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We study the effect of resonances associated with complex molecular interaction of Rydberg atoms
on Rydberg blockade. We show that densely-spaced molecular potentials between doubly-excited
atomic pairs become unavoidably resonant with the optical excitation at short interatomic separa-
tions. Such molecular resonances limit the coherent control of individual excitations in Rydberg
blockade. As an illustration, we compute the molecular interaction potentials of Rb atoms near
the 100s states asymptote to characterize such detrimental molecular resonances, determine the
resonant loss rate to molecules and inhomogeneous light shifts. Techniques to avoid the undesired
effect of molecular resonances are discussed.
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I. INTRODUCTION

Rydberg blockade [1–4] has recently emerged as a
promising method for creating and manipulating quan-
tum states of light and matter in applications ranging
from quantum information processing [5–7] to quantum
nonlinear optics [8, 9]. The key idea is that strong inter-
action between Rydberg atoms can be used, under cer-
tain conditions, to block the states with more than one
excited atoms. Multiple Rydberg excitations are sup-
pressed due to level shifts caused by strong long-range
interactions between Rydberg atoms. This mechanism
enables performing quantum logic operations between
atom pairs and manipulate collective many-body states
of N -atom ensemble[1]. Such collective states efficiently
couple to laser fields with the coupling enhanced by a fac-
tor of

√
N , see experiments [10, 11]. While a number of

advanced protocols involving Rydberg blockade is being
explored, an outstanding challenge is to identify and re-
alize conditions for high-fidelity atomic and optical state
control via Rydberg blockade.

Here we investigate the effect of molecular resonance
on quantum state manipulation via Rydberg blockade.
We demonstrate that the very same interactions that
cause the level shifts required for blockade also have
detrimental effects due to a large state density (num-
ber of levels per energy interval) of Rydberg states re-
sulting in a plethora of closely-spaced molecular poten-
tials. Some of these potentials may become, at specific
interatomic separation, resonant with the driving field
causing excitations to unwanted doubly-excited Rydberg
states. While this mechanism was qualitatively pointed
out [12, 13], detailed understanding of effects of molecu-
lar resonances on collective state manipulation is impor-
tant for high fidelity quantum states control. This is chal-
lenging partially due to the overwhelming complexity of
molecular potentials especially at small internuclear sep-
arations [12]. Below we demonstrate that the cumulative
effect on the Rydberg blockade is caused by molecular
resonances at large interatomic distances where reliable

theoretical predictions can be made. We derive and com-
pute the rates of resonant conversions to diatoms, show
that collective qubit rotations are damped, and compute
the “leakage” and inhomogeneous frequency shifts due
to diatom conversion. Finally, we discuss techniques to
suppress the deleterious molecular resonance effects.

II. MOLECULAR RESONANCES
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FIG. 1: Selected Σg molecular potentials in the 1 GHz win-
dow centered about the 100s+100s dissociation limit (placed
at zero energy) for two Rb atoms. The potentials are marked
by their double-atom dissociation limits at large internuclear
separations R. Highlighted blockading interaction is the in-
teraction that tunes a pair of 100s Ry atoms away from the
resonance with driving laser field. The position R× of the
outer-most resonant molecular potential crossing is marked
with a circle. Properties of molecular resonances are com-
piled in Table I.

We start by computing molecular potentials for two in-
teracting Rb Rydberg atoms by a direct diagonalization
of the long-range dipole-dipole molecular Hamiltonian.
On a large energy scale, we find a “spaghetti” of densely
packed curves exhibiting intricate avoided crossing pat-
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terns. The region that is relevant to our discussion is
centered around the nominally blockaded Rydberg lev-
els. As an illustration, we take |r〉 = |100s〉. Consid-
ering that the typical excitation Rabi frequency Ω0 is
∼ 1 MHz we zoom onto a 1 GHz window (Fig. 1) cen-
tered about the 100s + 100s dissociation limit. In this
figure the potential that at large R asymptotes to two
100s atoms is the blockading van der Waals interaction.
However, we also find several potential curves that at
short R cross zero energy corresponding to a resonance
with the laser field. As a result, atoms can be promoted
into an undesired molecular state corresponding to two
Rydberg atoms. Properties of these resonant crossings
are compiled in Table I. The outermost crossing with
the most substantial laser coupling is at R× ≈ 6.2µm.
Since this value is larger than the average interatomic
separation for typical experimental number densities [10]
ρd ≈ 1011− 1012 cm−3, one may find a fraction of atomic
pairs inside the volume enclosing molecular resonance
region. Note that the potential curves were computed
in the basis of atomic orbitals with orbital angular mo-
menta up to `max = 2. Increasing `max and adding atomic
orbitals to the computational basis breed new resonant
crossings, as the system becomes increasingly chaotic at
smaller R due to stronger inter-channel couplings and
thus larger number of avoided crossings. Even our outer-
most resonance can be superseded by crossings at larger
R, but with suppressed laser couplings. However, the
parameters of the outermost crossing in Fig. 1 are stable
with respect to the basis variation. As we demonstrate
below namely this outermost crossing predominantly af-
fects the dynamics of collective excitations thereby miti-
gating challenges of reliably computing full-scale Ry-Ry
interaction potentials.

R×, µm ξm ∆R×, µm γm, s
−1

6.22 0.55 3.8× 10−4 1.0× 105

5.67 0.091 3.5× 10−5 1.3× 103

4.61 0.012 2.× 10−6 6.2× 100

4.39 0.44 8.6× 10−5 9.1× 103

4.13 0.13 1.7× 10−5 4.6× 102

3.33 0.16 9.3× 10−6 2.0× 102

2.45 0.011 1.2× 10−6 9.8× 10−1

1.99 0.0017 6.4× 10−8 5.4× 10−3

· · ·

TABLE I: Molecular resonance shell properties for the
Rb 100s blockaded state (see Fig. 1). R× and ∆R× are
the shell radii and widths, ξm are the fractional molecular
Rabi frequencies, ξm = Ωm/Ω0, and γm are molecular loss
rates. ∆R× and γm are evaluated for atomic Rabi frequency
Ω0 = (2π) × 0.1 MHz and number density ρd = 1012 cm−3.
Positions and the number of resonances for smaller R are
computational-basis dependent, however, their contribution
to the total rate is strongly suppressed.

Despite the complexity of molecular potentials, the po-
sition R× of the outermost resonance can be estimated
as follows. Suppose the ns+ ns state is our |rr〉 “block-

aded” state. The nearest-energy n′s + n′′s state with
n′ ≈ n′′ ≈ n is the (n−1)s+(n+1)s state and at large R
it lies below the resonance by δm ≈ −3n−4. Further, the
molecular potential correlating to the (n− 1)s+ (n+ 1)s
atoms, behaves as n4c̃3/R

3 due to the repulsion from
the p + p state below, where c̃3 ∼ 1. Thereby, U(R) ≈
−3n−4 + n4c̃3/R

3 and from U(R×) = 0 we arrive at
R× ≈ (3−1c̃3 n

8)1/3. For n = 100 this estimate with
c̃3 = 1 leads to R× ≈ 8µm in a reasonable agreement
with our computed value. Further, we evaluated molec-

Rm

0

FIG. 2: A laser pulse nominally resonant with the r−g tran-
sition can resonantly excite molecular states. The molecular
wave-packet is efficiently excited within a window ∆R× deter-
mined by the slope of molecular potential U(R) and molecu-
lar Rabi frequency Ωm. Once excited the wave-packet rapidly
accelerates out of resonance and rolls down the slope of molec-
ular potential.

ular Rabi frequencies Ωm = ξmΩ0 (typically a fraction
ξm of Ω0, see Table I). For the outermost resonance,
such couplings originate from admixtures of the 100s+ns
states through the off-diagonal van der Waals interaction.
We evaluated ξm from the eigenvectors of the numerically
diagonalized molecular Hamiltonian.

The atoms are efficiently laser-coupled to the molec-
ular resonances only in a small window of R, when the
detuning U(R) is comparable to Ωm (see Fig. 2). Thereby
we define an effective radial width of the molecular reso-
nance

∆R× = Ωm(R×)/|U ′(R×)| , (1)

where Ωm and the derivative of the molecular poten-
tial U ′(R×) = dU(R×)/dR are evaluated at the reso-
nance crossing. For the outermost resonance ∆R× ≈
Ω0ξmn

20/3(c̃3/3)1/3/9. Each molecular resonance there-
fore defines a “resonance shell”, a spherical shell of radius
R× and radial width ∆R× centered at a given atom. The
average number of atoms inside the resonance shell,

∆N× = 4πR2
×∆R×ρd , (2)

is a relatively small number in a typical experiment. For
parameters of Table I, the outermost resonance shell con-
tains less than ∼ 0.1 atoms.
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III. ATOM LOSS

The presence of molecular resonances implies several
consequences for the Rydberg blockade, the most im-
portant being the atomic loss. Indeed, inside the shell
two excited Rydberg atoms are subject to a mechani-
cal force −U ′(R×). This force can be either attractive
or repulsive. (An example of the repulsive resonance is
at R× ≈ 6.2µm, see Fig. 2). The diatom would sep-
arate into two 99s and 101s Ry atoms with a kinetic
energy of relative motion equal to the dissociation limit
δm ≈ −3n−4, which is ∼ 10 mK for n = 100. These
atoms may escape the trapping volume, effectively re-
ducing the number of blockaded atoms. Since the atoms
are accelerated out of the resonance shell on timescales
τa =

√
∆R×Ma/|U ′(R×)| � 1/Ω0, we adopt a sim-

ple model that once a pair of atoms is promoted to a
molecule, the associated motional wave packet quickly
leaves the resonance shell with its atomic constituents no
longer interacting with the laser field.

The attractive potentials (see crossing at R× ≈ 4.6µm
in Fig. 1) can lead to auto-ionization in the small R re-
gion [14]. Such a process would free an electron and a
molecular ion, with their Coulomb fields blockading the
entire sample. While in our illustrative example, laser
coupling to attractive potentials is negligible, it may be
not be the case in general. Qualitatively, to reduce auto-
ionization one needs to pick Rydberg states such that
the potentials inside the most strongly coupled resonance
shells are repulsive.

A. Dynamics of collective excitation

Now we analyze the dynamics of collective atomic en-
semble excitations. We will derive the expressions for
the damping (loss) rate in two approximations: (i) as-
suming that atoms are frozen in space (static limit) and
(ii) collisional model (impact limit). Remarkably both
approximations yield identical loss rate. We consider an
ensemble of N atoms initially in the collective ground
state |G〉 = |g1g2 · · · gN 〉. A laser pulse couples |G〉 to
a superposition of singly excited Rydberg atoms |Ri〉 =
|g1 · · · gi−1rigi+1 · · · gN 〉. These atoms can be further pro-
moted to doubly-Ry-excited diatom states |Mij〉, involv-
ing atoms i and j. There are Nm = N(N − 1)/2 diatom
states, with their resonance detunings ∆(Rij) = U(Rij)
and Rabi frequencies Ωijm(Rij) determined by their inter-
atomic separations Rij . Expanding the total wavefunc-
tion in this basis (ω0 is the laser frequency resonant with
the g − r transition)

|Ψ〉 = cge
iω0t|G〉+

N∑
i

ci|Ri〉+ e−iω0t
N∑
i

N∑
j>i

mij |Mij〉

and applying the rotating-wave approximation, we arrive
at

iċg =
1

2
Ω0

N∑
i

ci ,

iċi =
1

2
Ω0cg +

1

2

i−1∑
j=1

Ωijmmji +

N∑
j=i+1

Ωijmmij

 ,

iṁij = ∆ijmij +
1

2
Ωijm (ci + cj) .

When all molecular detunings ∆ij are large, the sys-
tem undergoes the ideal Rabi flopping between the col-
lective ground state and symmetric combination of sin-
gle Rydberg excitations (cIg(t) = cos(

√
NΩ0t/2) and

cIi (t) = −i sin(
√
NΩ0t/2)/

√
N). We focus on the av-

eraged collective dynamics and introduce the collective
amplitude cs so that ci(t) ≡ cs(t)/

√
N . We assume that

all Ωijm = Ωm owing to the weak Rij dependence inside
the resonance shell. The collective amplitudes satisfy
(ΩN0 =

√
NΩ0)

iċg =
ΩN0
2
cs ,

iċs =
ΩN0
2
cg +

Ωm

2
√
N

N∑
i

i−1∑
j=1

mji +

N∑
j=i+1

mij

 ,

iṁij = ∆ij(Rij)mij + (Ωm/
√
N)cs . (3)

B. Loss rate

Now we fix the positions of all atoms (this require-
ment is relaxed later on) and split the time axis into
time intervals consisting of a short laser pulse of du-
ration τp � 1/ΩN0 and field-free acceleration time τa
during which the excited diatom wave packet leaves the
shell. Because of the mechanical forces the molecular
amplitudes inside the shell are reset to zero values be-
fore the next pulse arrives (this is reminiscent of the
Markov approximation [15]). By taking the limit τa → 0
we arrive at a continuous Rabi drive. Integrating the
last equation over time interval (t, t + τp), one obtains,

mij(t + τp) = cs(t)(Ωm/
√
N) {exp(i∆ijτp)− 1} /∆ij .

We have set mij(t) = 0 as discussed. Notice that
the r.h.s. spikes at ∆ij = 0, i.e., within the reso-
nance shell. Ensemble averaging yields 〈mij(t + δt)〉 =

−ics(t)π(Ωm/
√
N)(4πR2

×)/(|U ′(R×)|Vs), where Vs is the
blockaded ensemble volume. By substituting this rela-
tion into the equation for cs we arrive at a set of damped
equations (non-Hermitian Schrodinger equation)

iċg =
ΩN0
2
cs ,

iċs =
ΩN0
2
cg − iγmcs (4)
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with the molecular-resonance (amplitude) loss rate

γm = π∆N×Ωm/2 = 2π2ρdξ
2
mR

2
×Ω2

0/|U ′(R×)| . (5)

For the outermost resonance, γm ≈ 2π2ρdξ
2
mΩ2

0c̃3 n
12/27.

The above derivation neglected atomic motion and is
valid for very cold ensembles. In Appendix A, we take
into account the thermal motion of the atoms, using the
impact approximation. We find the result for γm that is
identical to Eq. (5).

The rate formula is to be summed over all resonance
shells: γtot

m =
∑
k γ

k
m, where γkm is the individual shell

contribution (5). For our example in Table I, γtot
m is en-

tirely dominated by the outermost crossing. The reason
for this prominence is that at smaller R, the potentials
become steeper and the molecular Rabi frequencies be-
come diluted, thereby leading to smaller values of ∆R×
(see Eq.(1) and Table I) and together with smaller values
of R× leading to smaller values of ∆N× and thereby γm.
Notice that the long-range molecular Hamiltonian used
in computing the molecular potential curves in Fig. 1
holds only for R� 2n2a0 ∼ 1µm for n = 100, i.e. when
the electronic densities do not overlap. However, all the
qualitative arguments that the molecular excitation rates
should be suppressed compared to the outermost reso-
nance shell still hold even for small R.

The rate scales steeply with n, γm ∝ n12. In particu-
lar, it is commonly believed that the blockade fidelity can
be improved by going to high-n Ry states, because the
probability of off-resonant Ry excitations is suppressed
as n−22 in the van der Waals blockade. We see that in-
creasing n while suppressing off-resonant Ry excitations
also increases the undesired molecular loss rates.

In addition to the loss, the same Ω drive induces an
AC Stark shift which is different for states in which dif-
ferent atoms are excited. This inhomogeneous broaden-
ing results in an additional loss of coherence of the Rabi
oscillation. In Appendix B, we show that this broadening
is given by

δ∆ ≈ (7π/2)ρdξ
2
mR

2
×Ω2

0/|U ′(R×)| (6)

in the limit where R× is much smaller than the size of
the ensemble. Although the dependence of the system
parameters is the same as for γm in Eq.(5), the prefactor
makes δ∆ roughly two times smaller than γm. During the
Rabi dynamics, the broadening makes the signal decay
as exp[−(δ∆ t)2] over time and hence the molecular loss
is dominant as long as γmt < 1.

C. Damped Rabi oscillations

Eqs. (4) reduce to the damped oscillator equation of
motion c̈s + (ΩN0 /2)2cs − γmcs = 0 with solutions

cs(t) = −i
(
ΩN0 /Ωd

)
sin (Ωdt/2) e−

γm
2 t , (7)

cg(t) = (cos (Ωdt/2) + (γm/Ωd) sin (Ωdt/2)) e−
γm
2 t , (8)

where Ωd = ΩN0
(
1− η2

)1/2
, η = γm/Ω

N
0 . The driven en-

semble exhibits damped collective Rabi oscillations with
a frequency Ωd ≤ ΩN0 . One may distinguish between
three classes of solutions [16]: under-damped (η < 1),
critical (η = 0) and over-damped (η > 1). Explicitly,

η = 2π2

√
N

Vs|U ′(R×)|
ξ2
mR

2
×Ω0 ∝ n12

√
NΩ0.

Thereby increasing Ω0, n, or ρd can cause the ensemble
to exhibit over-damping of collective Rabi oscillations,
at which point they no longer resemble oscillations. In
the under-damped regime, the loss per collective Rabi
cycle determines collective qubit operation fidelity F =
(ΩN0 /Ωd)

2e−2πη.
The molecular loss can account for some experimen-

tally observed imperfections. E.g., Dudin et al. [10]
have effectively measured the damping constant for col-
lective Rabi oscillations in a mesoscopic ensemble of 102s
Rb atoms. They found that the Rabi oscillation loses
10−20% of its contrast in a single cycle. Our calculation
can account for a loss of ∼ 5% during a single oscillation
cycle. While the agreement seems to be adequate, we em-
phasize that it may be fortuitous as the experiment has
been carried out in the presence of magnetic field which
was excluded in our analysis and would introduce addi-
tional resonances. We also neglected the s− d excitation
channels (allowed in the excitation scheme [10]) when
computing molecular Rabi frequencies. Moreover, the
experiment [10] (and similar experiments [5, 11, 17, 18])
are affected by a multitude of other decoherence effects.
At this point it may be desirable to design experiments
that could disentangle various decoherence mechanisms,
and the molecular losses in particular.

D. Effective atom number

While the total number of atoms N remains constant
during the coherent evolution, the wave function acquires
out-coupled diatom wave packets. If the measurement of
the total number of atoms were to be made, the number
of atoms remaining in the ensemble would be Neff(t) =
N(|cg(t)|2 + |cs(t)|2). By manipulating Eq. (4), one

finds that Ṅeff = −2γm|cs(t)|2N , resulting in Neff(t) =

N

{
1 + 2

(
γm
Ωd

)2

sin2(Ωdt
2 ) +

(
γm
Ωd

)
sin(Ωdt)

}
e−γmt, or

averaging over many cycles N̄eff(t) = N(1 +

(γm/Ωd)
2
)e−γmt, i.e., the effective number of atoms re-

maining in the ensemble decays exponentially. The
quantity 1 − (|cg|2 + |cs|2) = (N − Neff(t))/N ∼
(γm/Ωd)

2
e−γmt also determines “leakage” from the col-

lective qubit space. Clearly, to minimize the leakage one
has to require that γmt � 1 or γm � Ω0

√
N . For pa-

rameters of Table I, the coherent evolution is limited to
t� 10µs.

One may visualize the “leakage” from the collective
qubit space as a modulated outflow of molecular wave
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packets from the blockaded volume. As an illustration,
the outermost molecular resonance produces admixtures
of 101s and 99s Rydberg atoms. If the ensemble is
trapped, the out-coupled (di)atoms may linger inside the
ensemble depending on the released kinetic energy and
the trapping potential height. Such atoms do not res-
onantly interact with the laser field of the Rabi drive.
However, they do interact with the remaining ensemble
leading to energy shifts through the interactions with the
remaining atoms. Such mechanisms can be also relevant
for untrapped ensembles, where the outflowing diatom
wave packets may interact with the remaining ensemble
while transiting out through the volume. In addition, the
present discussion focused on Rydberg S-states, the un-
desired effects can be enhanced for Rydberg states with
higher angular momentum. This is due to the presence of
closely spaced states, due to, e.g., spin-orbit interaction,
that can result in molecular crossing at larger R.

IV. SUPPRESSION WITH LATTICE

The unwanted effect of molecular resonances can be
suppressed by using tight traps for individual atoms prior
to excitation, such as optical lattices. The idea is po-
sitioning atoms such that excitation to molecular reso-
nances is not allowed. As shown in Appendix C, the loss
can be suppressed by a factor of ∼ 100, if the tightly
trapped (∼ 20 nm) individual atoms are prepared in a
3D optical lattice with the lattice constant tuned to avoid
the resonances. By choosing the lattice constant, the
outermost resonant shell R× = 6.2 µm can fall in a gap
between density peaks, largely reducing its effect. High
fidelity manipulation of Rydberg atoms in a lattice has
been observed recently [19]. Similar arguments apply to
spatially separated optical traps: the distance between
the traps should be larger than the radius of the outer-
most resonance shell.

To summarize, in this paper we investigated how
molecular resonances limit the fidelity of Rydberg ex-
citations in an atomic cloud. Under continuous driving
pairs of atoms can be promoted into a doubly excited
Rydberg states, if they are separated by certain reso-
nant distances. These resonant pairs repel each other
and leave the cloud. To mitigate this detrimental effect,
trapping the atoms in a tight optical lattice can be used,
where they are kept away from resonance.
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Appendix A: Derivation of the molecular excitation
rate in the impact approximation

As discussed in the main text, the collisions leading to
strong coupling to molecular states are short and well-
separated. Let’s consider one of such collisions of atom
i with an atom j. The molecular probability amplitude
satisfies the equation

iṁij = ∆ijmij +
1

2
Ωijm (ci + cj) . (A1)

The detunings ∆ij (molecular potentials with the zero
energy at the |r〉 + |r〉 dissociation limit, ∆ij =
U (Rij (t))) and Rabi frequencies are time dependent be-
cause of the atomic motion. Introducing

mij (t) = m̃ij (t) exp

(
−i
∫ t

−∞
∆ij (t′) dt′

)
,

we recast Eq.(A1) into

i
d

dt
m̃ij (t) =

1

2
Ωijm (ci + cj) exp

(
i

∫ t

−∞
∆ij (t′) dt′

)
(A2)

We are interested in the probability of molecular excita-
tion due to a single collision,

Pm = |mij (∞)|2 = |m̃ij (∞)|2 .

Integrating Eq.(A2), we arrive at

m̃ij (∞) = −i
∫ ∞
−∞

1

2
Ωijm (t) [ci (t) + cj (t)]×

exp

(
i

∫ t

−∞
U (Rij (t′)) dt′

)
dt (A3)

To evaluate this probability we approximate Rij (t) with
straight-line trajectories,

Rij(t) =
{

(v (t− tc))2 + ρ2
}1/2

.

Here ρ is the conventional impact parameter, v is the
relative atomic velocity, and tc is the time of the closest
approach. The atoms reach the resonance region when
Rij(t) = R×. Clearly, one has to require that ρ ≤ R× for
this to occur. The associated moment of time t× is

v
(
t±× − tc

)
= ±

√
R2
× − ρ2.

The exponential in the integral (A3) rapidly oscillates

except when the phase
∫ t
−∞ U (Rij (t′)) dt′ is stationary.
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The prefactor varies slowly in time compared to the ex-
ponent. This forms the basis for evaluating (A3) using
the stationary-phase method. Let’s review the basics of
this method. Consider an integral

I =

∫ +∞

−∞
g (t) eiφ(t)dt,

where g (t) varies slowly compared to the rapidly oscil-
lating exponent. The main value of the integral is ac-
cumulate in the regions where the phase is stationary,
i.e.

dφ (t∗) /dt = 0.

Expanding the phase in the vicinity of the t∗

φ (t) ≈ φ (t∗) +
1

2
φ′′ (t∗) (t− t∗)2

.

Then

I ≈ g (t∗) e
iφ(t∗)

∫ +∞

−∞
exp

(
i
1

2
φ′′ (t∗) (t− t∗)2

)
dt =

g (t∗) e
iφ(t∗) exp

(
i
π

4
sign (φ′′ (t∗))

)√ 2π

|φ′′ (t∗)|

In our case φ (t) =
∫ t
−∞ U (Rij (t′)) dt′, and the station-

ary points correspond to the crossing of the resonance
shell

dφ (t∗) /dt = U (Rij (t∗)) = 0,

i.e. t∗ = t×. Notice that we have two stationary points
corresponding to two crossings of the resonance shell.
The two times are separated by

t+× − t−× =
2
√
R2
× − ρ2

v

In general, both points can contribute. However, once
promoted to the molecular state, the atoms experience
strong mechanical forces and are accelerated out of the
resonance. Therefore we will neglect the interference ef-
fects when computing the probability Pm and add the
two contributions incoherently (this provides the upper
limit on Pm)

Pm = πΩ2
m |ci (t×) + cj (t×)|2

(
1

|φ′′ (t×)|

)
Further we evaluate the second derivative of the phase
evaluated at crossing points

d2φ (t×) /dt2 =
dU

dRij

dRij
dt

=
Ωm

∆R×

v

R×
v (t× − tc) =

Ωm
∆R×

v

R×

√
R2
× − ρ2

From here one could define the effective duration of col-
lision

τc ≈
√

∆R×
v

1

Ωm
or

Pm = π |ci (t×) + cj (t×)|2 Ωm
∆R×
v

R×√
R2
× − ρ2

We further approximate the time evolution of single-Ry-
excitations via their un-coupled time evolution, cIk(t) =

i/
√
N sin(

√
NΩ0t/2))

Pm (ρ, t) =
4π

N
Ωm

∆R×
v

R×√
R2
× − ρ2

sin2(
√
NΩ0t/2)).

Pm = 0 for ρ > R× in the stationary-phase approxima-
tion as there are no crossing through the resonance region
for such impact parameters.

The number of atoms lost due to a single collision is
∆N = −2Pm. Now we sum the probabilities over mul-
tiple collisions. The number of atoms in a relative ve-
locity group dv passing through the area 2πρdρ per time
interval dt is equal to 2πnρdρ |v| f (v) d3vdt, where n is
the number density and f (v) is the velocity distribu-
tion. Then the compound atom loss satisfies the equa-
tion (here the factor of 1/2 is introduced to correct for
double-counting)

dN

dt
= −2γm (t)

N

2
= −γm (t)N,

γm (t) =

∫ ∫
2πnρ dρ |v| f (v) d3v Pm

Explicit evaluation yields the cross-section

σm (t) = 2π

∫ R×

0

ρ dρPm (ρ, t) =(
2πR2

×
) 4π

N
Ωm

∆R×
v

sin2(
√
NΩ0t/2)).(A4)

and the rate

γm (t) = n
(
2π R2

×
) 4π

N
Ωm∆R× sin2(

√
NΩ0t/2))

For a spherical volume of radius Rs, n = 3N/
(
4πR3

s

)
,

thereby

γm (t) = 6π

(
R×
Rs

)3(
∆R×
R×

)
Ωm sin2(

√
NΩ0t/2))

The rate equation has the solution

N (t) = N (0) exp

(
−
∫ t

0

γm (t′) dt′
)
,

∫ t

0

γm (t′) dt′ = γ̄m

t− sin
(√

NΩ0t
)

2
√
NΩ0

 ,

γ̄m = 3π

(
R×
Rs

)3(
∆R×
R×

)
Ωm.
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For sufficiently long time (t � 4π/
(√

NΩ0

)
), the total

number of atoms falls off exponentially as

N (t) = N (0) exp (−γ̄mt) .

Finally, the experiments are carried out with meso-
scopic ensembles and as discussed in the main text, the
radius of the resonance shell R× maybe comparable to
Rs (or blockade radius). It is clear that if R× > 2Rs,
the atoms are not going to be affected by that partic-
ular molecular resonance. We may further introduce a
geometric probability factor g (R×/Rs)

γm (t)→ γm (t) g (R×/Rs)

Further rates from multiple resonances add

γm (t)→
∑
k

γkm (t)

where γkm is the rate due to an individual resonance shell
at Rk×.

Appendix B: Derivation of the inhomogeneous
broadening

In the main body it is mentioned that the molecular
resonances have more consequences than just leading to
the molecular rate γm. Here, we consider the additional
loss of coherence by inhomogeneous broadening.

1. Hamiltonian

We assume that the N identical atoms move negligibly
over the entire extent of the dynamics in question, so we
need to track only the electronic degrees of freedom. We
model each atom as a four-level system, with states |g〉,
|r〉, |r′〉, |r′′〉. Let us define the following collective states,

|G〉 = |g〉⊗N , (B1)

|j〉 = σ†j |G〉, (B2)

|j, k〉 = σ′
†
jσ
′′†
k|G〉, (B3)

where σj = |g〉j〈r|j , σ′j = |g〉j〈r′|j and σ′′j = |g〉j〈r′′|j ,
(j 6= k). An external driving field coherently couples |g〉
with |r〉, |r′〉 and |r′′〉. When two atoms are in |r′r′′〉 or
|r′′r′〉 states, they interact via the Rydberg interaction.
The resulting Hamiltonian is

H =
∑
j

Ω0

2

(
|G〉〈j|+ h.c.

)
+

∑
j,k

Ωm
2

(
|j〉〈j, k|+ |j〉〈k, j|+ h.c.

)
+

∑
j,k

∆jk|j, k〉〈j, k| (B4)

In the ideal case, when ∆jk →∞, |G〉 is coherently cou-
pled to the symmetric combination of a single excitation,

|S〉 =
1√
N

∑
j

|j〉, (B5)

and the resulting dynamics is a Rabi oscillation between
|G〉 and |S〉, with Rabi frequency ΩR =

√
NΩ0, if the

system starts in |G〉.
To investigate the deviation of the real dynamics from

the ideal one, we focus on the coupling of |j, k〉 states to
|S〉. Using this notation the Hamiltonian can be written
as

H =

√
NΩ0

2

(
|G〉〈S|+ h.c.

)
+∑

j,k>j

Ωm√
N

(
|S〉〈Mjk|+ h.c.

)
+

∑
j,k>j

∆jk|Mjk〉〈Mjk|, (B6)

where |Mjk〉 = |j,k〉+|k,j〉√
2

, and the non-symmetric combi-

nations are not coupled to |S〉.

2. Broadening

We adiabatically eliminate the doubly excited states
{|j, k〉} from Eq. (B6) to arrive at the effective Hamilto-
nian,

Heff = hΩ0 +
∑
j

(
∆j − i

Γj
2

)
|j〉〈j|+

∑
j,k>j

Ωjk
2

(
|j〉〈k|+ |k〉〈j|

)
, (B7)

where hΩ0
is the first term in Eq. (B6), and the new

coefficients are

∆j = −
∑
k 6=j

Ω2
m

4

P
∆jk

, (B8)

Ωjk = − Ω2
m

2∆jk
, (B9)

Γj = 2π
∑
k 6=j

Ω2
mδ(∆jk), (B10)

where P indicates principal value. The Γj terms describe
the resonant excitation, which is as discussed in the pre-
vious section and lead to the molecular decay rate γm.

The j dependence of ∆j results in inhomogeneous
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broadening, δ∆ :=
√
〈∆2〉 − 〈∆〉2.

δ∆ =
Ω2
m

4

√√√√√Var

∑
k 6=j

− P
∆jk



=
Ω2
m

4

√√√√√Var

∑
k 6=j

P
∆E

R3
jk

R3
jk −R3

×

, (B11)

where we used ∆jk = U(Rjk) = C3

R3
jk
−∆E , i.e. a van-der-

Waals interaction potential between the Rydberg atoms,
and eliminated C3 by using that R3

× = C3

∆E
.

The sum can be written as

Dj :=
∑
k 6=j

P
∆E

R3
jk

R3
jk −R3

×

=
N

V∆E

∫
V

d3rk
P|rk − rj |3

|rk − rj |3 −R3
×

=
N

V∆E

∫
V ′

d3r
Pr3

r3 −R3
×
, (B12)

where the integrand is more conveniently written in terms
of r = |r| = |rk − rj |. r can be seen as ‘local’ spherical
coordinate, centered around rj . Due to global rotational
invariance of the problem we can set rj = rj ẑ without
loss of generality. We then find (see section B 4)

DjV∆E

N
=

R−rj∫
0

4πr2 Pr3

r3 −R3
×
dr +

R+rj∫
R−rj

2πr2 Pr3

r3 −R3
×

(
1−

r2 + r2
j −R2

2rrj

)
dr. (B13)

We now assume that the singularity is in the first integral,
R× < R−rj . As a result, the second integral is no longer
a principal value integral and since r ≥ R− rj > R× we

will furthermore approximate r3

r3−R3
×
≈ 1. The second

integral is then straightforward to evaluate. Finally we
use the indefinite integral∫

r5

r3 −R3
×
dr =

1

3
r3 +

1

3
R3
× ln

(
r3 −R3

×
)

(B14)

to find the remaining principal value integral. The result
is

Dj =
N

∆E

[
1 +

(
R×
R

)3

ln

((
R− rj
R×

)3

− 1

)]
.(B15)

Now, we can determine the averages 〈D〉 and 〈D2〉, but
since the above expression for Dj is only valid when rj <

R − R× we modify the averages to only average over a
sphere with radius R−R×:

〈D〉 =
1

N

∑
j

Dj =
1

V

∫
V

d3rj Dj

≈ 3

2(R−R×)3

R−R×∫
0

r2
jDjdrj , (B16)

〈D2〉 =
1

N

∑
j

(Dj)
2 =

1

V

∫
V

d3rj (Dj)
2

≈ 3

2(R−R×)3

R−R×∫
0

r2
j (Dj)

2drj , (B17)

where we also used that Dj only depends on rj = |rj |.
Since we are interested in the regime where R× � R,
these approximations actually do not differ much from
the true averages. Then, using the expansion

Dj =
N

∆E

(
1− 3

(
R×
R

)3

ln

(
R×

R− rj

)
+ . . .

)
,(B18)

the averages can be found by a direct evaluation of the
integrals above. The resulting expression for the variance

in Dj is then found to be, up to lowest order in R×
R ,

δD =
√
〈D2〉 − 〈D〉2 =

7

2

N

∆E

(
R×
R

)3

. (B19)

With this result we can write the broadening δ∆ as

δ∆ =
Ω2
m

4
δD =

7

2
πρdΩ

2
m

R2
×

|U ′(R×)|
, (B20)

where the quadratic dependency on R× was also repro-
duced using numerical calculations and in fact is the same
as for the molecular rate γm. This whole calculation can
be directly reused for another potential, van der Waals
for example, U(Rjk) = C6

R6
jk
−∆E . The result is

δ∆ =

√
12

5
πρdΩ

2
m

R2

|U ′(R×)|

(
R×
R

)5/2

, (B21)

where again the power of R× is consistent with numerics.

3. Effect on coherence

The effect of this inhomogeneous broadening is well
approximated by an additional decay of the coherence
between the ground state |G〉 and the symmetric single-

excitation state |S〉 =
∑
i |Ri〉/N , by a factor of e−(δ∆ t)2 .

This is a much weaker effect than the pure exponential
decay, set by γm, and since δ∆ . γm for the parame-
ter regime in consideration, the effect of inhomogeneous
broadening can be neglected as long as γmt < 1.
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4. Local spherical coordinates

For completeness we briefly describe the ‘local’ spher-
ical coordinates mentioned in the above derivation. In
favor of symmetry of the integrand we make the substitu-
tion r = rk − rj , which requires changing the boundaries
of the polar integral. Without loss of generality we can
take rj on the z-axis. Then, depending on the relation
between r, rj and R there are three regions. First, if
r < R − rj , then the entire sphere of radius r = |r| lies
within the boundaries of the cloud, and therefore we have
0 ≤ θ ≤ π. Similarly, if r > R + rj , then the opposite
is true: the cloud lies entirely inside the sphere of radius
r, and therefore there is no contribution to the integral
from this part.

FIG. 3: We only need to integrate over that part (red) of the
dotted sphere that is inside the cloud. This corresponds to a
modification of the boundaries for the θ-integral, depending
on the relation between r, rj and R. The figure shows the
case when R− rj < r < R+ rj .

If R − rj < r < R + rj , then there exist a circle,
where the sphere of radius r intersects the boundary of
the cloud, as shown in Fig. 3. The angle between the
segments rj and r is

π − θc = arccos

(
r2 + r2

j −R2

2rrj

)
, (B22)

and therefore we have θc ≤ θ ≤ π. Defining θ0 as the
lower bound of the θ-integral, we have θ0(r < R−rj) = 0
and θ0(R− rj < r < R+ rj) = θc, so that we can rewrite
the integral in Eq. (B12) as

∫
V ′

d3r f(r) =

R+rj∫
0

r2dr

π∫
θ0(r)

sin(θ)dθ

2π∫
0

dφf(r)

=

R−rj∫
0

4πr2f(r)dr (B23)

+

R+rj∫
R−rj

2πr2f(r)

(
1−

r2 + r2
j −R2

2rrj

)
dr .

where f(r) is the integrand that only depends on r.

Appendix C: Suppression of resonance by trapping
in regular lattice

We investigate the possibility of trapping the atoms in
an 3D cubic optical lattice, in order to suppress the effec-
tive decay rate γ, due to double Rydberg resonances. We
use the homogeneous atom density case as a benchmark,

γhom =
∑
j

γj = 2π2Ω0ρ
∑
i

ξiR
2
×,i∆R×,i, (C1)

where the summation is performed over all resonances at
the crossing distances R×,i, each having a width of ∆R×,i
and molecular coupling factor ξi. Here ρ is assumed to
be constant.

We assume that in a 3D cubic lattice, each lattice site
holds a single atom, trapped in the ground state of the
harmonic trap. Let a denote the lattice constant and d
be the size of each trapped wave function. The deeper we
make the lattice, the smaller the d/a ratio can be. For
given d, a values, we can plot the 3D density ρ(R) of the
atoms as a function of distance from a particular lattice
site. This is shown on Fig. 4 with a blue curve.

FIG. 4: 3D density of the atoms in a cubic lattice (lat-
tice constant: a = 0.995 µm) as a function of distance, R.
Each atom is confined by a harmonic trap to a region of size
d = 0.02 µm. Red vertical lines indicate the position of the
resonances given in Table 1 of the paper. The numbers shown
next under the lines are the molecular coupling coefficients,
ξi, for each resonance.

By taking the R dependence of the atom density ρ(R)
into account, we can write the total decay rate as

γlattice =
∑
j

γj = 2π2Ω0

∑
i

ρ(R×,i)ξiR
2
×,i∆R×,i, (C2)

numerically evaluate, and compare it with the homoge-
neous result, γhom. On Fig. 5, we plot γlattice/γhom as
a function of the trap confinement d for different fixed
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values of a. A confinement of d/a ≈ 0.01 can suppress
the decay to 2–10% of its homogeneous density value, de-
pending on the accuracy of the fine tuning of the lattice
constant.

FIG. 5: Decay rate in a 3D lattice normalized with the homo-
geneous decay rate result for lattice constants a = 1.00, 0.995
and 0.99 µm. The suppression is strong for small trap size,
and diminishes (γlattice → γhom) for large size. Small changes
in a result in significant changes in the suppression. This is
due to the detailed peak structure of the 3D density in the
lattice. As a result, fine tuning of the lattice constant is re-
quired.
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