. (3)

These equations predict the presence of an equilibrium
radius of the VR in the z = 0 plane, i.e. req =

√

2µ/(3ω2
r). This effective radius seems to provide a

natural generalization of the radius of the ring dark soli-
ton [25, 26], and is also in line with earlier results [27].
Reference [24] chiefly focused on considering the dy-

namics of azimuthal perturbations (Kelvin-wave type
modulations) using Eq. (2). In particular, they linearized
around the stationary solution (r, z) = (req, 0), using
a perturbation of the form r(t) = req + R1(t)e

inφ and
z(t) = Z1e

inφ, for integer n. Substitution of this lin-
earization ansatz in Eq. (2) provides a generalized set of
equations [Eqs. (5) and (6) in Ref. [24]] from which the
effect of the azimuthal modulations on the motion of the
VR can also be evaluated. Importantly, notice that this
set of equations can account for the n = 0 oscillatory mo-
tion of the VR inside the trap, described by Eq. (3). The
final result that we explore numerically in what follows
is that the frequencies of vibration of the VR are given
by,

ω = ±3Λ(req)ω
2
r

2µ

[

(n2 − ω2
z

ω2
r

)(n2 − 3)

]1/2

. (4)

Importantly, we intend to test the ensuing implication
that the VR stability depends on the shape of the con-
densate. More specifically, if the condensate is prolate
(ωz/ωr < 1), then the VR should be unstable due to the
n = 1 mode. If the condensate is spherical to slightly
oblate (1 ≤ ωz/ωr ≤ 2), then at the particle level and
under azimuthal perturbations, the VR and VL should
be stable. Finally, for sufficiently oblate condensates,
with ωz/ωr > 2, the VR should be unstable due to the
n = 2, . . . , [ωz/ωr] modes, where the brackets denote the
integer part function.

III. NUMERICAL RESULTS

A. Bogoliubov-deGennes analysis

We start by considering the spectral linearization anal-
ysis around a stationary VR state, ψ0. The relevant BdG
ansatz will be of the form:

ψ = e−iµt
[

ψ0 + ǫ
(

u(x, y, z)eiωt + v∗(x, y, z)e−iω∗t
)]

,(5)

where µ is the chemical potential, the asterisks denotes
complex conjugation, ǫ is a formal small parameter, and
the presence of imaginary (or complex) eigenfrequencies
ω reflects an instability along the direction of the corre-
sponding eigenvector (u, v)T .
In practice, we solve the GPE, Eq. (1), using a Newton-

Krylov scheme [28]. For the BdG equations we uti-
lize the azimuthal symmetry of the trap in a way sim-
ilar to Refs. [29, 30]. This amounts to using spectral-
basis modes that each have a definite angular momen-
tum quantum number, m, proportional to eimφ. This
way, we can treat the azimuthal variable analytically, ef-
fectively reducing the problem to 2D. Importantly, for
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FIG. 1: (Color online) BdG-frequency spectrum for the
ground state (bearing no vorticity) for (a) ωz/ωr = 1 and (b)
ωz/ωr = 2.8. Stable (real) components are depicted by the
thick (blue) lines. There are no unstable (imaginary) eigen-
values for the ground state. The thin horizontal lines pertain
to the TF analytical predictions of Ref. [32].

a given excitation, the coupling between m-subspaces is
limited, and this allows the diagonalization of relatively
small subsets independently. Specifically, if v of Eq. (5)
resides in subspace m, then the u resides in subspace
m+2s, where s is the charge (angular momentum quan-
tum number) of the stationary state [31].
Our fundamental premise in what follows is that for the

large µ regime, the spectrum of a state such as the VR or
the VL consists of the union of two principal ingredients:
the modes of vibration (undulation) of the VR or VL
itself, and the modes of the underlying TF ground state.
Let us first analyze in more detail the BdG spectrum for
the ground state of the system, and then progressively
present results for VLs, VRs and, finally, their hybrid, the
hopfion. Note that the spectrum of the TF ground state
has been identified early on Ref. [32] and the internal
modes of the VR are described by Eq. (4).
Figure 1 depicts the BdG spectrum for the TF ground

state of the system. Panel (a) depicts the spectrum for an
isotropic (i.e., spherical) trap, ωz/ωr = 1, while panel (b)
corresponds to an oblate trap, ωz/ωr = 2.8. The thick
(blue) lines correspond to the numerical results, while the
thin horizontal (black) lines correspond to the first few
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FIG. 2: (Color online) BdG-frequency spectrum for the VL
in the isotropic ωz/ωr = 1 case. Stable (real) components
are depicted by the thick (blue) lines. There are no unstable
(imaginary) eigenvalues for this case. The thin horizontal
lines pertain to the TF analytical predictions of Ref. [32] for
the ground state modes.

collective mode excitations predicted by the theory [32].
It is clear from the figure that as the chemical potential
µ increases, corresponding to a higher number of atoms
in the condensate, the full numerical spectrum coincides
with the collective excitation frequencies prescribed by
the theory.
Let us now turn to the BdG spectra for the VL and

the VR. Figure 2 depicts the BdG spectrum for the VL
in an isotopic trap, ωz/ωr = 1. Notice that modes cor-
responding to the ground state (see Fig. 1) are also con-
tained in the spectrum of the VL and, as µ increases,
one recovers again the collective excitations of the back-
ground prescribed by the theory [32]. It is also relevant
to mention the observed spectral stability of the struc-
ture, given the absence of eigenfrequencies with an imag-
inary part. Figure 3 depicts the BdG spectra for the VR
for ωz/ωr = 1 [panel (a)] and ωz/ωr = 2.8 [panel (b)].
As expected, we observe again the presence of the TF
modes in the VR spectrum. The TF vibrational modes
predicted in Ref. [32] correspond to the constant frequen-
cies (thin horizontal lines), to which the relevant spectral
modes approach asymptotically. On the other hand, the
modes predicted by Eq. (4) feature a decay as 1/µ (modu-
lated by a logarithmic dependence). For the internal VR
modes, the theoretical predictions, given by thin curved
lines, reasonably approximate the numerical results, es-
pecially for larger values of µ. This approximation is
especially good for the anomalous-vibration mode of the
entire VR as a whole inside the trap (n = 0), as well as for
undulations of the VR, such as the dipolar (n = 1) and
quadrupolar (n = 2) modes. We note, however, that for
higher-order modes, the analytical prediction of their fre-
quency, based on Eq. (4), is less accurate. In the isotropic
case of ωz/ωr = 1, the VR is expected to be generically
stable in the large µ limit, as predicted by Eq. (4), and
indeed this is supported by our BdG analysis in Fig. 3.
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FIG. 3: (Color online) BdG-frequency spectrum for the VR
for (a) ωz/ωr = 1 and (b) ωz/ωr = 2.8. Stable (real) compo-
nents are depicted by the thick blue (dark) lines and unsta-
ble (imaginary) components by the thick orange (light) lines.
Thin black lines correspond to the TF analytic predictions
for (i) the VR [thin curved lines, Eq. (4)] and (ii) the ground
state (thin horizontal lines; see Ref. [32]). The undulation
number n [see Eq. (4)] of each excitation is indicated.

For small µ, however, the VR features unstable modes,
as described in detail in Ref. [21]. On the other hand, for
ωz/ωr = 2.8, our results [cf. Fig. 3(b)] confirm that the
VR is unstable due to the mode of n = 2 for all value of
µ, as predicted by Eq. (4).

Having identified stable VR and VLs in the isotropic
limit for large µ suggests that the hopfion itself, consist-
ing of a combined VR and VL in the same BEC, is likely
to be stable in the TF limit. We have tested this pre-
diction for ωz/ωr = 1 in Fig. 4: indeed, we observe that
although instabilities may arise for small values of µ, for
large values of µ the hopfion is robust. By investigation
of the individual BdG eigenvectors we find that the spec-
trum encompasses the union of VR, VL and TF modes,
with the analytical prediction for the latter [32] shown
as thin horizontal lines. We have also labeled a few ex-
amples of purely VR and VL modes. However, we note
that other modes demonstrate coupling between the VR
and VL, as evidenced also by the hybrid nature of their
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FIG. 4: (Color online) The spectrum of the hopfion with
ωz/ωr = 1. The different types of curves have the same mean-
ing as in Fig. 3. Importantly, we predict that the hopfion is
stable for µ > 9. While some excitations can be identified
as strictly belonging to either the VR or the VL, see labeled
examples, other excitations correspond to hybrid modes due
to the coupling between the VR and the VL.

BdG eigenvectors.

B. Nonlinear dynamics

To complement our spectral analysis, we explore the
nonlinear dynamics of the VR and the hopfion, utiliz-
ing two methods. In the first, we temporally propagate
the time-dependent GPE by employing a real-space prod-
uct scheme, based on a split-operator approach, with the
spatial component treated with a finite-element discrete-
variable representation, using a Gauss-Legendre quadra-
ture within each element [34]. For the second method,
we use a split-step operator on an FFT grid. For the
results presented herein, we find quantitative agreement
between these two numerical methods.
We first discuss the stability of the hopfion. At µ =

12, where according to Fig. 4 the hopfion is stable, we
performed two stability tests. In the first, we added an
average of 1% random noise to ψ0 on each grid point
at time ωrt = 0, and found that the hopfion remains
robust for the entire duration of the test, up to time
ωrt = 200. In the second test, we excited the hopfion by
adding a special excitation ψ1 at the 5% level, i.e. ψ0 →
ψ0+0.05ψ1, and found the hopfion to undulate in a stable
manner for more than ωrt = 200 time units. Note that ψ1

is the most unstable mode for small chemical potentials,
µ/~ωr < 9 (see Fig. 4).
We now consider the instability dynamics. In Fig. 5,

we examine the dynamics of the VR in a regime where it
is found to be dynamically unstable in our earlier spec-
tral analysis, in particular due to the n = 2 quadrupolar
mode. As a result, we observe that the relevant (Kelvin)
mode is amplified, until it eventually gives rise to the
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FIG. 5: (Color online) Dynamics of the VR, demonstrating
instability to an n = 2 undulation, shown at times ωrt = 3.5
(a), 25.4 (b), 29.0 (c) and 30.0 (d). Parameters: ωz/ωr = 2.8
and µ/~ωr ≈ 15.3. Red (gray) curves indicate vortex-core
positions; thick black lines line show the vortex-core projec-
tions onto the (x, y) and (y, z) planes; thin-black contour lines
represent the column density projections at 0.2, 0.4, 0.6 and
0.8 of the peak. Inset: iso-density surface of the stationary
state at 0.1 of the peak; the inner iso-density surface of the
VR is colored red. Units are that of the harmonic oscillator
ar =

√

~/mωr. To see a movie of the dynamics see Ref. [33]
[Movie#1].

“rupture” of the VR into a pair of VLs. In Fig. 6 we
also observe a similar dynamical evolution where the in-
stability is seeded by the unstable n = 3 mode. In this
case, the VR breaks into six VLs, before exhibiting a
temporary revival of a smaller VR.

Finally, we examine the dynamical instability of the
hopfion for µ ≈ 7, where it is still dynamically unstable
prior to its stabilization for larger µ. The initial stages
of the hopfion instability proceed in a similar manner to
that of the VR. First, the VR part of the hopfion bends
and then breaks into two VLs. The main difference arises
when these VLs are subsequently pulled inwards to recon-
nect with the vertical VL. Interestingly, the VLs remain
connected, with a ‘+’ junction, for extended periods [see
Fig. 7(d)]. Note that such reconnection events, particu-
larly interesting in their own right and especially relevant
in turbulent dynamics (see, e.g., Refs. [35, 36]), have also
been observed in the presence of rotation [19].

It is important to point out that the regimes considered
in this work are experimentally accessible: for µ/~ωr =
10.1, a regime in which Fig. 4 predicts the hopfion to be
stable, corresponds to a 87Rb BEC containing ≈ 1.1×104

atoms in an isotropic trap with ωz = ωr = 2π × 50 Hz.

FIG. 6: (Color online) Same as in Fig. 5 demonstrating the
VR instability to an n = 3 undulation, shown at times t ωr =
0 (a), 4.9 (b), 7.4 (c), 8.4 (d), 9.4 (e) and 11.6 (f). Same
parameters and layout as in Fig. 5. To see a movie of the
dynamics see Ref. [33] [Movie#2].

IV. CONCLUSIONS AND OUTLOOK

In the present work, we investigated 3D states that are
supported in isotropic (and anisotropic) BECs. We used
highly intensive numerical computations to explore their
spectral stability, and found that, the vortex line, vortex
ring and their combined state, the hopfion, are dynami-
cally stable in a wide parameter regime. Importantly, we
predict the hopfion to be robust in condensates within
typical parameter regimes and standard trappings.

Our analysis, not only identifies this stability, but
also provides a road map on how to “decompose” the
spectrum of these different states, into its different con-
stituent parts (such as the excitations of the background,
and the internal modes of the vortex ring and/or the vor-
tex line) which, when combined, provide the full set of
the observed excitation modes.

Both the analytical approach and our numerical com-
putations explain why different trap aspect ratios may
drastically affect the stability properties of such states.
Finally, when the states were deemed to be unstable, di-
rect numerical simulations elucidated their breakup and
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FIG. 7: (Color online) Dynamics of a hopfion instability
at times ωrt = 0 (a), 40.9 (b), 42.4 (c) and 44.3 (d), after a
random-noise seeding at ωrt = 0. Parameters: ωz/ωr = 1 and
µ/~ωr ≈ 7.0. Curves and contours have the same meanings
as in Fig. 5. To see a movie of the dynamics see Ref. [33]
[Movie#3].

subsequent dynamics, such as the vortex line reconnec-
tions in the case of the hopfion.

An interesting future direction would be the extension
of our investigations to a higher number of components:
in particular, in the two-component setting, the analogue
of the hopfion would correspond to a Skyrmion, whose
spectral and dynamical properties would be directly ac-
cessible through our approach. Another possibility would
be to extend the considerations of some of the above
structures to the attractive-interaction realm, examining
their stability against collapse-type (and other) instabil-
ities [37].
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