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The preparation of a quantum degenerate gas of heteronuclear molecules has been an outstanding
challenge. We use path integral Quantum Monte Carlo simulations to understand the role of inter-
actions and finite temperature effects in the protocol currently employed to adiabatically prepare a
low-entropy gas of polar molecules in a lattice starting from an ultracold Bose-Fermi mixture. We
find that interspecies interactions affect the final temperature of the mixture after the adiabatic
loading procedure and detrimentally limit the molecular peak filling. Our conclusions are in agree-
ment with recent experimental measurements [1] and therefore are of immediate relevance for the
myriad experiments that aim to form molecules from dual-species atomic gases.

I. INTRODUCTION

Polar molecules, interacting via long-range and
anisotropic dipolar interactions, hold great promise as
quantum simulators hosting exotic quantum phases [2, 3],
as well as a diverse range of phenomena, ranging from
quantum magnetism [4], to many-body localization [5],
to synthetic spin-orbit coupling [6, 7]. A necessary in-
gredient for simulating these these behaviors is to the
ability to reach low entropy conditions. However, de-
spite the rapid experimental progress, a reliable method
to form such a state has remained out of reach [8–10].
The two main obstacles to realizing a low-entropy state
are the inapplicability of standard atomic cooling tech-
niques to polar molecules and the requirement to sup-
press chemical reactions. A proposed solution to these
problems is to form the molecules directly in a deep op-
tical lattice through association after optimally loading
a degenerate atomic gas mixture [11–18, 27, 28]. This
protocol is shown schematically in Fig. 1. However, in
order for this scheme to be a reliable pathway, it is neces-
sary to have a high atom/molecule conversion efficiency.
While there are many steps in converting the atomic mix-
ture to a molecular gas which can degrade the efficiency
of molecule production, the main bottleneck is creat-
ing a large region where the densities of the two atomic
species overlap and correspond to exactly one atom of
each species per lattice site. Temperature, interactions,
and loading conditions can significantly limit the achieve-
ment of this requirement.

Here, we use path integral Monte Carlo simulations
(QMC) based on the worm algorithm [29], as well as its
two-worm extension, to investigate the effects of finite
temperature and interspecies interactions during adia-
batic loading from a dipole trap into an optical lattice.
We show that the final temperature of the lattice sys-
tem following adiabatic loading depends strongly on the
strength and sign of interspecies interactions, and can
be far from the ideal, zero-temperature regime. In con-
trast to previous studies, which do not treat the adi-
abatic loading procedure and find that attractive inter-
species interactions enhance the on-site densities [30, 31],
our analysis predicts that both attractive and repulsive
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FIG. 1. (Color online) Production of ground state molecules
from a dual-species mixture. (Top line) A finite-temperature
dual-species gas of bosonic species A atoms (red) and
fermionic species B atoms (blue), is adiabatically loaded from
a harmonic trap into an optical lattice in the presence of inter-
species interactions. The initial temperature and interactions
determine the temperature, density overlap, and peak filling
of the mixture. (Bottom line) Following STIRAP, only those
sites with exactly one atom of each species are converted to
a ground state molecule, with some probability to excite the
molecule to a higher lattice band (schematic wavefunctions in
green box).

interactions can lead to substantial depletion of on-site
densities of the bosonic species and takes into account
the contributions of dimensionality, effective mass imbal-
ance, and quantum statistics [32–34]. We also discuss the
efficiency of magnetoassociation, in which two atoms on
the same site are converted into a weakly bound Fesh-
bach molecule, focusing on the role of motional excita-
tions and the difference between harmonic oscillator and
lattice-based treatments. Finally, we discuss the impact
of imperfections in stimulated Raman Adiabatic Passage
(STIRAP), which is used to convert Feshbach molecules
to ground state molecules, on the ground state molecule
production [11, 35]. We study the adiabaticity of this
protocol, and provide approximate analytical formulas
which can be used to determine the probability of pro-
motion of molecules to higher bands during the STIRAP
procedure. Since molecules in higher bands have a much
larger tunneling rate, an appreciable higher band popu-
lation can greatly impact dynamics involving molecular
motion. We find that for experimentally relevant param-
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eters there is no significant population transfer, provided
the Lamb-Dicke criterion is satisfied. Our conclusions are
corroborated by the recent experimental observations re-
ported in [1] and thus of fundamental importance for on-
going experimental efforts to achieve a high-filling lattice
gas of ground state polar molecules.

II. SINGLE-COMPONENT GASES IN THE
LATTICE

We begin by studying trapped single-species gases of
bosons or fermions. We assume the bosons are trapped
in a deep lattice where they can be described by the
Bose-Hubbard Hamiltonian with an additional external
harmonic confinement:

H = −
∑
〈i j〉

JA(a†i,Aaj,A + h.c.) +
U

2

∑
i

ni,A(ni,A − 1)

−
∑
i

µi,Ani,A. (1)

Here, a†i,A (ai,A) is the bosonic creation (annihilation)

operator for species “A” and ni,A = a†i,Aai,A. The

first and second terms in the Hamiltonian Eq. (1) are
the tunneling JA and the on-site interaction, assumed
repulsive with strength U > 0, respectively. Finally,
µi,A = µ − ∑ξ=x,y,z wξξ

2
i , where wξ and ξi are the

strength of harmonic confinement and the coordinate of
site i along axis ξ, respectively, and µ is the chemical
potential.

In order to facilitate comparisons with the experi-
mental data in [1], we will use 87Rb for species A, but
we stress that our conclusions apply for generic bosonic
species described by the Bose-Hubbard model. The ef-
fective external harmonic confinement includes the ad-
ditional confinement due to the curvature of the lattice
beams. The A atoms are assumed to experience a lattice
potential V0 = 20EA, where EA is the recoil energy of
the A atoms.

To characterize the density as a function of atom num-
ber, we first match the entropy of the gas in the dipole
trap to the one in the lattice and find the final temper-
ature Tfin/JA. The bottom right inset of Fig. 2 shows
an example of this procedure for 3000 atoms. The solid
green line shows the entropy of a weakly interacting Bose
gas, which describes the A atoms in the harmonic trap.
Blue triangles denote the entropy of the A atoms after
loading into the lattice, given by

Sf (T ) =
E(T )− E(0)

T
+

∫ T

0

E(T )− E(0)

T 2
dT, (2)

where E(T ) is the system energy at temperature T . Both
E(T ) and E(0) are directly measured in our QMC simu-
lations. An example of the entropy matching procedure
for an initial temperature Ti = 0.4Tc, Tc the critical tem-
perature for Bose-Einstein condensation, is shown with
dashed arrows.
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FIG. 2. (Color online) Peak filling of species A vs. atom
number. (Main panel) The peak filling fp as a function of
number of 87Rb atoms at T/JA = 15, used as an example of
bosonic species A, with a lattice depth of V0 = 20EA given for
harmonic confinements of ωr(ωz) = 2π×40(260) Hz (filled tri-
angles) and 2π× 35(227) Hz (filled circles). Empty diamonds
are experimental data [1]. The dashed (solid) line shows the
on-site density at the center of the trap at T/JA = 15 for the
weaker (stronger) harmonic confinement. (Lower inset) En-
tropy matching procedure for 87Rb following adiabatic lattice
loading with strong harmonic confinement. Solid green line is
weakly interacting gas and blue triangles are ∼3000 lattice-
confined Rb. (Upper inset) Double occupancy at T/JA = 1
(filled upside-down triangles) and T/JA = 15 (crosses) for the
strong harmonic confinement. (Right panels) Integrated den-
sity n(x, y) at points marked I and II at T/JA = 1 (upper)
and T/JA = 15 (lower) for strong harmonic confinement.

Next we determine the peak filling, fp. To compare
with the experimental procedure of extracting the peak
filling, we first integrate along z and mimic the experi-
mental imaging resolution by applying a Gaussian filter
with a width of 4 sites to the integrated density. We
fit the resulting density to a Thomas-Fermi (TF) distri-

bution n(x, y) = 4
3fpσz

[
1− (x/σx)2 − (y/σy)2

]3/2
. The

extracted fp values are plotted in Fig. 2 as a function of
atom number, NA, after the adiabatic loading procedure,
with filled circles (triangles) for two different trapping
conditions. The filling at the center of the trap is dis-
played with dashed (solid) lines for the weaker (stronger)
harmonic confinement at T/JA = 15. The empty dia-
monds are the experimental results [1]. The rightmost
panels of Fig. 2 give examples of the resulting distribu-
tions integrated along the z-axis, n(x, y), for NA ∼ 4000
(labeled I) and NA ∼ 8000 (labeled II). For these two val-
ues of NA we show the distribution at T/JA = 1 (top),
which is the low-temperature result, followed by the in-
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tegrated density distribution at T/JA = 15 (bottom),
which is closer to the experimental temperature.

It is worth noting that while the density at the cen-
ter of the trap is strongly dependent on temperature, fp
does not display a strong dependence on T/JA within the
experimentally-relevant temperature range. This is due
to the process by which we obtain fp, which includes in-
tegrating over one direction and fitting the resulting dis-
tribution to the TF distribution. These two steps wash
out the features distinguishing the distributions at dif-
ferent temperatures. However, this does not mean that
the efficiency of the formation of molecules is unaffected
by temperature. This is evident if one probes the num-
ber of doubly occupied sites with increasing temperature.
Sites with double (or higher) occupancies do not result
in molecule formation. The upper inset of Fig. 2 shows
the double occupancy at T/JA = 1 (inverted triangles)
and T/JA = 15 (crosses). In the low-temperature regime
(T/JA = 1) the first Mott shell extends to NA ≈ 5000
particles, after which a superfluid region forms at the cen-
ter of the trap, before transitioning to the second Mott
shell at NA ≈ 8000 (see the dashed blue line in Fig 2).
However close to or above T/JA = 15, 5 − 10% of the
A atoms are in doubly occupied sites and hence will not
participate in molecule formation.

Next, we consider the fermionic species B of the mix-
ture, taking 40K for comparison with recent experimental
data [1]. However, as before, our conclusions are valid for
generic fermionic species that can be described by a tight-
binding model. The difference in the polarizability with
respect to 87Rb means that the 40K atoms feel a lattice
potential of depth V0 = 9EB, where EB is the B species
recoil energy. At low temperatures, p-wave interactions
in the spin-polarized gas can be neglected, and the de-
termination of the density reduces to a non-interacting
problem. As the harmonic trap is separable, this problem
can be straightforwardly treated by direct diagonaliza-
tion for the single-particle eigenenergies Enξ and corre-
sponding wavefunctions |ψnξ〉. With these single-particle
quantities we can evaluate the grand canonical partition
function, from which we find the entropy per particle
S/N , as well as the on-site density,

n(ξ) =
∑
nξ

1
1+exp(β(Enξ−µ)) |ψnξ(ξ)|2 , (3)

where ξ = {x, y, z} and β = 1/T is the inverse tempera-
ture.

In Fig. 3 we show the peak filling of species B as a func-
tion of atom number. For fermions we use a Gaussian
fit with n(x, y) =

√
2πσzfp exp

[
−x2/(2σ2

x)− y2/(2σ2
y)
]

after integration along z. Here, we also account for the
experimental imaging resolution and pixelation by apply-
ing a Gaussian filter. The band, delimited by the blue
triangles and orange squares, shows the range of peak
fillings for 1 < Tfin/JB < 5, with JB the tunneling of the
B atoms. As the temperature of the B atoms in the lat-
tice increases, so does the width of the cloud, resulting
in a decrease in the peak filling. The empty diamonds
show the experimental data [1]. The plateau indicates

the atoms forming an incompressible band insulator. On
the right panel we show the integrated density distribu-
tion at points marked I and II. At II, the B atoms form
a band insulator in a large region of the lattice.
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FIG. 3. (Color online) Peak filling of the fermionic species B
vs. atom number. (Main panel) The peak filling of 40K, used
as an example for the fermionic species B, at Tfin/JB = 1
(filled squares) and Tfin/JB = 5 (filled triangles) extracted
from the integrated density distributions n(x, y), including
mimicked resolution and pixelation effects. Results are for
harmonic trap frequencies (40×40×260) Hz and a 9EB deep
lattice. Empty diamonds show experimental results [1]. Insets
show the integrated density distributions at points I and II .

III. LATTICE-CONFINED TWO-SPECIES
MIXTURE

We use a two-component mixture of soft-core (“A”)
and hard-core (“B”) bosons to study the combined effect
of interspecies interactions and finite temperature on the
density of the A species. Hard-core bosons act as a stand-
in for fermionic B species, as path-integral QMC cannot
simulate fermions due to the sign problem. While there
is no direct mapping from hard-core bosons to fermions
for local observables in three dimensions, we compared
the hard-core and fermionic profiles for the single-species
case and found excellent agreement. Based on this, we
expect our results for the local density in the mixture to
also be valid.

The two-component mixture is described by the Hamil-
tonian

H = −
∑
〈i j〉,γ

Jγ(a†i,γaj,γ + h.c.) +
U

2

∑
i

ni,A(ni,A − 1)

+ UAB

∑
i

ni,Ani,B −
∑
i,γ

µγ,ini,γ . (4)
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Here γ =A, B and UAB is the interspecies on-site inter-
action which can be tuned to be repulsive or attractive.
To study the effect of interspecies interactions we have
performed simulations with −40 < UAB/JA < 40 with
10500 A atoms and 25000 B atoms. Previous studies
have shown that at a given T/JA, the presence of attrac-
tive interactions enhances the conversion efficiency [31].
This corresponds to an enhancement of fp measured at
the same T/JA for every UAB < 0. In Fig. 4 we show
fp(T/JA = 0.2) and fp(T/JA = 10) as a function of
UAB/JA using filled squares and filled circles connected
by a line, respectively. We normalize the values to f0

p , the
peak filling of A at T/JA = 0.2 in the absence of species
B. As described above the peak filling gives an idea of
the on-site densities in the distribution and normalizing
to the zero-temperature, non-interacting case allows us
to clearly identify any enhancement or depletion of the
filling due to thermal or interaction effects. It is clear
that attractive interactions lead to an enhancement of fp
if T/JA is kept constant.

However, this simple analysis does not describe cur-
rent experiments, since starting at the same initial tem-
perature, Ti/TF , TF the Fermi temperature, leads to a
final temperature Tfin/JA after adiabatic loading that
depends on the sign and magnitude of UAB. In Fig. 4
(c) we show Tfin/JA for UAB/JA = −40, -10, 10, and
40 using solid, dash, dot-dash, and dot-dot-dash lines,
respectively. From Fig. 4(c) it is clear that attractive
interactions tend to cause more severe heating during
the adiabatic loading. For the range of initial entropies
considered in this work, this additional heating inhibits
and counteracts the benefit gained by making the two
species attract. In Fig. 4 (a) we show fp as a function of
UAB/JA for Ti/TF =0.1 and 0.3 using filled squares and
filled triangles, respectively. Following adiabatic loading,
both attractive and repulsive interactions destabilize the
A species Mott insulator and reduce the peak filling.

IV. EFFICIENCY OF FESHBACH MOLECULE
PRODUCTION ON A SINGLE LATTICE SITE

The next stage in the production of molecules asso-
ciates the two atoms on a lattice site into a weakly bound
molecular state. The most common method of associa-
tion is magnetoassociation, where a loosely bound Fesh-
bach molecule is created by sweeping the magnetic field
through a Feshbach resonance [11]. When this associa-
tion process happens in a deep lattice, tunneling can be
neglected. In this case a reasonable approximation is to
replace each lattice site with a harmonic well. The valid-
ity of this approach for the molecular binding energy at
V0 ≈ 40EA lattice depth was demonstrated in Ref. [20].
The formation efficiency of molecules has been shown
to be mostly local in deep lattices. In this regime the
atom-pair to molecule conversion is guaranteed to occur
with essentially unit efficiency for particles in the ground
band. This has been confirmed experimentally in a 3D
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FIG. 4. (Color online) Dependence of species A peak fill-
ing on UAB. (a) Peak filling normalized to zero-temperature
value, fp(T )/f0

p , vs. UAB/JA at T/JA=0.2 (empty squares)
and T/JA=10 (empty circles), ignoring the interaction de-
pendence of the final temperature due to adiabatic loading.
Accounting for interaction effects during loading at initial
temperatures Ti/TF = 0.1 (0.3) are given with filled squares
(triangles). (b) The entropy of species A as a function of
T/JA is shown for UAB/JA = 40 and -40 using circles and
squares, respectively. The dashed line is the entropy of non-
interacting fermions in a harmonic trap, which we use as an
estimate for Si. (c) Final temperature vs. initial temperature
for UAB/JA = −40, -10, 10, and 40 (solid, dash, dot-dash, and
dot-dot-dash, respectively). We use a harmonic confinement
of ωr(ωz) = 2π × 23(150) Hz

lattice where nearly 100% conversion efficiency between
Feshbach molecules and local pairs of K and Rb atoms
was observed [36].

Within the harmonic oscillator approximation, there is
an important subtlety regarding conversion of atoms in
higher bands into molecules. If one of the atoms is in
a higher band, the two-atom wavefunction consists of a
superposition of states with an excitation in the relative
coordinate and an excitation in the center of mass coordi-
nate, with different weighting of these components in the
case of mass or trapping frequency imbalance for the two
species [21, 22]. The component corresponding to a rela-
tive excitation has a node at short distance, and so this
channel will not become a molecule following magnetoas-
sociation, and instead will remain as unbound atoms. In
contrast, the center of mass excitation will be adiabat-
ically converted to a molecule in a higher band follow-
ing magnetoassociation. Thus, the conversion of excited
band atoms to molecules in the first excited band is given
by PM = PAPA→M +PBPB→M where PM is the probabil-
ity of forming a molecule in the first excited band, PA(B)

is the probability of an atom of type A(B) occupying the
first excited band after the loading procedure, and finally
PA(B)→M is the probability of the pair with atom A(B)
in the first excited band forming a molecule in the first
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excited band. Since PA(B)→M is given by the relative
weight of the center of mass excitation on the A and B
species atoms, it depends on the mass and polarizabil-
ity ratio and strength of interactions, and so in general
it is highly species dependent. From this consideration
minimizing band excitation of the preformed pairs is an
important requirement for optimal molecule production
in lattices.

In shallower lattices center of mass and relative coor-
dinates couplings can enhance the conversion efficiency
of excited band atoms to molecules. Moreover, tunnel-
ing processes can also convert atoms on different sites
to molecules[23, 24]. However, since the tunneling rate
decreases exponentially with lattice depth, the slow mag-
netoassociation ramp condition required to remain adi-
abatic and allow such non-local processes to happen is
generally not satisfied in current experiments and to a
good approximation the conversion at V0 & 15EA as-
sumed to be mostly local.

In this section we outline how one can find PA(B) and
this method to KRb and LiCs molecules. While the ex-
perimental system is three-dimensional, for simplicity we
restrict the discussion to a one-dimensional system. A
framework for the three-dimensional problem has been
developed in [25]. It should be noted that since the two
species in the experiment experience different trapping
potentials, the Hamiltonian does not separate into cen-
ter of mass (CM) and relative coordinates, but contains
a coupling between the two. Namely, the Hamiltonian is

H =− ~2

2mB
∇2
B −

~2

2mA
∇2
A +

1

2
mBω

2
Bx

2
B

+
1

2
mAω

2
Ax

2
A + Vint(r)

=HCM(X) +Hrel(x) + CXx, (5)

where

HCM = − ~2

2M
∇2
X +

1

2
MΩ2X2 ,

Hrel = − ~2

2µ
∇2
x +

1

2
µω2x2 + Vint(x),

M = mA +mB, µ = mAmB/M , and Vint(x) is a regular-
ized contact pseudopotential parameterized by an inter-
action strength g. Here, Ω and ω are the CM and relative
trapping frequencies, given by

Ω

ωA
=

√
1 + β

1 + α
,
ωrel

ωA
=

√
α+ β/α

1 + α
,

and the CM/relative coupling is given by C
mAω2

A
= α−β

1+α ,

where α = mB/mA and β = mBω
2
B/(mAω

2
A).
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FIG. 5. (Color online) The conversion efficiency of higher
band atoms to molecules. (a) The spectrum of the K and Rb
using a single-site harmonic oscillator model. (a) The solid
black (dashed orange) lines show the states with zero quanta
(one quantum) of motional excitation with CM/relative cou-
pling artificially set to zero. (b) Same as (a) but with
CM/relative coupling included. (c) The solid (dashed) black
line corresponds to the overlap between the eigenstate corre-
lating to an excited molecule and an atom pair with an ex-
cited excited K (Rb). The orange lines are the same quantity
without CM/relative coupling, showing strong CM/relative
mixing for this system. (d) Same as (c) but for the LiCs
system with Cs as species B, and ωCs/ωLi = 1.8, showing a
weaker degree of CM/relative coupling at small g.

In order to find the probabilities PA→M and PB→M we
calculate the matrix elements of Hamiltonian (5) in the
CM-rel basis, where the CM states φη(X) are harmonic
oscillator functions, while the relative coordinate states
are given by the fully non-perturbative solutions of Busch
et al.[26], ψκ(x). Figures 5(a) and (b) show the spectrum
of a Rb/K atom pair with ωK/ωRb = 1.4 as a function of
interaction strength g in the absence and presence of the
CM-rel coupling, respectively. In both panels the solid
black (dashed orange) lines to show states with zero (one)
total quanta of excitation. In the presence of CM/relative
coupling (Panel (b)), the higher energy eigenstate corre-
lating to a quantum of excitation tends to free atoms at
large negative g, while the lower branch correlates to a
molecule with a quantum of excitation. The deviation
of the dashed lines from the C = 0 solutions depends
on the experimental parameters, including the trapping
frequencies and the atomic species.

As described above, the state with the CM excitation
connects to the molecular state in the first excited band.
Our task is to find how the excited atomic states con-
nect to this state. To do so, we calculate overlaps be-
tween the molecular eigenstate (lower energy state in
Fig. 5(b)) in the CM-rel basis and the atomic wave
functions given by products of harmonic oscillator func-
tions Ψ(xA, xB) = ψηA(xA)ψκB(xB), where η and κ rep-
resent band indices for the atomic wave functions. The
square modulus of this quantity is precisely the probabil-
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ity PA(B)→M. In figure 5(c) we show these overlaps as a
function of interaction strength g for KRb. The dashed
lines are the overlap between the excited molecular state
and the atomic state ψ1

A(xA)ψ0
B(xB), while the solid lines

are the overlap with the atomic state with the B atom
in the excited motional state, and black (orange) colors
denote inclusion (exclusion) of the CM/relative coupling.
Without CM/relative coupling, the relative weights onto
the two atomic excitations is given roughly by the mass
ratio, ≈ 1/3, 2/3 in the case of KRb. However, strong
CM/relative mixing in the KRb system means that the
excited molecular state correlates to almost pure Rb ex-
citation for weak interactions. Figure 5(d) shows a simi-
lar calculation for LiCs molecule. Here the dashed lines
show the overlap between the molecular state in the first
excited band and the Cs atom being excited, while the
solid lines are the corresponding quantity with Li atom
in the first excited band. The mass ratio for Li/Cs im-
plies that the excited molecular state consists of almost
pure Cs excitation even without CM/relative coupling.
Additionally, the LiCs system displays a weaker coupling
of the CM and relative coordinates.

V. STIRAP ADIABATICITY AND
HIGHER-BAND TRANSFER

Feshbach molecules are converted into ground state
molecules via a two-photon STIRAP sequence involving
an intermediate electronically excited molecular state.
As the STIRAP process must remove ∼ 100 THz of
molecular energy, the difference of the wavevectors of the
two photons involved in the STIRAP sequence, denoted

by ~ku and ~kd, can have significant variation on the lattice
scale of a few microns. The resulting momentum transfer
can excite the resulting ground state molecules to higher
lattice bands. Here, we investigate the adiabaticity of
the STIRAP procedure, as well as the rate of transfer of
molecules to higher bands.

We consider a STIRAP process which couples the Fesh-
bach molecule (FBM) (|f〉) and ground molecular (GSM)
|g〉 states through an excited level (|e〉) [35]. We assume
that these are the only states involved and neglect the
population of other molecular levels or atomic scatter-
ing states during the STIRAP. To match current ex-
periments, we study the case of vanishing single- and
two-photon detunings. Using adiabatic perturbation the-
ory [37, 38], as described in the appendix, we find that
the momentum transfer following the process |f〉 → |g〉
has the same form as the case of large single-photon de-

tuning, ∝ ei(
~ku−~kd)·~r. Typical STIRAP linewidths are

∼ 200kHz, significantly greater than the ∼ 20kHz spac-
ing between bands, and so the band structure is fully
unresolved. Thus, the relative population of molecules in
the different bands following STIRAP are determined by
ratios of Rabi frequencies in the basis of Wannier states
with band index n. We use wn(~r) and w̄n(~r) to denote
the Wannier states for FBM and GSM, respectively. For

FBM in the lowest band, the relative population of GSM
in the first excited band along the direction ξ can thus
be estimated by

∣∣∣∣ 〈w̄1|eikξξ|w0〉
〈w̄0|eikξξ|w0〉

∣∣∣∣2 ≈ 2(kξa)2α̃

π2(1 + α̃)2
√
V/ER

, (6)

where we have used a harmonic approximation for the

Wannier functions, with kξ ≡ (~ku − ~kd) · ~ξ the momen-
tum transfer along direction ξ, a the lattice spacing, α̃
the polarizability ratio of the GSM to the FBM, V the
lattice depth for the FBM, and ER the molecular recoil
energy. For the parameters of the JILA experiment [1],
a = 532 nm, ku = 2π/(968 nm) and kd = 2π/(689 nm)
co-propagating at a 45◦ angle with respect to the x and
y lattice axes, and α̃ ≈ 0.9, we find the total population
in the first excited bands to be ∼ 1%. In general, our
results indicate that for experiments in the Lamb-Dicke
regime kξa/(V/ER)1/4 � 1, STIRAP does not induce
appreciable population transfer to excited bands.

In conclusion, we studied the combined effects of inter-
species interactions, temperature, and adiabatic loading
on the successful preparation of a low entropy gas of polar
molecules. We have shown that interspecies interactions
have have a significant effect on the final temperature
of the lattice gas following adiabatic loading, which in
turn can lead to the depletion of the peak filling of the
bosonic species and a lower efficiency of molecule forma-
tion. Based on our results, molecule formation efficiency
is greatest when the lattice loading is performed with a
non-interacting mixture. This does not agree with previ-
ous studies, which do not treat the adiabatic loading pro-
cedure and find that attractive interspecies interactions
enhance the on-site densities. We observe that the latter
statement only holds if the gas is initially prepared at
significantly lower temperatures than the ones currently
reached in experiments: for the parameters considered in
this work around T/TF . 0.05, which translates in final
temperature after loading is Tfin/JA . 5
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Appendix A: Appendix: Adiabaticity of the
STIRAP procedure

Stimulated Raman adiabatic passage (STIRAP) is a
commonly used procedure to convert Feshbach molecules
(FBM), formed following a magneto- or photo-assocation
step, to ground state molecules (GSM). The STIRAP
sequence couples the FBM (|f〉) and the GSM (|g〉) states
through an intermediate excited molecular state, |e〉. In
the most commonly employed “counter-intuitive” pulse
sequence, the time-dependent Hamiltonian describing the
system is

H = ∆|e〉〈e|+ Ωt/τ
(
ei
~ku·~r|e〉〈f |+ h.c.

)
+ Ω(1− t/τ)

(
ei
~kd·~r|e〉〈g|+ h.c.

)
, (A1)

where ~ku and ~kd are the wave vectors of the two pho-
tons in the STIRAP sequence and ∆ is the single-photon
detuning. While for large ∆ the intermediate |e〉 can
be adiabatically eliminated in favor of a direct two-

photon coupling ∝ Ω2

∆ ei(
~ku−~kd)·~r from |f〉 to |g〉 and

standard Landau-Zener estimates can be used, current
experiments use ∆ = 0, where the degree of adiabatic-
ity and momentum transfer are less clear. We there-
fore treat ∆ = 0, where current experiments operate,
using adiabatic perturbation theory (APT) [37, 38]. In
this approach, we expand the wavefunction as |ψ(t)〉 =∑
n αn(t)e−iaθn(λ)|φn(t)〉, where |φn(t)〉 are the adia-

batic basis states satisfying H(t)|φn(t)〉 = En(t)|φn(t)〉,
a = Ωτ is the adiabatic parameter, λ = t/τ , and

θn(λ) =
∫ λ

dλ′En(λ′)/Ω is the dimensionless geometric
phase. Expanding the solution of the differential equa-
tions satisfied by the {αn} to lowest order in τ−1, we find
analytic expressions for αf,e,g(λ),

αf (λ) =
1− λ√

b
+
λ sin(aθ1(λ))

ab2
, (A2)

αe(λ) = − i
a

(
1− cos(aθ1(λ))

b

)
, (A3)

αg(λ) = ei(
~ku−~kd)·~r

×
[
− λ√

b
+

(1− λ) sin(aθ1(λ))

ab2

]
, (A4)

where b = 1 + 2λ(λ− 1). For completeness, we note that
θ1 (λ) can be determined analytically to be

θ1 (t) =
a

4

[
1 + (2λ− 1)

√
b

+
1√
2

(arcsinh (1)− arcsinh (1− 2λ))

]
,

(A5)

and so the above expressions provide fully analytic es-
timates for the degree of adiabaticity. The results of a
numerical simulation of the STIRAP process for reason-
able experimental parameters Ω = 5MHz, τ = 6µs are
shown in Fig. 6 (yellow), together with the residual error
of the first-order expressions Eqs. (A2)-(A4) (blue).
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FIG. 6. (Color online) Populations of the Feshbach molecule,
excited, and ground states during the STIRAP sequence with
Ω =5MHz and τ = 6µs (yellow), together with the residual
of the first-order expressions Eqs. (A2)-(A4) (blue).
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