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For a quantum system controlled by an external field, time-optimal control is referred to as the shortest
time duration control that can still permit maximizing an objective function J, which is especially a desirable
goal for engineering quantum dynamics against decoherence effects. However, since rigorously finding a time-
optimal control is usually very difficult, and in many circumstances the control is only required to be sufficiently
short and precise, one can design algorithms seeking such suboptimal control solutions for much reduced
computational effort. In this paper, we propose an iterative algorithm for finding near time-optimal control in a
high level-set (i.e., the set of controls that achieves the same value of J) that can be arbitrarily close to the global
optima. The algorithm proceeds seeking to decrease the time duration T with the value of J remains invariant,
until J leaves level-set value; the deviation of J due to numerical errors is corrected by gradient climbing that
brings the search back to the level-set J value. Since the level-set is very close to the maximum value of J, the
resulting control solution is nearly time-optimal with manageable precision. Numerical examples demonstrate
the effectiveness and general applicability of the algorithm.

PACS numbers:

I. INTRODUCTION

When quantum systems are complex, or when they
are exposed to unwanted environments, control theory
provides powerful tools for improving the performance
of quantum operations [1]. Over the past few decades,
considerable successes have been achieved in the
control of atomic, molecular, optical, and solid-state
quantum systems [2–6]. Since quantum operations are
only effective within the coherence time, the control
needs to either prolong the coherent dynamics via
dynamical decoupling [7, 8] or feedback [9] strategies,
or be performed as rapid as possible [10–12]; the latter
circumstance poses the quantum time-optimal control
problem. Based on Pontryagin’s Maximum Principle
[13–16], geometric analysis shows that the minimal
time is mainly determined by the evolution speed of the
drift Hamiltonian when the controls are unbounded.
Such time-optimal gate control solutions have been
found for 1-qubit, 2-qubit, and some special 3-qubit
systems [17, 18]. Cases with bounded controls are
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far more complex, and only for several special cases
have analytical [19–27] or partially analytical [28, 29]
solutions been found.

Under most circumstances, quantum time-optimal
control problems can be numerically solved by
minimizing the time duration while maintaining the
objective function J at the maximum value (e.g., gate
fidelity). To first maximize the objective function J
with fixed T , the genetic algorithm [30], the monotonic
iterative algorithm [31], the Krotov algorithm [32], the
gradient algorithm [18], and the hybrid algorithm [33]
are introduced for the search of optimal controls. To
further shorten the control time, a natural approach
is to gradually decrease T and apply the algorithm
maximises J for each fixed T until the desired control
precision can no longer be attained [18, 34]. One can
also take the time duration as a control variable and
design ‘free-time and fixed-endpoint’ algorithms, by
which the time duration and the control error can be
decreased [35–37] in presence of trade-offs with other
penalty functions (e.g., field fluence).

Although the optimization of J itself with fixed T
is generally very efficient [38–41], the search for a
precise time-optimal control is much more expensive



due to its bi-objective nature and potential existence
of traps at reduced value of J [33, 34]. However, as
will be shown in this paper, the search for minimum-
time solutions is relatively easy if J is allowed to
be slightly lower than its maximal value. Such a
control is nearly time-optimal because both J and the
corresponding optimal time are very close to their
ideal optimal values. From an engineering point
of view, this solution is likely acceptable because
control precision is usually limited by the tomography
and pulse shaping techniques (e.g., the fidelity of
tomography experiments is seldom above 99%), and it
makes no substantial difference when the control time
is slightly prolonged. Therefore, it is worth designing
algorithms for finding such control protocols that can
be computationally much cheaper.

This paper will present a two-stage level-set based
algorithm (LS Algorithm) seeking near time-optimal
control solutions. The algorithm will first climb to
a level-set, which is referred to as the set of control
functions corresponding to a fixed value of J, then find
a highly efficient path toward minimum-time control
in this level-set until a satisfactory solution is found.
The paper is organized as follows. In Sec. II, we
define the time-optimal and near time-optimal control
problems for quantum systems. In Sec. III, we present
the strategy and details of the algorithm, which is then
illustrated by examples in Sec. IV. Finally, we draw
conclusions in Sec. V.

II. TIME-OPTIMAL CONTROL PROBLEMS

Consider an N-dimensional quantum control system
whose unitary propagator U(t) obeys the following
Schrödinger equation

d
dt

U(t) = −i

H0 +

m∑
k=1

uk(t)Hk

 U(t),

U(0) = I, t ∈ [0,T ],

(1)

where the free Hamiltonian H0 and the control
Hamiltonians Hk’s are Hermitian operators in the
underlying Hilbert space (the common constant ~ has
been absorbed into the Hamiltonians), and the system

is manipulated by the multiple control functions
u1(t), u2(t), · · · , um(t) that act during the time interval
t ∈ [0,T ].

Time-optimal control problems are always
associated with an objective J as a function of
the controls. For example, in quantum information
processing, we have

J1 = N−1ReTr
[
W†U(T )

]
, (2)

where Re(·) denotes the real part of a complex number,
for implementing a target unitary evolution W at time
T ; or

J2 = Tr[U(T )ρ0U†(T )O] (3)

for maximizing the expectation value of the quantum
observable O, where ρ0 is the initial density matrix.

In numerical simulations, we discretize the whole
time interval [0,T ] into M steps at points

t j = T ·
j

M
, j = 1, · · · ,M,

and take the values of uk j , uk(t j) at these time
instances as the control variables:

u , [u11, · · · , u1M , · · · , um1, · · · , umM]. (4)

Considering T as an additional control variable, the
objective J is a function of the (mM + 1)-dimensional
vector x = [T,u].

For convenience, we denote the set of control
vectors

L(J = J0) = {x : J(x) = J0, T ≥ 0}

that achieve the same value of J, and term it as the
level-set at J = J0. Then, a control vector x is said to
be time-optimal if it is in the highest level-set L(J =

Jmax), where Jmax is the maximal value of J, and its
corresponding T is minimal among all control vectors
in L(J = Jmax); a control vector x is near time-optimal
if it belongs to a slightly lower level-set L(J = JH),
where JH . Jmax, and its corresponding T is minimal
among all control vectors in L(J = JH).
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III. THE ALGORITHM FOR SEARCHING NEAR
TIME-OPTIMAL CONTROLS

In this section, we present the two-stage iterative
algorithm for seeking a near time-optimal control
vector.

A. Basic concepts

Since the objective function J depends on both
T and u, one could follow the gradient dJ/dx to
maximize J, during which T and u are simultaneously
updated. However, there is no guarantee that T
will always decrease in this process (i.e., ∂J/∂T <

0); even if T can be decreased, the search may be
trapped at a non-time-optimal solution (i.e., especially
in the regime when near minimal value of T becomes
a limiting resource), or the search may cease at a
negative value of T that is physically unacceptable.

To reconcile the desires of increasing J and
decreasing T , one can start from some sufficiently
large T and look for the solution that maximizes J,
then design an algorithm to only decrease T without
lowering J. Due to the vanishing of gradient vector,
full realization of this procedure requires that the
Hessian of J be calculated at the achieved maximum
value, which can be computationally expensive.
However, the search for a near time-optimal control
in a slightly lower level-set can be much more efficient
because one can make use of the gradient vector that is
still dominant. In this regard, we propose the following
two-stage iteration strategy:

Stage 1 Fix T and use the gradient vector dJ/du to
increase J with an arbitrary gradient-based algorithm
(possibly with constrains on the control field), until J
reaches a prescribed high value J = JH .

Stage 2 Choose a direction ∆x to update x, along
which T decreases most rapidly in the level-set L(J =

JH). Considering the inevitable numerical errors in
executing the algorithm, we return to Stage 1 to bring
the search back to the level-set L(J = JH) when J
drops to a prescribed lower bound J = JL.

As schematically illustrated in Fig. 1, we keep

shortening the time duration T by iteratively repeating
the above two-stage processes. The procedure
continues until the objective J can no longer be
maintained at J = JH . Then the resulting T is the
minimal time required for reaching the level-set L(J =

JH), and the corresponding u is called a near time-
optimal control vector. If one wishes to find the control
in a very high level-set, the Hessian may need to be
taken into account, whose null space can be used to
refine x further; the present paper does not take this
last step.

Note that since the gradient-based algorithm is local,
there is no guarantee that searches from any initial
guesses will lead to the desired near time-optimal
solutions (i.e., shrinking T may significantly constrain
the search when x enters a regime where the action of
the drift Hamiltonian is encroached). Nevertheless, as
shown later in examples, near time-optimal solutions
can usually be found. Even if a less than best Tmin is
obtained, the resulting control solution is still useful
in practice since it can effectively reduce the time for
control.

B. Optimal choice of 4x

Suppose that the current value of the control vector
is x = c ∈ L(J = JH), and we look for the direction
along which T decreases most rapidly and J = JH

remains invariant. Let ∇J(c) be the gradient vector of
J with respect to x at c, whose explicit expressions are
given in Appendix A. To keep the search in the level-
set L(J = JH), the algorithm should iterate along a
direction 4x that is orthogonal to∇J(c). The first-order
Taylor expansion in a small neighborhood of c gives

J(c + 4x) ≈ J(c) + (∇J(c))ᵀ4x. (5)

Let S be must the mM-dimensional hyperplane that is
orthogonal to ∇J(c) and denote by

P = I − (∇J(c))(∇J(c))ᵀ/‖ ∇J(c ‖2 (6)

the projector onto S. Then, 4x can be written as

4x = Pk, (7)
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FIG. 1: (Color online) (a) Schematic of the proposed
algorithm. The search is initially guided in Stage 1 by a
standard gradient algorithm with a fixed T to reach the level-
set L(J = JH). Then, T is changed in Stage 2 along an
optimal direction aiming to decrease T as fast as possible
while staying in the level-set L(J ≈ JH). When J decreases
to the lower limit JL due to numerical errors, the standard
gradient algorithm is restarted to bring the search back to
L(J = JH).

where k is an arbitrary vector to be determined below.
Since the first entry of 4x represents the decreasing

speed of T , 4x∗ should be chosen such that

eᵀ4x∗ = min
k

(eᵀ4x) = min
k

(
(Pe)ᵀk

)
, (8)

where e = [1, 0, · · · , 0]T . Thus

4x∗ ∝ P(−Pe) = −Pe, (9)

which means k must be antiparallel with Pe.
Substituting (6) into (9), we obtain the optimal
direction

4x∗ ∝ −e +
eᵀ∇J(c)
‖ ∇J(c) ‖2

· ∇J(c). (10)

As indicated in Fig. 1, the expression (10) reveals
that the optimal direction 4x∗ is a weighted linear
combination of −e and the gradient ∇J(c). The
component −e is responsible for reducing the time
duration T towards a near time-optimal control vector,

C1 C2 C3 C4 C5 C6

C1 17662
C2 53.9 5382.4
C3 0.8 33.96 4006.7
C4 2.47 0 33.96 2435.8
C5 0 3.03 0 34.73 2216.6
C6 0 2.42 0 34.93 0 2105.8

TABLE I: The chemical shifts δkω0/2π (diagonal elements,
in unit of Hz) and coupling strengths J jk (off-diagonal
elements, in unit Hz) of the carbon spins in D-Norleucine
(CAS NO: 327-56-0). The data are experimentally obtained
and provided by University of Science and Technology of
China (unpublished).

but merely along this direction the iteration will be
steered off the level-set L(J = JH). The combination
with the component ∇J(c) compensates to keep J =

JH in the level-set; the compensation will be more
effective if the Hessian can be taken into account of
(we will not consider it in this paper). Thus, the search
following this direction shortens T and maintains J
at the same time, and hence is expected to be more
efficient than merely reducing T or climbing along the
gradient direction.

IV. NUMERICAL IMPLEMENTATION

In this section, we apply the algorithm to gate and
state operations in nuclear magnetic resonance (NMR)
systems that are often used for testing quantum control
protocols [42, 43].

A. System parameters

We pick several examples from the six homonuclear
carbon spins in the D-Norleucine molecule, which are
encoded as qubits for NMR quantum computation.
The system’s Hamiltonian reads [29]

H = H0 + u1(t)Hx + u2(t)Hy, (11)

where u1(t) and u2(t) are the controls implemented by
radiofrequency magnetic fields, which satisfy u2

1(t) +
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u2
2(t) ≤ 1. Consider m spins of the six and ignore (or

decouple) their couplings to the remaining spins. The
drift and control Hamiltonians are as follows:

H0 = ~
m∑

k=1

δkω0S k
z (12)

+2π~
∑

1≤ j<k≤m

J jk(S j
xS k

x + S j
yS k

y + S j
zS k

z ),

Hx,y = −~Ω
m∑

k=1

(1 − δk)S k
x,y, (13)

where

S k
x,y,z =

1
2

I⊗(k−1)
2 ⊗ σx,y,z ⊗ I⊗(m−k)

2

are spin operators act on the k-th spin, ⊗ represents the
Kronecker product, σx,y,z represent the standard Pauli
operators. The chemical shift δkω0 of each spin and J-
coupling constants J jk between them are listed as the
diagonal and off-diagonal elements in TABLE I. The
parameter Ω is the bound on the amplitude of control
fields.

B. Two-qubit and multiple-qubit gate optimization

First, we consider m = 2 for a two-spin example
with C1 and C2, and seek the time-optimal control
for implementing a selective π

2 rotation on spin C1,
which corresponds to maximization of J1 with W =

exp (−i π2 S x) ⊗ I2.
We begin with Tinitial = 200µs and divide it into M =

250 steps. Starting from a random field as the initial
guess, we obtain the optimization result (the red line)
shown in Fig. 2(a) with error thresholds (1 − JH) =

1 × 10−4, (1 − JL) = 1.1 × 10−4. The search ceases at
Tmin = 154.9µs with error (1 − J1)= 1.07 × 10−4 after
about 8000 iterations.

As displayed in Fig. 2(a), T decreases quickly in the
first 500 iterations during which it is relatively easy
to stay in the level-set L(J = JH), then more and
more iterations are required for corrections. To verify
whether the Tmin we obtained is the genuine minimum
time duration, we test three other initial guesses (2
random fields and a null field), from which all of the
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FIG. 2: (Color online) (a) The iterations for searching
near time-optimal controls using the algorithm for the gate
control over C1 and C2 spins with error thresholds [1 ×
10−4, 1.1 × 10−4]. Starting from differential initial guesses,
in all simulations T converges from Tinitial = 200µs to
Tmin = 154.9µs (pink). (b) The numerically solved Tmin

under different bounds on the field amplitude Ω (blue box)
with fidelity above 0.9999, which approaches to Tgeodesic =

20.4µs when Ω is larger.

searches converge to the same Tmin but at different
convergence rates. In particular, the case of null field
takes more than twice the number of iterations of the
first case (red) to reach Tmin.

To test how close our method can find a minimum
time-optimal control, we raised the control amplitude
Ω from 30kHz to 300kHz. As analyzed in [29],
the theoretical minimal time Tmin is supposed to
approach to Tgeodesic = 20.4µs calculated by Eq. (14)
in [29] when Ω is sufficiently large. We apply the
algorithm with different control bounds Ω and depict
corresponding minimal times in Fig. 2(b). It shows that
Tmin does approach to the theoretical limit Tgeodesic =
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20.4µs when Ω goes to infinity (e.g., Tmin = 25.1µs
when Ω = 300kHz). This demonstrates that our
algorithm is capable of finding the true time-optimal
control fields in this case.

To explore more complex structures, we simulate
a 4-spin example with spins C1, C2, C3 and C4, and
seek time-optimal control for implementing a selective
π
2 rotation W = exp (−i π2 S x) ⊗ I8 on spin C1. We begin
with Tinitial = 1000µs and divide it into M = 1000
steps. Starting from random fields as initial guesses,
we obtain the optimization results (the blue and red
lines) shown in Fig. 3 with error thresholds (1 − JH) =

1 × 10−3, (1 − JL) = 1.1 × 10−3. The search ceases at
Tmin = 474.1µs with error (1 − J1)= 1.04 × 10−3 after
about 10000 iterations. However, as shown in Fig. 3,
the search appears less efficient when it starts from
the other two randomly chosen initial guesses (the
pink lines), which reveals the increasing complexity
in the control Pareto behavior of large-number qubit
systems. This shows that not only the dimensionality
but also the potential traps for the search will increase
the search effort as T is limited at a control resource.
In such cases, one needs to more carefully choose the
initial guess for T and u, or develop better strategies
for scanning over possible initial guesses [33].

C. Observable control optimization and comparison to
other algorithms

In this case, we apply the algorithm to the objective
function J2 to maximize the expectation value of the
observable O, and compare our algorithm with another
time-optimal control procedure.

We simulate a two-spin example (C1 and C2) with
the following initial state and observable:

ρ0 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , O =


1−i
2 0

√
2i

2 0
0 0 0 0
−
√

2i
2 0 1+i

2 0
0 0 0 0

 . (14)

It can be verified that the maximal value of J2 is Jmax =

1.
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FIG. 3: (Color online) The searches for near time-optimal
controls for the gate control over C1, C2, C3, and C4 spins
with error thresholds with error thresholds [1 × 10−3, 1.1 ×
10−3]. The three curves correspond to three different initial
guesses, and in the best case T decreases from Tinitial =

1000µs to Tmin = 474.1µs after 10000 iterations (blue/red).

We begin with Tinitial = 60µs and divide it into
M = 100 steps. Starting from a random field as the
initial guess, we obtain the optimization result (the red
line) shown in Fig. 4(a) with error thresholds (1−JH) =

1 × 10−6, (1 − JL) = 1.1 × 10−6. The search ceases
at Tmin = 58.18µs with error (1 − J2)= 1.00 × 10−6

after about 20000 iterations. Fig. 4(b) shows the
corresponding time-optimal control functions. The
green line represents the constrain of the control
amplitude, which is shown at highest level at all
time. It could be taken as the feature of time-optimal
solutions.

We then compare the proposed LS algorithm with
an existing algorithm in the literature [18, 34], which
decreases T step by step by a fixed size ∆T . Fig. 4(a)
shows the results with step size ∆T = 0.01µs and
∆T = 0.1µs, respectively. For the bigger step size
4T = 0.1µs, T decreases faster than our algorithm in
the first 5000 iterations, but slower in the last 25000
iterations, and finally ceases at T = 58.2µs after 25000
iterations (light gray, lower); for the smaller step size
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FIG. 4: (Color online) (a) The searches for near time-optimal
controls for the observable control over C1 and C2 spins
with error thresholds [1 × 10−6, 1.1 × 10−6]. T decreases
from Tinitial = 60µs to Tmin = 58.18µs after 20000 iterations
(our algorithm; red); Tmin = 58.20µs after 25000 iterations
(4T = 0.1µ; light grey); Tmin = 58.35µs after 30000
iterations (4T = 0.01µ; light blue). (b) The optimal control
functions u1(t) (red, right), u2(t) (blue, left) in the 2-qubit
observable control example. Each vertical line represents a
value of control variable uk(t j), and the green line shows the
numerical result of u2

1(t j) + u2
2(t j) at different t j.

4T = 0.01µs, T decreases so slow that no satisfying
value can be obtained within 30000 iterations (light
blue, upper). Thus, the LS algorithm achieves overall
good performance with more rapid convergence, and
higher final precision under the same computational
burden.

V. CONCLUSION

To summarize, we present a level-set based
iterative algorithm for searching near time-optimal
controls of quantum systems. Operating near the
prescribed level-set, the algorithm seeks high-quality
time-optimal solutions by continuously updating the
control functions and intermittently decreasing the
time duration, in which the search are able to follow
the optimal direction which takes care of both the
fidelity J and the time duration T . Numerical examples
show that the algorithm can quickly find near time-
optimal solutions for both gate and observable control
problems. The central idea of searching in high level-
sets can be generalized with other local optimization
algorithms with fixed T , and the control profiles can
be further smoothed and optimized with advanced
algorithms such as the hybrid procedure proposed in
[33], so as the quality and robustness of the time-
optimal control can be improved.

In principle, the proposed algorithm can also be
applied to open quantum systems with non-unitary
dynamics. However, it is not always easy to determine
a proper high level-set that is reachable by admissible
controls. Moreover, due to the complexity of the
open system dynamics, we expect that the search
will encounter more traps than the case of unitary
dynamics. Nevertheless, since unitary dynamics is
often a good approximation of open system dynamics
within a short time interval, we can reasonably
consider the unitary case under most circumstances.
Even if the unitary approximation is not adequate,
we can still use the obtained time-optimal control
as an initial guess for optimization with non-unitary
dynamics.
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Appendix A: The Gradient formulas

For convenience, we denote

U j = V jV j−1 · · ·V2V1, j = 1, 2, · · · ,M,

where

V j = exp

−i

H0 +

m∑
k=1

uk jHk

 T
M

 .
When T

M is sufficiently small, we have [18]

∂V j

∂uk j
≈ −

iT
M

HkV j,

∂V j

∂T
= −

i
M

H0 +

m∑
k=1

uk jHk

 V j.

Using the above results we obtain the total derivative
of U(T ) = UM with respect to x

∂U(T )
∂uk j

= −
iT
M

U(T )U†j HkU j,

∂U(T )
∂T

= −
i

M

M∑
j=1

U(T )U†j

H0 +

m∑
k=1

uk jHk

 U j.

The above formulas can be directly applied to
objective functions (2) and (3) to obtain the following
gradient formula:

∂Ji

∂uk j
=

T
M

Im
(
Tr

(
DiU

†

j HkU j

))
,

∂Ji

∂T
=

1
M

M∑
j=1

Im

Tr

DiU
†

j

(
H0 +

m∑
k=1

uk jHk

)
U j

 ,

where Im(·) denotes the imaginary part; i = 1, 2; k =

2, · · · ,m, and j = 1, · · · ,M with

D1 = W†UM ,

D2 = [ρ0,U
†

MOUM].
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