
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Temporal interferences driven by a single-cycle terahertz
pulse in the photodetachment dynamics of negative ions

B. C. Yang and F. Robicheaux
Phys. Rev. A 92, 063410 — Published 10 December 2015

DOI: 10.1103/PhysRevA.92.063410

http://dx.doi.org/10.1103/PhysRevA.92.063410


Temporal interferences driven by a single-cycle terahertz pulse in the

photodetachment dynamics of negative ions

B. C. Yang and F. Robicheaux∗

Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA

We present theory and calculations of a real-time-domain interferometry for the photodetachment
dynamics of negative ions in the presence of a single-cycle terahertz pulse. The photoelectron can
follow two or more classical trajectories to arrive at a detector simultaneously allowing the electron
waves to interfere quantum mechanically. Both the inphase and antiphase oscillations can be ob-
served in the photoelectron interferences from negative hydrogen and fluorine ions depending on the
pulse strength and the observing angle. Especially, a temporal-caustic bifurcation is observed when
the detection angle is not in the line with the pulse polarization direction. Similar interferences and
bifurcations are also expected in the angle-resolved energy spectrum, as a result of its approximate
equivalence with the time-dependent electron flux at large distances.

PACS numbers: 32.80.Gc, 31.15.xg

I. INTRODUCTION

One of the significant achievements in terahertz (THz)
techniques is the routine generation of a single-cycle THz
pulse, representing a limiting oscillation cycle of the elec-
tric field in a propagating pulse. Compared with the
more usual multi-cycle pulses, it has several fundamen-
tally different but useful characteristics, including a dif-
ferent energy-transfer mechanism, a non-zero spatial dis-
placement of a free charge, and also a one-directional mo-
mentum transfer. For example, single-cycle THz pulses
have found applications in manipulating the alignment
and orientation of polar molecules[1, 2]. Recently, they
have also been used to explore the field ionization of Ry-
dberg atoms, where a new threshold behavior was discov-
ered along with other interesting phenomena[3–5]. Here,
we demonstrate its possible applications in modulating
and controlling the photodetachment dynamics of neg-
ative ions by analyzing the electron dynamics and the
temporal interferences caused by a single-cycle pulse.

The present idea of applying a single-cycle THz pulse
in the photodetachment process originates from tradi-
tional photodetachment microscopy which has been and
is still the most accurate instrument for measuring the
atomic affinity. In photodetachment microscopy[6, 7],
a static electric field is used to project the photoelec-
tron towards a detector located at a macroscopic dis-
tance (∼ 0.5m) from the photodetachment zone. A spa-
tial interference pattern can be observed on the detec-
tor and can be interpreted as quantum interferences be-
tween electron waves propagated along different classi-
cal trajectories[8–10]. A similar idea has also been im-
plemented for neutral atoms, known as photoionization
microscopy[11]. These direct-imaging techniques have
achieved great successes in recent years for visualizing
the electron wave function in atoms or ions[12–14]. In

∗Electronic address: robichf@purdue.edu

contrast with traditional photodetachment (or photoion-
ization) microscopy with a static electric field, the cur-
rent availability of a single-cycle pulse provides an oppor-
tunity to observe electron interferences in the real time
domain. In this work, we only focus on the photodetach-
ment dynamics of negative ions. For the photoionization
of neutral atoms, the essential physical picture is similar,
and the theoretical methods developed here can be easily
extended by including the long-range Coulomb potential.

As illustrated in Fig. 1 for a weak single-cycle pulse,
there are two trajectories contributing to each time tf
when the electron arrives at the detector. One is gen-
erated earlier in the photodetachment process and the
other later, indicated by the dotted lines in Fig. 1(a)
and (b). The associated electron waves interfere with
each other as a result of the different quantum phases
accumulated by the electron moving along these two tra-
jectories. Two examples of the interference pattern are
shown in Fig. 1(c) and (d), respectively, for the hydro-
gen (H−) and fluorine (F−) negative ions. Moreover, the
amplitude of a single-cycle THz pulse can easily reach
several tens of kV/cm in a table-top experiment. With
a stronger driving pulse, the electron dynamics becomes
more complicated but much more interesting: more than
two trajectories may arrive at a detecting point simulta-
neously, and the temporal caustic as in Fig. 1(a) expe-
riences a bifurcation by varying the observing angle. As
a consequence, both the inphase and antiphase oscilla-
tions can be observed between the temporal interference
spectra from H− and F−, reflecting the different angular
distribution of the initially outgoing electron wave.

Furthermore, our studies may also provide further in-
sight in understanding the electron dynamics in an in-
tense driving laser field which is usually encountered in
strong field and ultrafast physics. In our present system,
the electron is ejected from a negative ion by absorbing
one photon from a weak laser field while, in strong field
and ultrafast physics, the initial electron wave is usually
generated through the strong-field tunneling process[15],
or launched by a series of attosecond pulses[16], or just
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FIG. 1: (Color online) Demonstration of the temporal inter-
ferences caused by a single-cycle THz pulse with a maximum
field strength of 2kV/cm. (a) tf vs ti with tf defined as
the time when the electron arrives at a detector located at
(rf = 0.5m, θf ). (b) The unipolar momentum transfer from
the THz pulse to an electron generated at a certain initial
time ti in the photodetachment process. The detection angle
θf could be changed as in the graph, and the angle-resolved
interference patterns are shown in (c) and (d) for H− and F−,
respectively, from quantum simulations with the electron ini-
tial kinetic energy E0 ≈ 0.1454eV . The relative intensity of
the electron flux is given by a color bar in the right bottom.

using an ultrashort electron pulse[17]. However, except
for the details of various electron sources, the subsequent
electron propagation after its generation is quite simi-
lar between different systems, mainly determined by the
time-dependent vector potential of the driving field. The
semiclassical formulae used in the present work allow us
to propagate the electron wave exactly following classi-
cal trajectories in the augmented phase space, thus pro-
viding a clear physical picture for the embedded elec-
tron dynamics in the temporal interference spectra. The
semiclassical spectra calculated in this way are quanti-
tatively accurate as verified by comparing with quantum
simulations. Although the time-dependent electron flux
is specifically calculated in our current work, it is estab-
lished that the temporal flux at large distances is approxi-
mately equivalent to the angle-resolved energy spectrum.

The remainder of this paper is organized as follows.
In Sec. II, we give a brief description of the photoelec-
tron generation process, and discuss the different classi-
cal electron dynamics expected in the single-cycle driving
field. In Sec. III, both the quantum and semiclassical
propagation methods are described in detail. The differ-
ent temporal interference structures are analyzed in Sec.
IV, as well as the temporal-caustic bifurcation and its
related physical observations. A brief conclusion is given
in Sec. V. Atomic units are used throughout this work
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FIG. 2: (Color online) (a) Field configurations for the present
system. The gray curve and the solid red line represent the
weak laser field and the single-cycle THz pulse, respectively,
divided by their corresponding field amplitudes. tw = 0.5ps.
The oscillation feature of the laser field is not distinguishable
as a result of its much higher frequency than the THz pulse.
(b) Example calculations for the time-dependent electron flux,
corresponding to the interferences shown in Fig. 1(c) and (d)
with θf = 0. The dotted line is calculated by the semiclassical
propagation method. The solid and the dashed curves are
computed by directly solving the time-dependent Shrödinger
equations for H− and F−, respectively.

unless specified otherwise.

II. ELECTRON DYNAMICS

A. Photoelectron generation by a weak laser field

The considered atomic negative ion (H− or F−) is in-
teracting simultaneously with a weak laser field and an
additional single-cycle driving pulse. Since the electric
field of the single-cycle pulse varies much slower than the
detachment laser field(Fig. 2(a)), the whole photode-
tachment process can be approximately divided into two
steps: first, the photoelectron is generated from the neg-
ative ion by absorbing one photon from the laser field,
and then the subsequent electron dynamics will be dom-
inated by the single-cycle THz pulse. In addition, the
currently available single-cycle pulse as in Ref. [3] is too
weak to do anything to a negative ion in the ground state.
However, it can strongly modify the electron dynamics
once the electron is launched into the continuum by a
weak laser. In this subsection, we first outline several
theoretical aspects related to the initially photoelectron
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generation process in a weak laser field.
The theoretical model has been well established for

one-photon photodetachment by a weak laser field[10,
18]. The generated electron wave at an initial time ti
can be formally written as ψ(r, ti) = ψout(r) exp(−iE0ti)
with the time-independent part ψout(r) satisfying the fol-
lowing inhomogeneous Schrödinger equation,

(E0 −Ha)ψout(r) = Dϕi , (1)

where E0 denotes the photoelectron initial kinetic energy,
and D is the dipole operator. For the linearly-polarized
laser along the z-axis, D = z. Ha is the atomic Hamil-
tonian including the short-range potential, and ϕi rep-
resents the initial bound state. The electron goes into a
spherically outgoing wave,

ψout(R, θi, φi) = C(k0)Ylm(θi, φi)
eik0R

R
, (2)

when the radius R satisfies

1√
2E0

≪ R≪ E0

Fm
(3)

with Fm denoting the field amplitude of an applied single-
cycle pulse. The right-hand side restriction in Eq. (3)
is added by considering an applied external field like a
single-cycle pulse interested here, which requires the ap-
plied field strength Fm to be not larger than k30/2 with
k0 =

√
2E0, therefore guaranteeing that the external

field does not distort the initially outgoing wave obvi-
ously. R, θi and φi in Eq. (2) are spherical coordinates
of the electron relative to the rest atom; C(k0) is a com-
plex coefficient dependent on the photoelectron energy
E0, and Ylm(θi, φi) is the spherical harmonic function
representing the initial angular distribution of the gen-
erated electron wave. The photodetachment of H− gives
an outgoing p-wave with l = 1 and m = 0, while the pho-
todetachment of F− generates an s-wave with l = 0 and
m = 0, where the d-wave is largely suppressed accord-
ing to the Wigner power law near the photodetachment
threshold[19]. Note that the applied laser has been as-
sumed to be linearly polarized along z-axis.
Since our motivation is to study the temporal interfer-

ences induced by a single-cycle THz pulse, a laser pulse
as in Fig. 2(a) is used with a finite duration. In a real
experiment, the laser-pulse duration can be longer than
that in Fig. 2(a), according to the discussions in the fol-
lowing subsection. For simplicity, we assume the laser
field to be turned on and off slowly enough so that the
outgoing wave form in Eq. (2) is still a good approxi-
mation at each time instant. Under this assumption, the
generated outgoing wave at each initial time ti can be
approximately expressed as

ψ0(R, θi, φi, ti) = fL(ti)ψout(R, θi, φi)e
−iE0ti , (4)

with fL(t) representing the slowly varying envelope of an
applied laser field. Specifically, the following laser field

envelope is used in our calculations,

fL(t) =
1

2

[
tanh

(
t− tu
tL

)
− tanh

(
t− td
tL

)]
, (5)

where tu = −2ps and td = 2ps, indicating the time when
the laser field is turned on and off, respectively. tL con-
trols how fast the laser field is turned on and off.
For H−, we choose the photon energy ~ωL = 0.9eV

and tL = 50TL, where ωL and TL denote the laser fre-
quency and its oscillation period, respectively. The gray
curve in Fig. 2(a) depicts the laser pulse divided by its
maximum field amplitude. For F−, the photon energy is
chosen to give an equal electron kinetic energy E0 as for
H−, which makes it possible to compare the final results
for the two negative ions. From the model potentials
adopted in our quantum simulations (see Sec. III for the
details), we obtain the binding energies for H− and F−

to be 0.02773a.u. and 0.125116a.u., respectively. There-
fore, the electron initial kinetic energy E0 = 0.1454eV ,
and the photon energy for F− is about 3.55eV . To make
sure the laser field is turned on and off slowly enough, we
choose tL = 200TL for F−, and the resulted field envelope
is similar to that in Fig. 2(a) for H−.

B. Electron motion in a single-cycle driving pulse

The applied single-cycle pulse is also assumed to be
linearly polarized along the z-axis. The specific profile is
constructed by a Gaussian-shape vector potential[4],

A(t) = −Fmtw√
2
e
− t2

t2w
+ 1

2 . (6)

and its electric field F (t) has the following form

F (t) = −
√
2Fmt

tw
e
− t2

t2w
+ 1

2 (7)

with the field amplitude given by Fm and the pulse du-
ration controlled by tw. For the THz pulse considered
here(Fig. 2(a)), we set tw = 0.5ps. Besides the vector
potential and the electric field, the integrals of A(t) and
A2(t) are also two important quantities for completely de-
scribing the electron dynamics. They are directly related
to the electron spatial displacement and the quantum
phase accumulation, respectively. The analytical expres-
sions for these integrals can be found in Appendix A.
Using the cylindric coordinates with the negative ion as

its origin, the classical electron motion in the single-cycle
driving pulse can be described by the following equations

pρ = k0 sin(θi) (8)

pz(t) = k0 cos(θi) + ∆pz(ti, t) (9)

ρ(t) = k0(t− ti) sin(θi) (10)

z(t) = k0(t− ti) cos(θi) + ∆z(ti, t) (11)
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where (pρ, ρ) and (pz, z) represent the electron momenta
and coordinates in the separable ρ and z directions, re-
spectively. According to the physical consideration in
Eq.(3), a more reasonable starting point for the electron
should be (R sin(θi), R cos(θi)) which has been neglected
in Eqs. (10) and (11) because only the electron dynamics
at large distances is concerned where the small radius R
has negligible effect. The momentum transfer in Eq. (9)
comes from the change of the field vector potential,

∆pz(ti, t) = A(t)−A(ti) , (12)

which approaches a constant −A(ti) and only depends
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FIG. 3: (Color online) (a)-(e) Electron arrival-time plots with
different field amplitudes Fm. The solid blue lines, the dot-
dashed gray and the dashed red curves correspond to (θi = 0,
θf = 0), (θi = π, θf = π) and (θi = π, θf = 0), respectively.
(i)-(v) Momentum-space geometry varying with different drift
momentum −A(ti) obtained from the single-cycle pulse. The
dashed and the solid circles represent the end points of the
initial and final momentum vectors, respectively, with their
directions varying from 0 to 2π. The bold red line represents
the momentum transfer −A(ti), and the length of the line
indicates the relative value of −A(ti) compared with the elec-
tron initial momentum k0. The heavy black and the dashed
blue lines demonstrate the angle relationship between the final
electron-momentum direction and the initial momentum di-
rection. Note that the initial momentum k0 (the dashed blue
line) has been translated from the dashed circle to the solid
circle for convenience in displaying. The dot-dashed green
lines in (iii)-(v) indicate the maximum angle of the final mo-
mentum direction deviating from the z-direction.

on the initial time ti of photoelectron generation, when
t is sufficiently large such as t > 6tw. The field-induced
electron displacement in Eq. (11) consists of two parts:

∆z(ti, t) =

∫ t

ti

A(t′)dt′ −A(ti)(t− ti) , (13)

where the first part
∫ t

ti
A(t′)dt′ comes from an accumu-

lation along with the vector-potential variation, and the
second part −A(ti)(t−ti) is caused by an additional drift
momentum −A(ti) obtained from the field at the initial
time ti. Therefore, Eq. (11) can be rearranged as

z(t) = [k0 cos(θi)−A(ti)](t− ti) + ∆z̃(ti) (14)

for t > 6tw, where the first-part contribution in Eq. (13)
has been approximated as ∆z̃(ti) =

∫∞
ti
A(t′)dt′ which is

valid as long as t is large enough so that the pulse field
has gone to zero.
By combining Eq. (10) and Eq. (14), to eliminate θi,

one can find the following relationship between the initial
electron-generation time ti and the final time tf to arrive
at a detector located at (rf , θf ),

tf = ti +
rf
k0

· µ(ξ, ζ, θf ) (15)

with ξ = −A(ti)/k0 and ζ = ∆z̃(ti)/rf . The factor µ is
an arrival-time modulator caused by the driving pulse,
and its specific form is dependent on the value of mo-
mentum transfer −A(ti) relative to the initial momen-
tum k0 (Appendix A). Various categories for the electron
arrival-time plot are illustrated in Fig. 3(a)-(e) with the
observing angle θf equal either 0 or π, where the spheri-
cal detector is assumed to be placed at rf = 0.5m as in
traditional photodetachment microscopy.
From Eq. (10) divided by Eq. (14), one can also reach

the following equation

rf sin(θf )

rf cos(θf )−∆z̃(ti)
= tan(θkf

) =
k0 sin(θi)

k0 cos(θi)−A(ti)
(16)

for the relations among θi, θf and the final momentum
direction θkf

. The right-hand side of Eq. (16) can be
expressed geometrically in the momentum space and Fig.
3(i)-(v) shows all the possible geometries involved in the
electron driven process. After a geometry analysis, the
initial emission angle θi of the classical trajectory arriving
at (rf , θf ) can be obtained as

θi = θkf
+ α (17)

for −A(ti) ≤ k0, where α = arcsin[ξ sin(θkf
)] and θkf

is
given by the left-hand side of Eq. (16). When −A(ti) >
k0, there are two solutions,

θi< = θkf
+ α ; (18)

θi> = θkf
+ π − α , (19)

corresponds to the two crossings between the heavy black
line and the solid circle in Fig. 3(iii)-(v). The subscripts
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“<” and “>” are consistent with the notation in Ap-
pendix A, indicating the trajectory with θi< arrives at
the detector earlier than that with θi>. In addition, there
is a maximum angle θmf the electron can reach (the dot-

dashed green line in Fig. 3(iii)-(v)), and its specific form
is given by Eqs. (A14) and (A20) in Appendix A.
One immediate observation from Fig. 3 is that all

the background electron trajectories hardly driven by the
single-cycle pulse appear to arrive at the detector with a
same final time around tf = 2.21µs. This is guaranteed
by the simple linear relationship in Eq. (15). The initial
time ti of electron generation is on the scale of picosec-
ond, while the electron arrival time tf is on the scale of
microsecond (rf/k0 ≈ 2.21µs). As long as the driving
field is not too weak to influence the electron momentum
(∆pz & 0.1k0), the variation of tf is still appreciable on
the microsecond scale. Therefore, the arrival-time differ-
ences for the background electron trajectories generated
at different initial time (picosecond scale) can be hardly
distinguishable. In contrast, those trajectories driven by
the pulse field can be well separated in the arrival-time
plot (microsecond scale), reflecting the vector-potential
variation for different initial time. As a consequence, the
restriction is loose for the operation duration of the weak
laser field which can be longer than 6ps in Fig. 2(a).
The various electron dynamics in Fig. 3 differ in the

momentum transfer obtained by the electron from the
driving pulse compared with its initial momentum ob-
tained from the weak laser field. According to Eq. (6), a
maximum momentum

−Amax =
Fmtw√

2
e1/2 (20)

can be transferred from the driving pulse to an electron.
Note that the single-cycle pulse has a definite direction of
momentum transfer. For our choice in Eq. (6), the mo-
mentum transfer is always positive. By interacting with
the single-cycle pulse, the electron initially ejected along
the momentum-transfer direction is accelerated, and will
arrive at the detector much earlier than the background
electron, which are demonstrated by the heavy solid blue
curves in Fig. 3(a)-(e) with θi = 0 and θf = 0.
However, if the electron was initially moving in the op-

posite direction of the final momentum transfer, the situ-
ation can be more complicated. When −Amax < k0, the
electron is simply decelerated and arrives at the detector
much later than the background electron, demonstrated
by the dot-dashed curve in Fig. 3(a) with θi = π and
θf = π. The corresponding geometry of the momentum
space is given by Fig. 3(i). Assuming −Amax = k0 which
gives a critical field amplitude Fm = Fc1 with

Fc1 =

√
2k0
tw

e−1/2 , (21)

then the electron generated at an initial time ti corre-
sponding to the maximum momentum transfer will be
stopped at z = ∆z̃(ti) forever. For our case, this hap-
pens for the electron generated at ti = 0 with an initial

angle θi = π. Therefore, the final time tf goes to infin-
ity as the electron generation time ti tends to 0. It is
illustrated by the dot-dashed line in Fig. 3(b) (see also
Eq. (A21) in Appendix A), and Fig. 3(ii) depicts the
corresponding geometry in the momentum space.

With the field amplitude increasing, the maximum mo-
mentum transfer will be larger than the initial momen-
tum, and the electron can be finally fold back to the
side in the final momentum-transfer direction, which is
illustrated by the dashed red curve in Fig. 3(c) with its
momentum-space geometry given by Fig. 3(iii). Once
−Amax = 2k0, another critical field amplitude Fm = Fc2

is reached which is just twice of the first critical field
value Fc1 in Eq. (21). For this case, the electron gener-
ated near ti = 0 with an initial angle θi ∼ π can reach
the detector almost at the same time as the background
electron, as shown by the dashed red line in Fig. 3(d),
and the initial and final circles in the momentum space
will not overlap anymore (Fig. 3(iv)).

If the applied driving field is strong enough so that
−Amax > 2k0, then the electron dynamics goes into an-
other interesting region. As in Fig. 3(v), the two cir-
cles in the momentum space will be completely separated
for the momentum transfer −A(ti) larger than 2k0, and
even the electron initially moving in the opposite direc-
tion with θi = π can also reach the detector at θf = 0
much earlier than the background electron, as the elec-
tron with θi = 0 does. Therefore, in the overlapping re-
gion for θf = 0 in Fig. 3(e), there are four trajectories ar-
riving at the detector simultaneously. The electron wave
parts propagating along these trajectories can interfere
quantum mechanically, and more interesting phenomena
beyond those in Fig. 1 can be expected.

By a closer look at the momentum-space geometries
displayed in Fig. 3, one more interesting phenomenon
which we call “temporal-caustic bifurcation” can be
found as the observing angle approaches π/2(Fig. 4).
The temporal caustics tcf in Fig. 3(a)-(e) are those local
extrema of tf , which corresponds to the classical bound-
ary between the dynamically allowed and forbidden re-
gions in the augmented phase space by including the evo-
lution time t and its conjugate momentum pt [20]. Clas-
sical trajectories are reflected near the caustic, and the
corresponding quantum wave has a local maximum distri-
bution. All the observed temporal caustics in Fig. 3(a)-
(e) are caused by the maximum vector potential of the
applied driving pulse. However, another temporal caus-
tic may appear once the electron initial angle θi crosses
π/2, indicated by the dot-dashed gray line in Fig. 4(a).

To imagine the involved dynamic picture, one can first
fix the angle of the final kinetic momentum kf in the
momentum space as in Fig. 3(i), and then shift the solid
circle away from and back to the dashed circle as in Fig.
4(a), following the time-dependent variation of the vec-
tor potential A(ti). During this simple game, the num-
ber of possible pairs of θi and ti corresponding to each
value of kf could be counted, which gives an estimation
for the number of contributed trajectories as well as the
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ation with different detection angles and applied driving field
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the bifurcation-point (circle points) shifting with the varying
field amplitude, and is also the evolution curve of the newly-
born caustic with θi = π/2 after each bifurcation point. The
four demonstrated cases are specified by the text arrows with
different field amplitudes, respectively. The heavy blue line
and the bold dashed curve depict, respectively, the temporal-
caustic dependence on the observing angle θf for the same
type of line in the arrival-time plot as in Fig. 3(a)-(e). The
thin dashed curve shows the variation trace of the joint point
(square points) for different field amplitudes. The dotted line
indicates the free-electron arrival time tf without interacting
with any external field.

temporal-caustic locations. For a small detection angle
θf , the temporal caustic tcf is the earliest arrival time tf
as in Fig. 3(a), which corresponds to A(ti) = Amax and
θi < π/2. With the observing angle deviating from the
field-polarization direction gradually, the corresponding
initial angle θi also increases.
Once a critical detection angle θcf is reached, the cor-

responding initial angle will be a right angle with −A(ti)
still the maximum vector potential. This critical case
serves as a bifurcation of the temporal caustic. With the

observing angle keeping increasing from θcf , the tempo-

ral caustic for θf = θcf with A(ti) = Amax and θi = π/2

will split into two caustics, one with A(ti) = Amax and
θi > π/2, the other with −A(ti) < −Amax and θi = π/2
as in Fig. 4(a). As a result of the unipolar momen-
tum transfer −A(ti) in a single-cycle pulse, this kind of
temporal-caustic bifurcation can only be observed for the
final angle θf < π/2. Figure 4(b) and (c) give an example
for the electron arrival-time plot tf vs ti in the bifurca-
tion region and its corresponding initial angle θi at each
initial time ti, where Fm = 20kV/cm and θf = π/3. The
bifurcated caustics discussed above are marked by the
heavy blue point (Amax) and the gray points with the
dotted guidance lines (θi = π/2).
As a brief summary, we present an overall view in Fig.

4(d) for the caustic dependence on the observing angle
θf and the driving field amplitude Fm. Taking Fm =
20kV/cm for instance, the bifurcation point is displayed
by the corresponding circle point, given by

θbf = arctan(−k0/Amax) ; (22)

tbf = rf sin(θ
b
f )/k0 (23)

quantitatively, where the tiny differences of ti and ∆z̃(ti)
have been neglected. For θf < θbf , there is one temporal
caustic following the solid blue curve with its arrival time
tf given by the corresponding solution at A(ti) = Amax

in Appendix A. After the bifurcation point, the newly
born caustic with θi = π/2 follows the dot-dashed green
curve until θf = π/2, with its final arrival time tf given
by rf sin(θf )/k0 which is invariant for different field am-
plitudes. For the driving pulse with different field am-
plitude, the bifurcation point just shifts along the dot-
dashed green line according to Eq. (22), and the newly
born caustic follows the same dot-dashed curve.
If the driving field is strong enough, another additional

temporal caustic will emerge from the fold-back trajecto-
ries like those dashed red curves in Fig. 3(c)-(e), which
can joint with the above discussed temporal caustic cor-
responding to A(ti) = Amax after bifurcation point. The
joint points are indicated using square points in Fig. 4(d)
for Fm = 40kV/cm and Fm = 50kV/cm, respectively.
The variation trace of this joint point with different field
amplitude can be approximately determined by

θjf = arcsin(−k0/Amax) ; (24)

tjf =
rf√

A2
max − k20

, (25)

which is depicted by the thin dashed line in Fig. 4(d).

After the joint point θjf , the two joint caustics disappear
with the trajectories generated near the maximum vector
potential missing the corresponding final angle θf > θjf ,

but the bifurcated caustic with θi = π/2 still follows the
dot-dashed green line in Fig. 4(d) until θf = π/2.
At the end, we would like to point out that the

temporal-caustic bifurcation is actually a universal phe-
nomenon for all kinds of electric-field driving pulses,
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which should be observable as long as the driving field
is not too weak to generate a feasible angle range from
θcf to π/2 in an experiment. More importantly, all the
dynamic properties can be easily understood by shifting
and examining the momentum-space geometry following
the time-dependent variation of any driving-field vector
potential. Although the momentum-space geometry in
Fig. 3(i) has been well established as a basic principle
for the attosecond streak camera[21, 22], the caustic vari-
ation as in Fig. 4 has never been reported before.

III. PROPAGATION METHOD

A. Semiclassical propagation

Relying on the previous analysis on the classical elec-
tron dynamics, the corresponding quantum wave can be
constructed quite accurately from those involved clas-
sical trajectories using a semiclassical scheme. For the
time-dependent propagation, an augmented phase space
is usually used by including the time t and its conjugate
momentum pt as two additional dimensions. Therefore,
for our present system, the Hamiltonian governing the
electron motion in the augmented phase space has the
following form[20]

H(ρ, z, t, pρ, pz, pt) =
p2z
2

+
p2ρ
2

+ F (t) · z + pt (26)

in the cylindrical coordinate frame. Accordingly, two
equations of motion are added to the standard Hamil-
tonian canonical equations, dt/dτ = 1 and dpt/dτ =
−∂H/∂t, where τ is used as an evolution parameter for
the classical trajectory propagating in the augmented
phase space. In practice, it is convenient to set t(τ =
0) = ti and pt(τ = 0) = −E0 as two initial conditions,
which guarantees τ = t − ti and pt = −E(t) with E(t)
denoting the electron instantaneous energy during inter-
action with the field.
Starting from the initially generated outgoing wave

ψ0(R, θi, φi, ti) in Eq. (4), the electron wave associated
with each trajectory arriving at a final point (r, θ, φ, t)
is constructed as

ψν(r, θ, φ, t) = ψ0(R, θi, φi, ti) · Aei(S−λ π
2
) , (27)

where the subscript ν is used to label the corresponding
trajectory. The semiclassical amplitude A corresponds to
the local density of neighboring trajectories. S is the clas-
sical action accumulated in the augmented phase space.
The Maslov index λ reflects the topological property of
the classical trajectory from the starting point to the end
point, which is naturally related to the caustics discussed
above and the corresponding mathematical structures of
A and S in the augmented phase space. The quantum
wave Ψ(t) at the final point is the coherent superposition
of the semiclassical wave in Eq. (27) associated with all
the possible trajectories arriving at that point.

The semiclassical amplitude can be analytically de-
rived out as (Appendix B)

A =

∣∣∣∣
R2

k0(t− ti)2[k0 − F (ti)(t− ti) cos(θi)]

∣∣∣∣
1/2

(28)

which is only explicitly dependent on the field strength
F (ti) at the initial electron generation time ti. The
semiclassical amplitude diverges when k0 − F (ti)(t −
ti) cos(θi) = 0, which corresponds to the caustic loca-
tions as in Fig. 4(d). Therefore, the Maslov index
λ = 0 when k0 − F (ti)(t − ti) cos(θi) > 0, and λ = 1
if k0 − F (ti)(t− ti) cos(θi) < 0.
The classical action S can also be obtained analytically,

and its value will be extremely large for a macroscopic
distance such as rf = 0.5m considered here. However,
the observable physical effect comes from the small differ-
ences between the huge phases accumulated along differ-
ent trajectories. To calculate the small phase difference
between each two trajectories, the following expression is
used in our practical calculations (Appendix B),

∆S̃ = S̃1 − S̃2

= r · Π− r

2k0
·Υ− 1

2

∫ ti2

ti1

A2(t′)dt′

+A(ti1)

∫ t

ti1

A(t′)dt′ −A(ti2)

∫ t

ti2

A(t′)dt′(29)

where

Υ = A2(ti1) · µ(ti1)−A2(ti2) · µ(ti2) ; (30)

Π = k0[µ(ti1)− µ(ti2)]− cos(θf )[A(ti1)−A(ti2)] , (31)

and

S̃ = S − E0ti , (32)

which has included the contributed phase from an ini-
tially outgoing wave in Eq. (4). For convenience, the
arrival-time modulator µ(ξ, ζ, θf ) has been denoted as
µ(ti) briefly.

With the time-dependent phase S̃ given by Eq. (32),
the propagated wave in Eq. (27) for each trajectory can
be explicitly expressed as

ψν(r, θ, φ, t) = fL(ti)ψout(R, θi, φi) · Aei(S̃−λπ
2
) (33)

where the time-independent outgoing wave ψout(R, θi, φi)
is given by Eq. (2). Accordingly, the time-dependent
electron flux on a spherical detector can be calculated as

jr = |C(k0)|2 ·
k20N

2
lm

Fmr3
· j̃r (34)

where

Nlm =

√
(2l + 1)(l −m)!

4π(l +m)!
(35)
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is a coefficient in the spherical harmonic function. The
reduced flux j̃r is defined as

j̃r = ℑ
[(∑

ν

ψ̃ν

)∗
∂

∂r

(∑

ν

ψ̃ν

)]
(36)

following the spirit in Ref.[23]. The simplified wave func-

tion ψ̃ν is given by

ψ̃ν(r, θ, φ, t) =
Ãν

Nlm
· Ylm(θi, φi) · ei(S̃ν−λν

π
2
) (37)

with the modified semiclassical amplitude expressed as

Ãν =
fL(ti)

µ(ti)
·
∣∣∣∣

Fmr

k20 − F (ti) · r · µ(ti) · cos(θi)

∣∣∣∣
1/2

. (38)

Specifically, taking an s-wave source (F−) for instance,
the simplified wave function for each trajectory is just

ψ̃s
ν(r, θ, φ, t) = Ãνe

i(S̃ν−λν
π
2
) . (39)

If there are two trajectories arriving at the detector si-
multaneously as in Fig. 3(a)-(d), the electron flux from
Eq. (36) has the following specific form,

j̃r = pr1Ã
2
1 + pr2Ã

2
2

+(pr1 + pr2)Ã1Ã2 cos(∆̟12) (40)

with pr = pρ sin(θf )+pz cos(θf ), and the phase difference

∆̟12 = (S1 − S2)− (λ1 − λ2)π/2 , (41)

where the derivative of Ã in Eq. (36) has been neglected
owing to the same argument as in Ref.[23]. For a pz-
wave source like H−, the simplified wave function for each
trajectory is

ψ̃s
ν(r, θ, φ, t) = Ãν cos(θi)e

i(S̃ν−λν
π
2
) . (42)

and the corresponding electron flux can be expressed as

j̃r = pr1Ã
2
1 cos2(θi1) + pr2Ã

2
2 cos2(θi2)

+(pr1 + pr2)Ã1Ã2 cos(θi1) cos(θi2) cos(∆̟12) (43)

for two possible trajectories after replacing Ãν in Eq.

(40) by the combined term Ãν cos(θi) including the elec-
tron initial angular distribution. For cases illustrated in
Fig. 3(e) and Fig. 4, there are four trajectories arriving
at the detector simultaneously in a certain region of the
arrival-time plot. Therefore, there are four terms con-
tributing to the classical flux amplitude in the first line
of Eq. (40) or Eq. (43), and six terms arise in the second
line, which come from interferences between each pair of
two classical trajectories.

B. Quantum propagation

In this subsection, we briefly summarize the numerical
procedures used in our exact quantum simulations by di-
rectly solving the time-dependent Schrödinger equation.
Although the practical quantum computation turns out
to be much more difficult than the above semiclassical
propagation method, it is still worthwhile to make some
efforts in this direction, and it answers two important
questions: (1) How accurate is the above proposed semi-
classical propagation scheme? (2) What will happen ex-
actly in the classically forbidden region, especially when
the temporal caustic experiences a bifurcation?
The starting point for the quantum propagation is to

write the full electron wave Ψ(t) as

Ψ(t) = ϕie
−iEgt + Ψ̃(r, t)e−iE0t (44)

where Eg = −Eb with Eb denoting the binding energy
of the initially bound state ϕi. The electron wave ex-

cept for the initial state is represented as Ψ̃(r, t) with a
constant phase exp(−iE0t) separated for convenience in
practice. Substituting the above wave function into the
time-dependent Schrödinger equation, one can immedi-
ately get an inhomogeneous equation as follows

[
i
∂

∂t
−
(
Ha +HF (t)− E0

)]
Ψ̃(r, t) = f(t)Dϕi (45)

under assumptions for the applied fields in Sec. II.A.
The time-dependent Hamiltonian HF (t) (= F (t) · z) on
the left-hand side of Eq. (45) comes from the electron in-
teraction with the single-cycle driving pulse. The atomic
Hamiltonian Ha = p2/2 + V (r) with V (r) denoting the
binding potential for a specific negative ion. For H−, we
adopt the angular-momentum-dependent model poten-
tial along with the modified dipole operator proposed in
Ref. [24]. A related discussion can be found in Ref.[25]
for different model potentials. For F−, the model po-
tential is taken from Ref.[26]. The initially bound state
ϕi and its corresponding energy Eg can be readily ob-
tained by diagonalizing the atomic Hamiltonian matrix
in a sufficiently large radial box.
Since the initial bound state has m = 0 and the ap-

plied fields are also assumed to be linearly polarized (see
Sec. II.A for details), the time-dependent electron wave

Ψ̃(r, t) can be expanded as

Ψ̃(r, t) =
1

r

∑

l

Ul(r, t)Yl0(θ, φ) (46)

on a two-dimensional space spanned by the discretized
radial points and angular momentum basis with different
l values. Using a split-operator technique, the separation
ofHa from the interaction termHF (t) allows us to propa-
gate the electron wave on each dimension independently.
Therefore, the numerical propagation for each time step
δt can be divided into three independent steps:

Ψ̃1 =
1− iHF δt/4

1 + iHF δt/4
Ψ̃(t)− iδt

2
̺

(
t+

δt

2

)
; (47)
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Ψ̃2 =
1− iHaδt/2

1 + iHaδt/2
Ψ̃1 −

iδt

2
̺

(
t+

δt

2

)
; (48)

and

Ψ̃(t+ δt) =
1− iHF δt/4

1 + iHF δt/4
Ψ̃2 , (49)

where the Crank-Nicolson approximation has been used,
and the notation ̺(t+ δt/2) is used to denote briefly the
source term on the right-hand side of Eq. (45). The
above three steps in Eqs. (47)-(49) ensure the numerical
accuracy to be O(δt3) for each time step. For the prop-
agation on the radial dimension in Eq. (48), a Numerov
scheme is implemented on a square-root mesh[27].
Using the above Eqs. (46)-(49), we first propagate the

electron wave numerically to a final time t = 6tw, for
which the numerical radial boundary rmax = 40000 a.u..
At the end of this propagation, the obtained wave func-
tion is projected onto all the l-dependent partial waves
of Ha for each positive energy ǫ, and the corresponding
expansion coefficient is calculated as

Aǫl =

∫
f̃ǫl(r)Ul(r, t = 6tw)dr , (50)

where the energy-normalized radial wave function f̃ǫl(r)
can be obtained by directly integrating the stationary
Schrödinger equation for Ha with specific values of ǫ and
l. At a large distance such as r = 0.5m we are interested
here, the radial function f̃ǫl(r) behaves asymptotically in
a simple form:

f̃ǫl(r) =

√
2

πk
sin(kr + ϑǫl) (51)

with k =
√
2ǫ. The asymptotic phase ϑǫl includes the

phase shift caused by the short-range potential V (r),
which can be calculated as

ϑǫl = φ̃εl(rm)− βǫl(rm) . (52)

The first part φ̃εl(rm) in Eq. (52) is an oscillatory

phase of the computed radial function f̃ǫl(r) fitted at
r = rm & rmax using the sinusoidal form as in Eq. (51).
The second term βǫl(rm) is a Wentzel-Kramers-Brillouin
(WKB) phase correction in the asympotic region after
r = rm, given by

βǫl(rm) =

√
2ǫr2m − l∗2 + l

∗

arcsin
[
l
∗

/(krm)
]

(53)

with l
∗

= l + 1/2 following the Langer correction[28].
To calculate the electron flux on a spherical detector

located at a macroscopic distance such as 0.5m from the
photodetachment source region, we use the outgoing part
in Eq. (51) and obtain the final electron outgoing wave
as

Ψ+(r, t) =
−i
r

∑

l

Yl0(θ, φ)

∫
Aǫl√
2πk

ei(kr−ǫt+ϑǫl)dǫ (54)

which can be explicitly written out as

Ψ+(r, t) =
−ik̄
r3/2

ei(
r2

2t
−π

4
)
∑

l

Aǭle
iϑǭlYl0(θ, φ) (55)

with k̄ =
√
2ǭ = r/t after using a stationary-phase ap-

proximation for the contained integration in Eq. (54).
Finally, the electron flux can be immediately obtained as

jr =
1

t3
·
∣∣∣
∑

l

Aǭle
iϑǭlYl0(θ, φ)

∣∣∣
2

(56)

from Eq. (55). One might have noticed that the second
term on the right-hand side of Eq. (56) is just the angle-
resolved energy spectrum. This is not a surprise, and
it is actually true for any driving pulses only if the in-
volved interaction volume and duration are negligible by
comparing with the observing distance and the electron
arrival time at the detector (Appendix C). Therefore, all
the features discussed in this work for the time-dependent
electron flux can also be expected in the angle-resolved
energy spectrum. In Appendix C, a numerical verifica-
tion on the accuracy of Eq. (56) is also performed by
directly doing the numerical integration in Eq. (54).

IV. INTERFERENCES AND CAUSTIC
BIFURCATION

Based on the electron dynamics analyzed in Sec. II. B,
various different structures are expected for the classical
electron arrival-time plot as in Fig. 3(a)-(e) and Fig. 4 by
varying the pulse amplitude Fm or an observing angle θf .
Using this kind of plot, one can further determine how
many classical trajectories the electron follows to arrive
at the detector simultaneously as in Fig. 1(a), giving an
oscillatory electron flux on the detector as a function of
time. Generally speaking, there are mainly three quali-
tatively different situations involved in all the possible
arrival-time plots: two-trajectory contributed interfer-
ences, four-trajectory contributed interferences, and in-
terferences with a temporal-caustic bifurcation. In this
section, we present concrete calculations and discussions
for each situation as well as the quantum tunneling effects
in the classically forbidden region.
Before discussions for each specific case, we first clar-

ify some general rules and manipulations we have used
in the concrete calculations. As specified in Sec. II, we
consistently assume the detecting distance is 0.5m as in
traditional photodetachment microscopy[6], and the pho-
toelectron initial kinetic energy E0 = 0.1454eV , corre-
sponding to a photon energy of 0.9eV for H−. In our
presented figures, the semiclassical flux was calculated
using the reduced expression like Eqs. (40) and (43).
For those simple cases in Fig. 2(b) and Fig. 5, a uniform
approximation as in Ref.[23] has also been used near an
outmost caustic. To compare with the semiclassical re-
sult, the exact quantum flux for H− given by Eq. (56) has
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been scaled according to Eq. (34) with an analytic ex-
pression for C(k0) known from Ref.[10]. Note that there
is no adjustable parameter between the displayed semi-
classical flux and the quantum flux for H− in all figures.
The displayed results for F− in Figs. 1 and 2 as well as
in Figs. 5-7 have been scaled with a constant which was
obtained from Fig. 2(b) by fitting the exact quantum
flux for F− with that for H− at tf = 2.048µs. The quan-
tum flux for F− displayed in Fig. 8(c) has been fitted
with the semiclassical flux at tf = 1.967µs, and that dis-
played in Fig. 8(d) has been multiplied by an arbitrary
constant for convenience to compare with the quantum
flux for H−.

For the basic interferences coming from two trajecto-
ries, a schematic demonstration has been given in Fig.
1 with Fm = 2kV/cm, which can be easily calculated
by both the semiclassical method and the quantum ap-
proach. In contrast with the usual double-slit interfer-
ences as in traditional photodetachment microscopy[6,
10], the two trajectories in our present system are ejected
at a same initial angle approximately, but their initial
launch time is different as in Fig. 1(a). Besides the
quantum interferences, different angle dependence can
also be observed for flux amplitudes in Fig. 1(c) and
(d). This can be easily understood by examining semi-
classical expressions in Eq. (40) and Eq. (43), which
attributes this discrepancy to the different angular dis-
tributions of the initially-generated electron wave from
H− and F−, respectively. The quantum fluxes from Fig.
1(c) and (d) for θf = 0 are compared quantitatively in

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2
0

1

2

3

4

5

t
f
 (µs)

E
le

ct
ro

n 
flu

x 
(a

rb
. u

ni
ts

)

 

 

1.2 1.4 1.6 1.8 2.0 2.2
0

5

10

15

t
f
 (µs)

E
le

ct
ro

n 
flu

x 
(a

rb
. u

ni
ts

)

 

 

semiclassical flux

quantum flux for H−

quantum flux for F−

(a)
F

m
=10kV/cm, θ

f
=0

(b)
F

m
=20kV/cm, θ

f
=0

FIG. 5: (Color online) Interferences with two-trajectories in-
volved for each arrival time tf , where rf = 0.5m and θf = 0.
(a) Fm = 10kV/cm. (b) Fm = 20kV/cm. In both (a) and
(b), the dotted line is the semiclassical result after Eq. (36),
while the solid and the dashed curves are quantum calcula-
tions after Eq. (56) for H− and F−, respectively.

Fig. 2(b), where the corresponding semiclassical flux is
also displayed. The excellent agreement among different
calculations further confirms the simple physical picture
established by the semiclassical theory.

Figure 5 presents more examples for two-trajectory
contributed interferences, where much more interference
oscillations can be observed by increasing the pulse am-
plitude. In both Fig. 2(b) and Fig. 5, quantum fluxes
for H− and F− coincide almost perfectly. This is because
the electron initially-outgoing angle θi = 0 for both the
two involved trajectories with θf = 0 (see also Fig. 3(a)).
According to the semiclassical formulae in Eqs. (40) and
(43), the electron flux with θi = 0 should be exactly the
same for an s-wave source (F−) and a p-wave source (H−)
except for an energy-dependent prefactor as in Eq. (34)
which has been scaled out for comparison. For the time
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FIG. 6: (Color online) Interferences with possible four-
trajectories involved for each arrival time tf , where Fm =
50kV/cm, rf = 0.5m and θf = 0. (a) The electron arrival-
time plot reproduced from Fig. 3(e) as a reference. The corre-
sponding semiclassical results (dotted or dashed curves) and
quantum calculations (solid green curves) are shown in (b)
and (c) for H− and F−, respectively. Quantum fluxes for H−

and F− are compared in (d) with their respective line shapes
indicated in the legend. (e) The phase difference between two
trajectories from the marked branches in (a).
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tf very close to r/k0 ≈ 2.21µs in Fig. 2(b) and Fig. 5
(as well as other figures in the following), the discrep-
ancy between the displayed semiclassical flux and exact
quantum fluxes comes from two aspects: (a) the semiclas-
sical amplitude experiences a divergence near tf = r/k0
because another temporal caustic exists according to Eq.
(15) which cannot be resolved in the electron arrival-time
plot as in Fig. 1(a) near r/k0 ≈ 2.21µs; (b) the back-
ground electrons near tf = r/k0 are almost unaffected
by the single-cycle pulse and their effect has not been
included in semiclassical calculations.

Figure 6 shows an example calculation where four-
trajectory contributed interferences are involved, which
corresponds to the electron arrival-time plot in Fig. 3(e)
with Fm = 50kV/cm and θf = 0. We only calculated
the electron flux for tf ≥ 1µs by considering the clarity
in displaying as in Fig. 6 and also the computing effi-
ciency in quantum calculations. For the electron arrival
time tf less than 1µs, it is just the basic two-trajectory
contributed interferences as in Fig. 5 discussed above.
For the present calculations, an excellent agreement be-
tween the quantum and semiclassical fluxes can also be
observed in Fig. 6(b) and (c) for H− and F−, respec-
tively, except for a small region near the temporal caus-
tic tcf = 1.743µs where the semiclassical formulas like

Eqs. (40) and (43) break down. Fig. 6(d) shows a
comparison between quantum fluxes for H− and F−. In
the two-trajectory contributed region (tf < 1.743µs), the
two fluxes oscillate in pace and coincide almost perfectly,
which is the same as in Fig. 2(b) and Fig. 5 we have
discussed above. However, in the four-trajectory con-
tributed region (tf > 1.743µs), an antiphase oscillation
is observed clearly between electron fluxes from H− and
F−. This can also be understood quite well from the
semiclassical picture. The initially outgoing angle θi = 0
for trajectories from the solid blue line in the electron
arrival-time plot (Fig. 6(a)) while θi = π for trajectories
from the dashed red curve in Fig. 6(a). According to the
semiclassical formulae, the interference term contributed
by trajectories with θi = 0 and θi = π has an initial-angle
dependent factor [cos(0) cos(π)] = −1 in Eq. (43) for a
pz-wave source like H

−, which reverses the oscillatory be-
havior with respect to the interference term in Eq. (40)
for an s-wave source like F−.

Another two interesting observations are related to the
oscillation amplitude and phase of the electron flux in
different time ranges. In the two-trajectory contributed
region, only the initial launch time is slightly different for
the two involved trajectories whose initially-outgoing an-
gles are approximately the same. As a consequence, they
almost follow a same classical orbit except for a tiny dif-
ference between their evolution duration. Therefore, the
semiclassical amplitudes A1 and A2 are approximately
equal. According to Eqs. (40) and (43), an approximate
zero value can be touched as in Fig. 2(b), Fig. 5 and Fig.
6, when cos(∆̟12) = −1 (note pr1 ≈ pr2 in our current
system). However, in the four-trajectory contributed re-
gion, the finite minimum values are observed clearly in
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Interference terms from trajectories
with different initial angles

FIG. 7: (Color online) Analysis for the four-trajectory con-
tributed region in Fig. 6 by taking F− for instance. The
bold solid green curve is the quantum flux for F−, which is
reproduced from Fig. 6(c) as a reference. The thin solid blue
curve is the semiclassical flux contributed by the two trajec-
tories from the solid blue lines in Fig. 6(a) with θi = 0,
and the dashed red curve presents the semiclassical contri-
butions by the two trajectories from the dashed red curve in
Fig. 6(a) with θi = π. The bold dot-dashed line shows the
contribution of the other four terms in the semiclassical-flux
expression coming from the quantum interferences between
those trajectories with different initial angles.

Fig. 6 for the oscillatory fluxes. To understand this, we
divide the semiclassical-flux expression into three parts
as in Fig. 7 by taking F− for instance. From Fig.7, one
can immediately find that the electron flux from the two
trajectories with θi = 0 only experiences one oscillation
between 1.85µs and about 2.2µs (see the following dis-
cussion for the phase difference), and its large positive
value is the main reason for the finite minimum flux in
Fig. 6. Another necessary condition is that the electron-
wave amplitude from θi = π should be small enough to
guarantee the interference oscillations from the dashed
and the dot-dashed curves in Fig. 7 cannot offset the
large positive contribution from the two trajectories with
θi = 0. The physical picture for the small electron-wave
amplitude as indicated by the dashed curve in Fig.7 is
that the two trajectories with θi = π initially propagate
in a completely opposite direction relative to another two
trajectories with θi = 0, and their neighboring trajecto-
ries finally turn out to be more divergent.

The phase difference ∆S̃12 is also shown in Fig. 6(e)
for the two indicated trajectories in Fig. 6(a), which ex-
plains why the oscillation frequency varies dramatically
in the time range shown in Fig. 6. For tf . 1.2µs,

the phase difference ∆S̃12 almost changes monotonically
with the time tf , giving an approximate uniform oscilla-
tion for the electron flux. In contrast, for tf & 1.2µs, the
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phase difference between these two trajectories hardly
change with the different time tf . Therefore, the elec-
tron flux contributed by the two trajectories with θi = 0
oscillates slowly as in Fig. 6 and also the thin solid
curve in Fig. 7, and the oscillatory behavior observed
in the four-trajectory contributed region is mainly con-
tributed by the interferences between trajectories with
different initial angles, which is illustrated by the bold
dot-dashed curve in Fig. 7. Especially, near its ex-

tremum at tf ∼ 1.5µs, the phase difference ∆S̃12 varies
slowly around the value of 180 ∼ (56 + 3/2)π. As a con-

sequence, cos(∆̟12) = cos(∆S̃12 − π/2) ≈ −1 in Eqs.
(40) and (43), which explains the oscillation-amplitude
suppression observed near tf = 1.5µs in Fig. 6(b)-(d).

Figure 8 is a representative case for quantum inter-
ferences with a temporal-caustic bifurcation, which cor-
responds to the electron arrival-time plot in Fig. 4(b)
with Fm = 20kV/cm and θf = π/3. By just observing
the classical arrival-time plot as in Fig. 8(a), it is sim-
ilar to Fig. 6 in that both the two-trajectory and four-
trajectory contributed interferences are involved, but the
resulted electron flux still has several different interesting
features. Quantum fluxes for H− and F− are compared
in Fig. 8(d) between each other. It can also be observed
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FIG. 8: (Color online) Interferences with a temporal-caustic
bifurcation occurred, where Fm = 20kV/cm, rf = 0.5m and
θf = π/3. (a) The electron arrival-time plot reproduced from
Fig. 4(b) as a reference. The corresponding semiclassical re-
sults (solid gray lines) and quantum calculations (heavy solid
and colored curves) are shown in (b) and (c) for H− and F−,
respectively. Quantum fluxes for H− and F− are compared in
(d) with their respective line shapes indicated in the legend.

that the fluxes from H− and F− oscillate antiphase in
the four-trajectory contributed region while oscillating
in pace in the two-trajectory contributed region, which
is similar to those observations in Fig. 6(d). Neverthe-
less, there are two new features appeared in Fig. 8(d):
(a) the flux amplitude for H− almost vanishes near the
newly-born caustic near tf = 1.912µs. This is because
the initially generated outgoing p-wave from H− has a
node near θi = π/2, and the electron flux is therefore
largely suppressed near tf = 1.912µs with its contributed
trajectories having initial angles near θi = π/2 (Fig. 4(b)
and (c)). (b) the electron fluxes for H− and F− do not co-
incide any more in the two-trajectory contributed region,
which can be easily understood by realizing that initial
angles for the contributed trajectories are no longer the
same as in Fig. 6 for different time tf .

By comparing the semiclassical flux and the quantum
flux in Fig. 8(b) and (c) for H− and F−, respectively,
only a good agreement can be found in the four-trajectory
contributed region. Near the two temporal caustics, the
semiclassical flux diverges as usual, and the divergent
property of the semiclassical amplitude for H− is sup-
pressed by the factor cos(θi) as in Eq. (43) with the
initial angle θi tends to π/2 when the final time tf ap-
proaches the caustic near tf = 1.912µs. In the classically-
forbidden region with tf . 1.912µs, an interference os-
cillation can still be observed as the quantum-tunneling
effect from the two extrema near tf = 1.912µs. In the
two-trajectory contributed region, the oscillation phase
is almost the same between the quantum flux and semi-
classical calculations, but an obvious discrepancy exists
for the flux amplitude, which can also be attributed to
a quantum tunneling effect of the electron wave near the
temporal caustic at tf = 2.058µs. This quantum tunnel-
ing wave interferes with the two wave parts contributed
by the two classical trajectories, resulting two observ-
able effects in Fig. 8(b) and (c): (a) the semiclassical-
flux amplitude associated with the two classical trajec-
tories (gray curves) is modulated peak by peak as shown
by the heavy sold curves; (b) the amplitude modulation
caused by this quantum-tunneling wave is antiphase for
H− and F− as those interferences in the four-trajectory
contributed region.

At the end of this discussion, we would like to point out
that all the observed structures above could also be ob-
servable in the angle-resolved electron energy spectrum
according to an equivalence expressed in Eq. (C6). In
a real experiment, one may need to determine whether
the time-dependent electron flux or the angle-resolved
energy spectrum can be easily measured with a satis-
fying resolution. One more important feature related
to the temporal-caustic bifurcation is that the earliest
time tf for the electron flux to be detected is approxi-
mately determined by the newly-born temporal caustic
like tf = 1.912µs in Fig. 4(b) and Fig. 8, which is fixed
and does not change for different field amplitudes Fm,
indicated by the dot-dashed green line in Fig. 4(d) and
given by rf sin(θf )/k0 at a specific angle θf . Accord-
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ingly, a maximum energy value of k20 csc
2(θf )/2 exists in

the angle-resolved energy spectrum no matter how strong
the applied driving pulse field is, as long as the temporal
caustic experiences a bifurcation.
In addition, for all the above analysis and discussions,

we assumed the weak laser field applied for initiating
the electron wave is linearly polarized, and the initially
outgoing wave generated from H− has a zero angular-
momentum component on the z-direction of the laser po-
larization. However, if a circularly-polarized laser light
is used, an electron outgoing wave with m = 1 can be
generated. In contrast with the current situation we con-
sidered with m = 0, the electron can rotate around the
z-axis during its interaction with a single-cycle driving
pulse, therefore more interesting effects can be expected,
which should also be an interesting direction in the future
investigations.

V. CONCLUSION

Inspired by the recent availability of a single-cycle
pulse in experiments (see, e.g. Ref.[3]), we demon-
strated a possible application of a single-cycle driving
pulse in modulating and controlling the photodetach-
ment dynamics of negative ions. The involved electron
dynamics for different pulse amplitudes can be classified
and examined by different topological geometries in the
corresponding momentum space. A universal temporal-
caustic bifurcation has been observed when the observing
angle deviates away from the field-polarization direction.
Combining with the electron arrival-time plot together,
we found that the electron can follow two or more clas-
sical trajectories to arrive at a detector simultaneously,
thereby giving an oscillatory electron flux in the real-time
domain as a result of quantum interferences. By compar-
ing the electron fluxes for H− and F−, both the inphase
and antiphase oscillations have been observed, depending
on the pulse amplitude and the observing angle.
With the detector far away from the photodetach-

ment zone, the number of interference oscillations does
not change, which has been already determined in the
temporal-spatial volume for interacting with the short
driving pulse. In contrast, the oscillation period increases
with the detecting distance, which makes the interference
pattern much easier to be resolved at a larger distance.
However, the electron signal will be weaker by increasing
the observing distance. As a consequence, there is a bal-
ance between the detector sensitivity in an experiment
and increasing the detecting distance for a higher res-
olution. In our calculations, we assumed the detecting
distance to be 0.5m as in traditional photodetachment
microscopy. A macroscopic distance less than this value
should also be feasible, especially for the electron flux at
θf = 0 with a sufficiently strong driving pulse, unless a
highly accuracy was desired.
Although our current work was mainly about the pho-

todetachment of atomic negative ions and a single-cycle

driving pulse, the involved general picture as well as its
related formulae developed here could be easily extended
and applied for other similar systems where the electron
experiences an interaction with an applied electric-field
driving pulse. The time-dependent electron flux inves-
tigated here has been established as an equivalence of
the angle-resolved electron energy spectrum at large dis-
tances which is usually concerned in the strong field and
ultrafast physics[15–17, 21, 22]. Moreover, the temporal-
caustic bifurcation as a universal phenomenon should
also have some interesting effects in other similar sys-
tems. On the other hand, the present idea could also
be directly applied for neutral atoms instead of negative
ions here, by including the long-range Coulomb poten-
tial, which can be seen as an extension of traditional
photoionization microscopy in the time domain.
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Appendix A: SOLVING THE CLASSICAL
ELECTRON-ORBIT EQUATION

First, the integrals of A(t) and A2(t) can be analyti-
cally written out as follows,

∫ t2

t1

A(t)dt

= −Fmt
2
w

2

√
πe

2

[
erf

(
t2
tw

)
− erf

(
t1
tw

)]
; (A1)

and
∫ t2

t1

A2(t)dt

=
F 2
mt

3
we

4

√
π

2

[
erf

(√
2t2
tw

)
− erf

(√
2t1
tw

)]
, (A2)

in terms of the standard error function erf(x). These two
integrals will be involved in this appendix and next one,
respectively. From Eq. (A1), the field-induced displace-
ment ∆z̃(ti) has the following form,

∆z̃(ti) = −Fmt
2
w

2

√
πe

2

[
1− erf

(
ti
tw

)]
. (A3)

Combining Eq. (10) and Eq. (14), a quadratic equa-
tion can be obtained for τ = t− ti,

ã(t− ti)
2 + b̃(t− ti) + c̃ = 0 (A4)

with

ã = A2(ti)− k20 ; (A5)

b̃ = 2A(ti)[rf cos(θf )−∆z̃(ti)] ; (A6)

c̃ = r2f + [∆z̃(ti)]
2 − 2rf cos(θf )∆z̃(ti) . (A7)
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where z(tf) = rf cos(θf ) is used and c̃ is always positive.
For −A(ti) < k0, ã < 0, and Eq. (A4) has and only has

one positive solution satisfying the physical requirement,
for which the arrival-time modulator µ(ξ, ζ, θf ) in Eq.
(15) can be solved as

µ(ξ, ζ, θf ) =
Ξ−

√
Λ

ξ2 − 1
; ξ < 1 (A8)

with ξ = −A(ti)/k0 and ζ = ∆z̃(ti)/rf as defined below
Eq. (15), and

Ξ = ξ[cos(θf )− ζ] ; (A9)

Λ = [1 + ζ2 − 2ζ cos(θf )]− ξ2 sin2(θf ) . (A10)

When θf = 0 and θf = π, respectively, Eq. (A8) can be
further simplified as

µ(ξ, ζ, θf = 0) =
k0

k0 + [−A(ti)]
·
[
1− ∆z̃(ti)

rf

]
(A11)

and

µ(ξ, ζ, θf = π) =
k0

k0 − [−A(ti)]
·
[
1 +

∆z̃(ti)

rf

]
, (A12)

where k0 + [−A(ti)] and k0 − [−A(ti)] are actually the
electron final momenta kf in each case after interacting
with the applied pulse field.
For −A(ti) > k0, ã > 0 and b̃ < 0. The existence of

solutions is determined by the following discriminant,

∆ = b̃2 − 4ãc̃ ≥ 0 , (A13)

which gives a maximum angle θmf the electron can finally
reach on a spherical detector located at a distance rf
from the source region,

θmf = arccos

{
1

ξ2
·
[
ζ +

√
(1− ξ2)(ζ2 − ξ2)

]}
. (A14)

There are two solutions for θf < θmf ,

µ<(ξ, ζ, θf ) =
Ξ−

√
Λ

ξ2 − 1
, (A15)

µ>(ξ, ζ, θf ) =
Ξ +

√
Λ

ξ2 − 1
, ξ > 1 . (A16)

Where the subscripts of µ indicate that µ< is smaller
than µ>. When θf = θmf , Λ = 0 and

µ<(ξ, ζ, θ
m
f ) = µ>(ξ, ζ, θ

m
f ) =

ξ[cos(θmf )− ζ]

ξ2 − 1
. (A17)

At θf = 0,

µ<(ξ, ζ, θf = 0) =
k0

[−A(ti)] + k0
·
[
1− ∆z̃(ti)

rf

]
(A18)

corresponds to θi = 0, and

µ>(ξ, ζ, θf = 0) =
k0

[−A(ti)]− k0
·
[
1− ∆z̃(ti)

rf

]
(A19)

corresponds to θi = π. There is no corresponding classi-
cal trajectory for θf > θmf .

For −A(ti) = k0, ã = 0 in Eq. (A4), and the require-
ment of a positive value of t−ti gives a classical boundary

θmf = arccos

[
∆z̃(ti)

rf

]
(A20)

for the electron final angle on the spherical detector
placed at a distance rf . For θf < θmf , the arrival-time

modulator µ(ξ, ζ, θf ) in Eq. (15) turns out to be

µ(ξ, ζ, θf ) =
1− ζ2

2[cos(θf )− ζ]
− ζ , ξ = 1 . (A21)

which goes to +∞ when θf = θmf . For θf = 0, the above
expression can be simplified as

µ(ξ, ζ, θf = 0) =
1

2

[
1− ∆z̃(ti)

rf

]
(A22)

which is a continuation of Eq. (A11) and Eq. (A18) at
A(ti) = k0.

Appendix B: SEMICLASSICAL AMPLITUDE
AND PHASE ACCUMULATION

Quantitatively, the semiclassical amplitude A is de-
scribed as

A(t) =

∣∣∣∣
J(τ = 0)

J(τ = t− ti)

∣∣∣∣
1/2

(B1)

by the time-dependent Jacobian J(τ) at the final point
compared with its initial value at the starting point. The
specific form of J(τ) in the cylindrical coordinate can be
defined as

J(τ) = ρ · det
(
∂(ρ, z, t)

∂(ti, θi, τ)

)
. (B2)

which can be further simplified as

J(τ) = ρ ·
(
∂ρ

∂ti

)

θi,t

·
(
∂z

∂θi

)

ρ,t

(B3)

by combining the reduction procedures in Appendices of
Refs.[20, 23]. Note the derivative dr/dθ in Eqs. (B6) and
(B7) of Ref.[23] should be (∂r/∂θ)t, since the variable t
was missed in Eq. (B5) there.
For the initially outgoing spherical wave, one can read-

ily show that

J(τ = 0) = k0R
2 sin(θi) . (B4)
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For the electron propagation driven by a single-cycle
pulse, the partial derivative of ρ with respect to ti in
Eq. (B3) can be easily obtained from Eq. (10). The
partial derivative of z with respect to θi is given by the
following relationship,

(
∂z

∂θi

)

ρ,t

=

(
∂z

∂θi

)

ti,t

+

(
∂z

∂ti

)

θi,t

·
(
∂ti
∂θi

)

ρ,t

(B5)

where all the partial derivatives on the right-hand side
can be already obtained analytically from Eq. (11).
Therefore, the final expression as in Eq. (28) can be de-
rived for the semiclassical amplitude, by combining the
above equations and using the partial derivatives from
Eqs. (10) and (11).
Similar to the standard definition in the usual phase

space, the classical action S in the augmented phase
space is given by the following integral along all the
canonical variables,

S =

∫
pρdρ+ pzdz + ptdt , (B6)

which turns out to be

S =
1

2

∫
p2ρdt+

1

2

∫
p2zdt−

∫
F (t)z(t)dt (B7)

following the generalized Hamiltonian in Eq. (26). The
last integral in the above equation can be separated as

−
∫
F (t)z(t)dt = z(t)·∆pz(t)−

∫
[∆pz(t)]·pz(t)dt (B8)

after integration by parts using the impulse momentum
theorem. Substituting Eq. (B8) into Eq. (B7) and using
∆pz(t) = pz(t) − pz(ti), the classical action S can be
explicitly written as

S = E0(t− ti) + z(t) ·∆pz(t)−
1

2

∫
[∆pz(t)]

2dt (B9)

with ∆pz(t) = A(t) − A(ti) as in Eq. (12), where the
involved integrals of A(t) and A2(t) are given by Eqs.
(A1) and (A2). By further including an initial phase of
the generated electron wave at ti as in Eq. (32), and using
the formal expression in Eq. (15) for the relationship
between t and ti, the phase difference in Eq. (29) can be
obtained after a simple rearrangement.

Appendix C: NUMERICAL VERIFICATION ON
THE ACCURACY OF EQ.(56)

The simple form in Eq. (56) for the flux calculation
benefits from the stationary-phase approximation used
for the integration in Eq. (54). Here, we first demon-
strate that the simple expression in Eq. (56) is quite
accurate by directly doing the numerical integration in
Eq. ( 54), and then a general argument will be presented
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FIG. 9: (Color online) Numerical verification on the accuracy
of the simple expression in Eq. (56). The solid curve is cal-
culated after Eq. (56) for H− with Fm = 2kV/cm, rf = 0.5m
and θf = 0. The dashed curve is given by Eq. (C3) by directly
doing the numerical integrations in Eqs. (C1) and (C2).

for the simple relationship between the time-dependent
electron flux and the angle-resolved energy spectrum.
For convenience, we first define two integrals as follows,

I0lt =

∫
Aǫl√
k
eiϑǫle−it(

√
ǫ−

√
ǭ )2dǫ ; (C1)

I1lt =

∫ √
kAǫle

iϑǫle−it(
√
ǫ−

√
ǭ )2dǫ , (C2)

which allows us to write down the electron flux as

jr =
1

2πr2

∑

ll′

ℜ(I0lt
∗
I1l′t)Yl0(θ, φ)Yl′0(θ, φ) (C3)

after Eq. (54), where ℜ means the real part of its vari-
able. The two integrands in Eqs. (C1) are (C2) are
highly oscillatory when the energy is slightly deviating
away from the stationary point ǭ = r2/(2t2), because the
final time t is on the scale of microsecond which is an ex-
tremely large number in atomic units. In order to han-
dle this integration, a gaussian-shape window function
W (ǫ) = exp[−((ǫ−ǭ)/∆ǫ)2] is multiplied to the integrand
in our practical numerical integration, which provides an
accurate and well-convergent result for the integration as
long as the window is sufficiently wide to cover enough
number of oscillation cycles in the concerned integrand.
Assuming t(

√
ǫ −

√
ǭ )2 = π, we get an estimation for

a reference energy-width ∆ǫ0 as

∆ǫ0 =
√
16πǭ/t (C4)

during which the integrand experiences one full cycle ap-
proximately. In practice, we use ∆ǫ = 10∆ǫ0 with ∆ǫ0
given by Eq. (C4) at the earliest electron arrival time.
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For the demonstrated case in Fig. 9, t = 1.95µs is used
in Eq. (C4) to determine the reference width ∆ǫ0. The
actual numerical integration can be made from ǭ − 6∆ǫ
to ǭ+6∆ǫ for each final time t. Figure 8 shows a compar-
ison between electron fluxes obtained, respectively, from
Eq. (56) and the directly numerical integration as in Eqs.
(C1)-(C3). The almost perfect coincidence between the
two calculations in Fig. 9 indicates that the stationary-
phase approximation works very well at least for our cur-
rent case, and the simple expression in Eq. (56) is accu-
rate enough.
To understand why the time-dependent electron flux

is simply related to the angle-resolved energy spectrum
as in Eq. (56), one can imagine that the total photode-
tachment probability P should be the same whether you
calculate it by integrating the electron flux or the energy
spectrum, that is

P =

∫
jrr

2 sin θdθdφdt

=

∫ (
dP

sin θdθdφdǫ

)
sin θdθdφdǫ . (C5)

For any driving pulses, if the observing distance r is much
larger than the spatial range of the electron-field inter-
action, and the interaction duration is also much shorter
than the final time t for the electron to arrive at the
detector, then the electron velocity can be given by r/t
quite accurately, and accordingly ǫ = r2/(2t2) holds in
atomic units, which is just the stationary-phase point for
the integration in Eq. (54). Following this line, we get
dǫ = −r2dt/t3 which gives us

jr =
1

t3
·
(

dP

sin θdθdφdǫ

)
(C6)

by substituted into Eq. (C5). Therefore, in this sense,
our studied time-dependent electron flux are equivalent
to the angle-resolved energy spectrum.
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