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Quantum computation can be achieved by preparing an appropriate initial product state of qudits
and then letting it evolve under a fixed Hamiltonian. The readout is made by measurement on
individual qudits at some later time. This approach is called the Hamiltonian quantum computation
and it includes, for example, the continuous-time quantum cellular automata and the universal
quantum walk. We consider one spatial dimension and study the compromise between the locality k
and the local Hilbert space dimension d. For geometrically 2-local (i.e., k = 2), it is known that d = 8
is already sufficient for universal quantum computation but the Hamiltonian is not translationally
invariant. As the locality k increases, it is expected that the minimum required d should decrease.
We provide a construction of Hamiltonian quantum computer for k = 3 with d = 5. One implication
is that simulating 1D chains of spin-2 particles is BQP-complete. Imposing translation invariance
will increase the required d. For this we also construct another 3-local (k = 3) Hamiltonian that is
invariant under translation of a unit cell of two sites but that requires d to be 8.

PACS numbers: 03.67.Lx, 03.67.-a, 75.10.Jm

I. INTRODUCTION

There are several approaches for quantum computation
(QC), such as the standard circuit model [1], topological
QC [2, 3], adiabatic QC [4], measured-based QC [5, 6],
etc. In addition, quantum computation can be achieved
by preparing an appropriate initial product state of qu-
dits and then letting it evolve under a fixed Hamiltonian.
The readout is made by measurement on individual qu-
dits at some later time. Such an idea dated back to Be-
nioff [7] and Feynman [8]. This is called a Hamiltonian
quantum computer [9]. For example, Feynman provided
an example Hamiltonian that is able to execute universal
quantum computer, even though the interaction involves
four particles residing on sites that are not geometrically
local,

HFeynman =

k−1∑
j=0

σ+
j+1σ

−
j Aj+1 + h.c. (1)

There are two important ingredients here; see Fig. 1. The
first is the lowering and raising operators σ− and σ+ that
act on a set of spin-1/2 particles, representing a discrete
clock register. The clock state is initialized as |00 . . . 001〉
and, via the action of the Hamiltonian, can appear as
|00 . . . 01j0 . . . 0〉 with one single excitation, giving rise to
a unitary representation of a discrete time. The second
ingredient is the unitary gates Aj ’s that represent all the
gates (which can be one-qubit or two-qubit) that a quan-
tum computer will apply to any qubits or qubit pairs
that are in the computational register. If we denote the
initial state of these qubits in the computational regis-
ter as |ψ0〉, then under the evolution of the Hamiltonian
e−itHFeynman , the clock and computer register will be in a

superposition of the following state

|Ψ(t)〉 =
∑
j

cj(t)|00 . . . 01j0 . . . 0〉 ⊗AjAj−1 . . . A1|ψ0〉,

(2)
where the coefficients cj(t)’s depend on the actual time
t. The time evolved state |Ψ(t)〉 thus contains states that
represent any stage of quantum computation as gates are
being applied to the initial state: AjAj−1 . . . A1|ψ0〉. The
component of the computational register correspond-
ing to the clock being |10 . . . 0〉 gives the completion of
the computation, i.e., all the gates have been applied:
AkAk−1 . . . A1|ψ0〉. One can append many identity gates
to the original gate sequence in order to boost the proba-
bility of ending up at a state where the desired quantum
computation has been carried out. This gives a general
explanation why a Hamiltonian quantum computer can
execute universal quantum computation.

Feynman’s idea was used and generalized by Kitaev
to construct the so-called Local Hamiltonian Problems
(LHP) [10], which are concerned with the complexity
of finding the ground-state energy. It turns out the 5-
local LHP, which involves interacting terms of 5 particles
that are not necessarily geometrically local, is believed to
be a hard problem (called QMA in terms of complexity
class) even for quantum computers [10]. The locality k
for QMA-complete LHP was, in a series of work, reduced
to 2 [11, 12], even with nearest-neighbor interactions on
two spatial dimensions [13]. In one spatial dimension,
it was shown by Aharonov et al. that 2-local 13-state
Hamiltonians are QMA-complete [14], and the local di-
mension d is recently reduced to 8 [15]. A key novelty
in the one-dimensional case is that the use of qubits to
represent the discrete clock was replaced by patterns of
qudit configuration. This enables the reduction of inter-
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FIG. 1. (color online) A schematic diagram for Feynman’s
Hamiltonian quantum computer. The top row of dots are
qubits that constitute the clock. The bottom row of dots are
qubits that constitute the computational part, i.e., those that
one- and two-qubit gates are applied to. For example, the
gate Aj applies to qubits u and v, indicated by two thin lines,
when the two corresponding clock qubits have a change in
their configuration 01 → 10 (not shown). The interaction,
given by the clock transition and gate operation, is highly
non-local in general.

action range to 2-local.

In terms of one-dimensional Hamiltonian quantum
computer, there have been various constructions, for ex-
ample, the continuous-time quantum cellular automata
by Vollbrecht and Cirac [16], by Kay [17], and by Nagaj
and Wocjan [9] as well as the universal quantum walk by
Chase and Landahl [18]. The 1D Hamiltonians in these
constructions are nearest-neighbor two-body (or geomet-
rically 2-local), but involve the dimension of local Hilbert
space ranging from d = 8 [18] and higher [9, 16, 17]. Here
we study the compromise between the locality k and the
local dimension d in one spatial dimension. As the lo-
cality k increases, it is expected that the minimum re-
quired d should decrease. For example, as a corollary of
the results by Chase and Landahl, 6-local (k = 6) qubit
(d = 2) Hamiltonians are universal, in the sense of quan-
tum computation. For k = 4, at most d = 3 is needed
for universality. But for k = 3, how much lower than 8
can d be?

The different constructions mentioned in previous
paragraph share some common features: (i) the actual
state of the computational register is represented by
qubits in a consecutive region of a larger array of qubits;
(ii) and there are parallel arrays of qudits that repre-
sent the program of the quantum computer, encoding
instruction of gate movement and operation [9, 16–18].
All of them give rise to translation invariant Hamiltoni-
ans, except Ref. [18]. In this paper, we provide two con-
structions: (i) one that uses a 5-state 3-local Hamiltonian
but is non-translation invariant, and (ii) 8-state 3-local
Hamiltonian that is invariant under translation of a unit
cell of two sites. The former is inspired by the design
used in 1D QMA local Hamiltonian problems [14, 15],
where the previous focus was on 2-locality whereas ours
is on 3-locality instead. With the 2-locality relaxed to
3-locality, it is conceivable that the local Hilbert-space
dimension can be reduced (e.g. from d = 9 in Ref. [14]).
Ours is an explicit demonstration of this. Our second
construction is inspired by the translation invariant con-
structions in Refs. [9, 16, 17] and in particular the work

by Nagaj and Wocjan [9]. We explicitly modify a partic-
ular scheme with d = 20 in Ref. [9] and reduce d to 8.
However, there was one scheme with d = 10 in Ref. [9],
but we cannot reduce its d further.

The reason that our 5-state 3-local Hamiltonian is not
translationally invariant (not under translation of finite
lattice sites) is partly due to the site-dependence of gate
operations (see Sec II), and hence it is not regarded as a
quantum cellular automaton. One of the 2-local Hamil-
tonian automata of Nagaj and Wocjan uses the local di-
mension of d = 10 [9]. This implies the existence of a
4-local Hamiltonian automaton that requires d = 4 but
is invariant under translation of 2 sites, as well as a 6-
local Hamiltonian automaton with d = 3 that is invari-
ant under translation of 3 sites. But this leaves open the
question of 3-locality. Our previously mentioned d = 8
construction thus gives an upper bound on the lowest d in
this case. However, it does not seem to be that much of
an improvement, comparing to the 10-state 2-local con-
struction of Nagaj and Wocjan [9].

As summarized schematically in Fig. 2 and Fig. 4,
we consider one spatial dimension and focus on the
continuous-time evolution of Hamiltonian and focus on
the compromise between the locality k and the local di-
mension d. But we mention that there were construc-
tions using discrete-time quantum cellular automata, see
e.g. [19–22] and as well as Hamiltonian quantum com-
puter or quantum walk in two dimensions or higher, see
e.g. [23, 24]. The remaining of the paper is organized
as follows. In Sec. II we provide the 5-state 3-local con-
struction and explain how the Hamiltonian is obtained.
In Sec. III we consider translational invariance and con-
struct 8-state 3-local transition rules that lead to a 8-
state Hamiltonian invariant under translation of a unit
cell of two sites. This construction can be regarded as a
continuous-time quantum cellular automaton. In Sec. IV
we analyze the probability of success. We conclude in
Sec. V.

II. 5-STATE NON-TRANSLATIONALLY
INVARIANT CONSTRUCTION

We are motivated to explore the compromise between
the locality k and the local dimension d for 1D Hamilto-
nians capable of performing universal quantum compu-
tation. As explained in the Introduction, what remains
to be answered is the 3-local case. Our construction here
borrows the idea from 1D QMA local Hamiltonian prob-
lems [14, 15] but is otherwise new, and this adds a piece
to the ‘phase diagram’ illustrated in Fig. 2. It turns out
that a 2-local 9-state construction by Aharonov et al.
for adiabatic QC can be used in the context of Hamilto-
nian QC [14]. The 8-state 1D QMA LHP by Hallgren et
al. [15] actually uses effective transition rules involving 4
sites that are made from 2-local instructions. Our task
here is not to find Hamiltonians that are QMA-complete,
but to construct one that is universal for Hamiltonian
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FIG. 2. (color online) The status of locality k vs. local
Hilbert-space dimension (level) d for universal quantum com-
putation (BQP) in one spatial dimension.

quantum computer and that uses a small local dimen-
sion. Our concern is 3-local whereas that of 1D QMA
was 2-local [14]. Our transition rules are completely dif-
ferent. It turns out the local dimension we need is d = 5
and we have two different types of sites. The basis states
on odd and even sites are, respectively,

{B,C,	, • , + }, { [0], [1], I [0], I [1],©}.

(We can regard the system as consisting of the same kind
of particles on all sites, but their interactions have two
different preferred bases, depending on whether the site

is even or odd.) There are two kinds of qubits: and

I , and the superscripts are used to indicate the logical
qubit values (which will not be shown during the transi-

tions below). The symbol © is usually referred to as the
unborn/dead symbol. The bullet • and plus + are used
to space qubits as well as unborn/dead symbols. The
empty left and right triangles indicate direction of move-

ment. In addition, C also serves to swap and © . The
turn-around symbol 	 signals a change of direction. The
complete transition rules are listed as follows and it is
clear that the type of symbols implies the corresponding
even or odd site.

1: I + −→ Um( + I ) (3)

2: I • © −→ 	 © (4)

3: 	 © • −→ C © • (5)

4: C © −→ © C (6)

FIG. 3. (color online) Universal circuit for quantum compu-
tation. This shows that gate sequence that will be simulated
by our Hamiltonian quantum computers.

5a: +© C −→ C © + (7)

5b: •© C −→ •© 	 (8)

6a: 	 + −→ • I + (9)

6b: 	: + −→ • : B (10)

7a: B + −→ + B (11)

7b: B • : −→ + 	: (12)

The reverse rules are obvious except that for Rule 1:

1† : + I −→ U†m(I + ) (13)

The gates Um’s depend on the location and are exactly
the gates used in a universal circuit model (see Fig. 3),
where there are R rounds of gate application, in each
of which gates are applied sequentially between i-th and
(i + 1)-th qubits, for i = 1, . . . , n − 1. In terms of the
order that they are applied, the gates are (from left to
right)

U1,1, . . . , U1,n−1︸ ︷︷ ︸
1st round

, U2,1, . . . , U2,n−1︸ ︷︷ ︸
2nd round

, . . . , UR,1, . . . , UR,n−1︸ ︷︷ ︸
last round

.

(14)
We note that the choice of the set of universal gates is
arbitrary, for example, it can include the one-qubit gates
such as the Hadamard gate and the π/4-gate, as well as
the two-qubit CNOT gate [1], or even the W and S gates
to be used in Sec. III. A one-qubit gate is a trivial special
case of a two-qubit gate, where one of the two qubits is
acted by an identity gate, and this is the reason that only
two-qubit gates are drawn in Fig. 3. Furthermore, our
transition rules are inspired by those of Ref. [14] and use
the same idea of data movement, i.e., since each gate is
applied at a specific location, the particles need to be
moved to the next round before the gate sequence for
that round can take place.

Let us use ‘
[
’ and ‘

]
’ to mark the geometric boundaries

on the left and right sides, respectively. The symbol ‘ ’
marks the boundary between blocks and ‘:’ marks the
location to be not at the boundary. Except the first
block which has only one site, all other blocks have 2n



4

sites. There are R + 1 blocks, where R is the number of
rounds for gate application. Let us illustrate for the case
of n = 3 and R = 2. The initial state is

[0]
[
	 + + • © • © • © •

]
where the qubits ’s are properly initialized. We will
not show explicitly the logical values of the qubits and
will refer to the list of symbols such as above as the con-
figuration. Then the rule 6a takes the configuration to

[1]
[
• I + + • © • © • © •

]
The gate U1,1 will be applied and the configuration makes
a transition via the rule 1 to

[2]
[
• + I + • © • © • © •

]
Similarly, the gate U1,2 will be applied and the configu-
ration makes a transition via the rule 1 to

[3]
[
• + + I • © • © • © •

]
Then via the rule 2, a turn-around symbol	 is generated:

[4]
[
• + + 	 © • © • © •

]
and followed by a generation of a left-moving symbol C
via the rule 3:

[5]
[
• + + C © • © • © •

]
The qubit and the unborn symbol © swap via the
rule 4:

[6]
[
• + + © C • © • © •

]
The left-moving symbol C then swaps with the plus sym-
bol + via the rule 5a:

[7]
[
• + C © + • © • © •

]
The previous two steps repeat again:

[8]
[
• + © C + • © • © •

]
[9]

[
• C © + + • © • © •

]
The qubit and the unborn symbol © swaps via the
rule 4:

[10]
[
• © C + + • © • © •

]
The left-moving symbol cannot move but generates a
turn-around symbol 	 via the rule 5b:

[11]
[
• © 	 + + • © • © •

]
This then creates a bullet • and the right-moving symbol
B via the rule 6b:

[12]
[
• © • B + • © • © •

]

The right-moving symbol B then swaps with the plus +
in front of it via the rule 7a:

[13]
[
• © • + B • © • © •

]
Then the right-moving symbol B cannot move forward
but causes a turn-around symbol 	 to be generated via
the rule 7b (leaving behind a + symbol):

[14]
[
• © • + + 	 © • © •

]
This then repeats and the process continues of moving

the unborn symbol © across the block of qubits to the
left, as was shown previously in [5] to [13]:

[15]
[
• © • + + C © • © •

]
[16]

[
• © • + + © C • © •

]
[17]

[
• © • + C © + • © •

]
[18]

[
• © • + © C + • © •

]
[19]

[
• © • C © + + • © •

]
[20]

[
• © • © C + + • © •

]
A turn-around symbol is then generated and there is a
motion to the right:

[21]
[
• © • © 	 + + • © •

]
[22]

[
• © • © • B + • © •

]
[23]

[
• © • © • + B • © •

]
[24]

[
• © • © • + + 	 © •

]
After the turn-out symbol is generated, the whole process

of transporting the unborn symbol © repeats again:

[25]
[
• © • © • + + C © •

]
[26]

[
• © • © • + + © C •

]
[27]

[
• © • © • + C © + •

]
[28]

[
• © • © • + © C + •

]
[29]

[
• © • © • C © + + •

]
[30]

[
• © • © • © C + + •

]
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Finally, we arrive at a similar state to the initial one,
except that the whole qubit block has moved one block
to the right and the gates U2,1 and U2,2 will be applied
subsequently.

[31]
[
• © • © • © 	 + + •

]
[32]

[
• © • © • © • I + + •

]
[33]

[
• © • © • © • + I + •

]
After all the gates have been applied, the final state in
the history of computation arrives:

[34]
[
• © • © • © • + + I •

]
The step number (counting from zero) is indicated in the
square brackets [ ] on the left in the above configurations.
In general, for n qubits with R rounds, the total T =
(R− 1)(3n2 + n) + n+ 1.

What we have described above is the history of the
computation via the transition rules (if the computation
were run via discrete time). We will refer to the cor-
responding quantum states |ψt〉’s as the history states.
However, the quantum computation will be executed not
by discrete transitions, but via the continuous time evo-
lution via the Hamiltonian: exp(−iHt). The procedure
of running such a Hamiltonian quantum computer is (1)
prepare proper initial state, e.g. in [0] above, (2) let it
evolve under the Hamiltonian H, and (3) perform mea-
surement in the computational basis at some time τ .
From the measurement outcome of all sites, we will be
able to determine at what stage of the computation the
projected state is, and what the values of the qubits are.
What remains to be shown is that the probability of ar-
riving at a desired computation is high, which will be
analyzed in Sec. IV. There, it will also be clear at what
time the measurement should be taken (in fact, at a ran-
dom moment).

Construction for the Hamiltonian. We remark that
these transition rules give rise to a Hamiltonian. For
example, the rule 3 (including forward and backward)
will contribute the following terms:

−
∣∣∣C © •〉〈	 © • ∣∣∣− ∣∣∣	 © •〉〈C © • ∣∣∣ , (15)

applicable at appropriate locations. For another exam-
ple, the rule 6a will contribute the following terms,

−
∑
s=0,1

(∣∣∣ • I [s] +
〉〈
	 [s] +

∣∣∣
+
∣∣∣	 [s] +

〉〈
• I [s] +

∣∣∣) , (16)

where we have accounted for all possible qubit states. For
another example from the rule 1, we have the following
terms

−
∑
s

(
[Um]

s′1,s
′
2

s1,s2

∣∣∣ [s′1] + I [s′2]
〉〈
I [s1] + [s2]

∣∣∣
+ [U†m]

s′1,s
′
2

s1,s2

∣∣∣I [s′1] + [s′2]
〉〈

[s1] + I [s2]
∣∣∣) .(17)

FIG. 4. (color online) The status of locality k vs. local
Hilbert-space dimension (level) d for universal quantum com-
putation (BQP) in one spatial dimension. Here the Hamilto-
nian is restricted to translationally invariant ones.

As the construction for the Hamiltonian is clear, we will
not explicitly write down all the terms. Moreover, it is
the effective Hamiltonian in the basis of the history states
that matters, which we discuss in Sec. IV.

III. 8-STATE TRANSLATIONALLY INVARIANT
CONSTRUCTION

The 5-state construction in the last section yields a
Hamiltonian that is not translationally invariant. If we
impose the requirement that the resulting Hamiltonian to
be translationally invariant (at least w.r.t. to translation
across unit cells containing a fixed finite number of sites),
then the minimum local dimension d that is required to
achieve a universal Hamiltonian quantum computer will
be larger. In Fig. 4 we present the status of such 1D
Hamiltonians on the k vs d diagram. It turns out that
we can find a construction using a local dimension d =
8. This can be regarded as the 3-local version of the
continuous-time quantum cellular automata, and it has
the advantage of serving as a programmable quantum
computer. This quantum computer is also operated in
three steps: (i) prepare appropriate initial product state,
(ii) let the system evolve under the Hamiltonian, and (iii)
perform measurement on all sites at a later time.

The transition rules used here are translationally in-
variant, as shown below. Our construction is a modifica-
tion of the 2-local 20-state quantum cellular automaton
by Nagaj and Wocjan [9], and it also has a unique se-
quence of the history states via the transition rules on a
properly initialized state. Similar to the construction in
Sec. II, the dynamics of the transition rules (or the pro-
gram) is such that “particles”, mediating gate instruc-
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tions, move above the data so that gates are executed
at the right location. This data-movement technique
comes from the original construction in Ref. [14]. On
one sub-lattice (sites labeled by, say, half-integers), the
local Hilbert space is composed of the following states

{I, B,J,C,⇒,→,	, ∗}, (18)

which can be regarded as the possible states of a cursor,
whereas on the other sub-lattice (sites labeled by, say,
integers), it is composed of the following states

{ I , S ,W, • } ⊗ {0, 1}, (19)

a tensor product of program and data registers. Hence
d = 8 at every site. The one-dimensional physical lattice
thus has two sites in a unit cell. We note that the symbols
S and W are associated with the swap gate S and the W
gate, respectively, where

S =

 1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (20)

and

W =


1 0 0 0
0 1 0 0
0 0 1√

2
−1√

2

0 0 1√
2

1√
2

 , (21)

for which it is chosen for convenience that the control
qubit is sitting geometrically to the left of the target
qubit in our one-dimensional geometry. One can show
that S and W gates can simulate a universal set of gates
(in fact only W is needed, if it can be applied to any two
qubits) and therefore S and W also constitute a set of
universal gates; see Appendix A for a proof.

In the original construction of Nagaj and Wocjan [9]
on every site there are d = 20 basis states given by

{ I , S ,W, • ,©I ,©S ,©W , I, B,	} ⊗ {0, 1}.

To reduce the local dimension d to 8, we remove six of
the symbols in the first bracket: {©I ,©S ,©W , I, B,	},
leaving those in Eq. (19) composed of program and data
registers. But to maintain the same computational ca-
pability we have to insert one additional site (referred
to as the site of a cursor) with possible states shown in
Eq. (18) in between every two original sites and modify
the transition rules. It is based on their scheme that our
scheme is constructed.

The transition rules of our Hamiltonian computer are
listed as follows.

1a:
∗ J
• −→

C ∗
•

(22)

1b:
∗ C
• −→

	 ∗
•

(23)

1c:
∗ C

A −→
C ∗
A

(24)

We note that the gate symbol A can be any one of the
three: { I , S ,W}, where I is the idenity gate.

2a:
⇒ ∗
• −→

∗ I

•
(25)

2b:
→ ∗
• −→

∗ B

•
(26)

3a:

	
• •

1

−→
⇒
• •

1

(27)

3b:

	
• •

0

−→
→
• •

0

(28)

4a:

I

• A

x y

−→
⇒

A •
A (x, y)

(29)

4b:
B

• A −→
→
A •

(30)

5a:

I
• •
1

−→
J
• •
1

(31)

5b:

B
• •
0

−→
J
• •
0

(32)

The reverse rules are obvious except that for Rule 4a:

4a† :

⇒
A •
x y

−→
I

• A

A †(x, y)

(33)
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The total Hilbert space is composed of state of the following form:

|ϕ〉 =

L⊗
j=1

(∣∣∣bj+ 1
2

〉
⊗ |pj〉 ⊗ |dj〉

)
j
, (34)

with bj+ 1
2

denoting the state of the cursor register, pj the program register and dj the data register.

The initial state |ψ0〉 is

[0]

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

bj+ 1
2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ J

pj • • • • • • I W S I I S W I •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0

where wi’s correspond to the actual qubits in the circuit model (see Fig. 3) and needs to be properly initialized. We
also note that the gates in the program register pj ’s are arranged in the order

I, U1,1, . . . , U1,n−1︸ ︷︷ ︸
1st round

, I, I, U2,1, . . . , U2,n−1︸ ︷︷ ︸
2nd round

, I, . . . , I, UR,1, . . . UR,n−1︸ ︷︷ ︸
last round

, I, (35)

with Uk,j being one of the three possible gates in the set {W,S, I}, and, in comparison with the gate sequence in
Eq. (14), here each round of gates is both preceded and followed by an identity gate. It is important to add the extra
identity gates I’s so that there will not be any undesired gate operation between the qubit ω1 and the qubit to its left
nor between the qubit ωn and the qubit to its right [9]. Moreover, the qubit pattern in the data register, as illustrated
in the example above, is

0 100 . . . 0︸ ︷︷ ︸
(R−1) blocks

1ω1ω2ω3 . . . ωn 100 . . . 0︸ ︷︷ ︸
(R−1) blocks

10, (36)

where the spacing between the 1’s being the same as the number of gates (including the identity gates) in a round.
We note that there needs to be at least (R− 1) blocks of space to the left of all gates, so that R rounds of gates can
be completely executed. The particular pattern was designed by Nagaj and Wocjan [9] to appropriately activate gate
operations. Via the rule 1a, the initial state makes a transition to the following

[1]

bj+ 1
2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ C ∗
pj • • • • • • I W S I I S W I •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0

where the solid left-triangle moves one step forward and turns into a empty left-triangle. Via the rule 1c, the empty
left-tirangle moves one step forward:

[2]

bj+ 1
2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ C ∗ ∗
pj • • • • • • I W S I I S W I •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0

and continues until the configuration becomes the following one:

[9]

bj+ 1
2

∗ ∗ ∗ ∗ ∗ C ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
pj • • • • • • I W S I I S W I •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0

The rule 1b then kicks in, generating a turn-around symbol 	:

[10]

bj+ 1
2

∗ ∗ ∗ ∗ 	 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
pj • • • • • • I W S I I S W I •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0

Via the rule 3a, the turn-around symbol becomes a double right-arrow:

[11]

bj+ 1
2

∗ ∗ ∗ ∗ ⇒ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
pj • • • • • • I W S I I S W I •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0
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The double right-arrow moves and makes a transition via the rule 2a into a solid right-triangle:

[12]

bj+ 1
2

∗ ∗ ∗ ∗ ∗ I ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
pj • • • • • • I W S I I S W I •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0

This is where the gate I is applied and a double right-arrow is generated:

[13]

bj+ 1
2

∗ ∗ ∗ ∗ ∗ ⇒ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
pj • • • • • I • W S I I S W I •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0

Note that for convenience, we will not change the symbols ωi’s even if nontrivial gate effect arises. The two boxes
indicate where the two qubits were affected by the gate operation. The previous two steps repeat a few times, but
note that the gates will have no effect outside the qubit block ωi’s, and we arrive at the following configuration:

[26]

bj+ 1
2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ I ∗ ∗
pj • • • • • I W S I I S W • I •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0

It then transits (via the rule 4a) into

[27]

bj+ 1
2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ⇒ ∗ ∗
pj • • • • • I W S I I S W I • •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0

The double right-arrow moves and becomes the solid right-triangle (via the rule 2a):

[28]

bj+ 1
2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ I ∗
pj • • • • • I W S I I S W I • •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0

At this moment the solid right-triangle makes a transition (via the rule 5a) to a solid left-triangle:

[29]

bj+ 1
2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ J ∗
pj • • • • • I W S I I S W I • •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0

The solid left-triangle moves one step forward and turns into an empty left-triangle (via the rule 1a):

[30]

bj+ 1
2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ C ∗ ∗
pj • • • • • I W S I I S W I • •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0

The empty left-triangle can move to the left step by step via the rule 1c, until the configuration becomes:

[38]

bj+ 1
2

∗ ∗ ∗ ∗ C ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
pj • • • • • I W S I I S W I • •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0

The empty left-triangle moves to the left and turns into a turn-around symbol (via the rule 1b):

[39]

bj+ 1
2

∗ ∗ ∗ 	 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
pj • • • • • I W S I I S W I • •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0
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Because of two qubits nearby are 00, the turn-around symbol becomes a right arrow (via the rule 3b):

[40]

bj+ 1
2

∗ ∗ ∗ → ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
pj • • • • • I W S I I S W I • •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0

The right arrow moves one step to the right and becomes an empty right-triangle (via the rule 2b):

[41]

bj+ 1
2

∗ ∗ ∗ ∗ B ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
pj • • • • • I W S I I S W I • •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0

Unlike the solid right-triangle, the empty right-triangle does not induce gate operation and simply moves one step
forward and turns into a right arrow:

[41]

bj+ 1
2

∗ ∗ ∗ ∗ → ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
pj • • • • I • W S I I S W I • •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0

The previous two steps repeat a few times and we arrive at

[55]

bj+ 1
2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ B ∗ ∗ ∗
pj • • • • I W S I I S W • I • •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0

The empty right-triangle moves and becomes a right arrow:

[56]

bj+ 1
2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ → ∗ ∗ ∗
pj • • • • I W S I I S W I • • •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0

The right arrow moves and becomes an empty right-triangle:

[57]

bj+ 1
2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ B ∗ ∗
pj • • • • I W S I I S W I • • •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0

Via the rule 5b, the empty right-triangle turns into a solid left-triangle:

[58]

bj+ 1
2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ J ∗ ∗
pj • • • • I W S I I S W I • • •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0

It then moves one step to the left and turns into an empty left-triangle:

[59]

bj+ 1
2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ C ∗ ∗ ∗
pj • • • • I W S I I S W I • • •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0

After a few rounds, we finally arrive at the final state |ψT 〉 via the transition rules and all the gates have been applied:

[154]

bj+ 1
2

C ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
pj • I W S I I S W I • • • • • •
dj 0 1 0 0 0 1 w1 w2 w3 1 0 0 0 1 0

There is no futher forward transition. With the above examples and the transition rules, we can count the total

number of transitions made in getting to the last configuration is T = 6 + (n+ 1)
(

3R(R − 1)(n+ 1) + 9R − 5
)

and

there are in total T + 1 history states. The step number (counting from zero) is indicated in the square brackets [ ] in
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the above configurations. As remarked earlier, the quantum computation will be executed not by discrete transitions,
but via the continuous time evolution via the Hamiltonian: exp(−iHt). The construction for the Hamiltonian is
similar to that in Sec. II, we will not explicitly write down all terms. All that is needed is the effective Hamiltonian
in the subspace of the history states. We will analyze the probability of arriving at a desired computation using the
history-state basis in Sec. IV.

Periodic boundary condition. We have been using
an open boundary condition, namely, the first site is not
connected to the last site. What if our geometry is a
circle? In this case, the transition will not terminate, but
will continue forever, with gates being applied multiple
times. To prevent this from happening, we simply add
an additional column at the last site with ∗ replaced by a
state X. There is no transition rule regarding X, so the
transition will terminate once the symbol C is one site
next to X from the other end. But this raises dimension d
on the half-integer site to 9. We note that for the periodic
boundary condition the local dimension of the 2-local 10-
state construction by Nagaj and Wocjan [9] will need to
increase to 12 and their 20-state construction needs to be
modified to have 22 states.

IV. PROBABILITY ANALYSIS

One common feature of both the above constructions is
that with the proper initial condition, there is only one
forward transition rule that applies, except at the last
configuration. At any stage, there is only one backward
transition rule that applies, except at the initial config-
uration. We will refer to the quantum states associated
with these configurations linked via transition rules as
the history states. In the basis of the valid history states
|ψt〉 (t = 0 . . . T via the transition rules), the effective
Hamiltonian is

Heff = −
T−1∑
t=0

|ψt+1〉〈ψt|+ |ψt〉〈ψt+1|. (37)

For simplicity, we will also denote |ψt〉 simply by |t〉, and
the transition probability to arrive at the state |m〉 start-
ing from |0〉 after evolving for time duration τ is

pτ (m|0) =
∣∣〈m| e−iHeffτ |0〉

∣∣2 . (38)

As shown by Nagaj and Wocjan [9], for such a one-
dimensional quantum walk Hamiltonian, the probability
of arriving at states m > T/q (where q is an positive
integer greater than unity) is

Pm>T/q =
∑

m>T/q

1

τ0

∫ τ0

0

dτ pτ (m|0) ≥ q − 1

q
−O(T/τ0).

This shows that the averaged total probability of ending
up at a history state with label m > T/q is very high. As
mentioned in the Introduction, the trick to boost the suc-
cess probability of completing the desired computation is
to pad sufficient identity gates so that for any m > T/q

the desired circuit has been executed. Nagaj and Wocjan
simply took q = 6. Note that τ0 only needs to be chosen
so that T/τ0 is small, for example, τ0 = O(T log T ).

Measurement. As implied by the above averaged prob-
ability, the measurement scheme is to fix an appropriate
τ0 and randomly at a time τ between 0 and τ0, perform
measurement on all sites in the computational basis and
check the configuration to see if a desired history state
m > T/q is obtained. If so, the computation has passed
the desired part and the remaining gates are all identity,
and the output of the computational qubits is accepted.
If not, the measurement outcome is thrown away, and the
whole computation is re-started. But the analysis above
shows that with sufficient pad of identity gates and an
appropriately chosen τ0, the probability of completing
the quantum computation is high.

V. CONCLUDING REMARKS

We address the compromise between the locality k and
the local Hilbert space dimension d for one-dimensional
Hamiltonian quantum computation. Specifically, we pro-
vide a construction of Hamiltonian quantum computer
for k = 3 with d = 5. One implication is that simulating
the dynamics for 1D chains of spin-2 particles is BQP-
complete as it would allow us to simulate a quantum
computer. This construction, together with the previous
ones, gives rise to a delineation of the border between
easy and hard one-dimensional Hamiltonians in terms
of the complexity class BQP. It is possible that further
improvement of the boundary can be made. Imposing
translation invariance increases the required local dimen-
sion d. We thus also construct another 3-local (k = 3)
Hamiltonian that is invariant under translation of two
sites but that requires d to be 8. Simulating the dynam-
ics for such translationally invariant Hamiltonians is also
a BQP-complete task. Correspondingly, there is also an
easy-hard boundary on the locality k vs local dimension
d plane for 1D translationally invariant Hamiltonians.

We do not know whether our constructions are opti-
mal, namely whether the local Hilbert space dimension
d is as small as it can be while maintaining the univer-
sality. For the 5-state construction, we believe it is likely
the case if one insists that the local dimension on every
site be the same. On each site of one sub-lattice, there

are two different kinds of qubits (I and ), and the
gate application exploits the two kinds of qubits. The

additional state © (unborn/dead) is also necessary. If
we try to use only one kind of the qubit (hence reduc-
ing dA to 3), we have to increase the local dimension
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at the other sub-lattice to dB = 7 by adding two other
symbols to enact the gate operations (the construction is
not shown here). For the continuous-time quantum cellu-
lar automata, our 3-local 8-state construction can be re-
garded as an improvement from the 2-local 20-state con-
struction by Nagaj and Wocjan. These two constructions
both have unique forward and backward transitions and
the effective Hamiltonians are the same as the 1D quan-
tum walk. The 2-local 10-state construction of Nagaj
and Wocjan does not have unique forward and backward
transitions and its Hamiltonian does not correspond to a
1D quantum walk. But d = 10 is the lowest known so far
for translationally invariant 2-local Hamiltonians. It may
be possible for d = 8 in our 3-local case to be further re-
duced if one does not use Hamiltonians constructed from
unique forward and backward transitions for the appro-
priate history states. But we have not found one that has
a lower local dimension. Regarding the local dimensions
of 3-local quantum cellular automata, we also have other
constructions with mixed local dimensions. For example
we have one construction with mixed dimensions dA = 2
and dB = 14, another construction with dA = 5 and
dB = 12, and yet another one with dA = 6 and dB = 10.
We do not list these other constructions here.

One can ask similarly the compromise between k and
d for one-dimensional QMA-complete local Hamiltonian
problems. The lowest local dimension for 2-local Hamil-
tonians is d = 8 due to a work by Hallgren, Nagaj and
Narayanaswami [15]. This means that 6-local (k = 6)
qubit (d = 2) Hamiltonian problems are already QMA-
complete. For k = 4, at most d = 3 is needed for QMA-
completeness. But for k = 3, how much lower than 8
can d be? Our 3-local 5-state construction does not give
rise to a Hamiltonian that is QMA-complete, as there are
illegal configurations that remain zero energy even if we
impose 3-local penalty terms.
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Summer Research Program 2015 at the Stony Brook Uni-
versity, where part of the work was carried out.

Appendix A: Elementary proof of the universality of
the W gate

In this Appendix we will provide a proof that the W
gate itself is universal. In the process of building up to
the proof, we will also review a proof by Aharaonov that
the Hadamard and Toffoli gates constitute a universal
set of gates [25]. The fact that the W gate (21) alone
is universal has been known, e.g., see Ref. [22]. We will
not be concerned with the efficiency, and we will add the

swap gate S to our repertoire of gates, i.e., {S,W}. If one
can apply W gate between any pair of qubits (including
the choice of which qubit being the control and which
being the target), then the swap gate is not necessary,
as it corresponds just to re-wiring of the circuit. In our
1D continuous-time quantum cellular automaton, we fix
the order of the control and target qubits, so we need the
S gate there. When necessary, we will use subscripts to
denote the control s and target t in the W gate: Ws→t
or equivalently denote them inside the bracket: W (s, t).

Let us begin by making some simple observations.
First, if we fixed the control qubit to be in |1〉 then
the action of the W gate on the target is the following
Hadamard-like gate, denoted by Hy,

Hy =
1√
2

(
1 −1

1 1

)
. (A1)

Thus with an ancilla, we can use the W gate to simulate
the Hy gate and include it in our repertoire. Further-
more, by a direct calculation, we have

W 4
1→2SW

4
1→2SW

4
1→2 = I1 ⊗ Z2, (A2)

and thus we can generate a Pauli Z gate

Z =

(
1 0

0 −1

)
. (A3)

The product of Hy and Z gives rise to the usual
Hadamard gate H,

H ≡ HyZ =
1√
2

(
1 1

1 −1

)
. (A4)

With the Hadamard gate and the Z gate, we obtain the
Pauli X gate

X = H ZH =

(
0 1

1 0

)
. (A5)

One can also obtain the Control-NOT gate (CX) via

CX = W 2
1→2SW

6
1→2SW

2
1→2SW

6
1→2 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ,

(A6)
which can also allow us to get the X gate. From the
Hadamard gate H and the CX gate, we can obtain the
Control-Z gate CZ . With the X and Z gates, we can
obtain the Y gate (the Pauli Y gate up to a factor of i)
and its inverse:

Y ≡ XZ =

(
0 −1

1 0

)
, Y −1 =

(
0 1

−1 0

)
. (A7)
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FIG. 5. The circuit to simulate the Λ2(Y ) gate using the
Toffoli and Hadamard gates. This construction relies on an
identity that Y = XHXH.

FIG. 6. The circuit to simulate the Λ2(Y ) gate via gates
generated by W gate or equivalently CHy gate. Note that we

have simplied the notation by replacing W 3 by a CH3
y

gate

and that Control-NOT, X and Y gates can all be generated
by the W gate, as explained in the text.

With the above observation, we are almost ready to
prove the universality of the W gate. But before we do
that it is instructive to review the proof by Aharonov that
the Toffoli gate T and the Hadamard gate H constitute
a universal set of quantum gates [25]. In the proof she
used a result by Kitaev [26] that the Hadamard gate and
the Control-Phase gate Λ(P (i)),

Λ(P (i)) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i

 , (A8)

are also a universal set of gates. She then applied the
notion of encoded universality to turn the (two-qubit)
Control-Phase gate into an equivalent three-qubit gate
(with only real numbers) which is in fact the Control-

Control-Y gate, which we write explicitly below,

Λ2(Y ) ≡



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0


. (A9)

As shown in Fig. 5, this gate can be simulated by the
Toffoli and the Hadamard gates, as

Λ2(Y = XZ) = T (1, 2, 3)H(3)T (1, 2, 3)H(3), (A10)
where the numbers inside the brackets indicate which
qubits are acted by the gate, and the explicit expression
of the Toffoli gate (a.k.a. Control-Control-NOT gate) is

T ≡



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


. (A11)

Therefore, the Hadamard and Toffoli gates are universal.
Finally, we now return to finish the proof that the

W gate is itself universal. Since we already have the
Hadamard gate in our repertoire, we prove the univer-
sality of the W gate by showing that the gate Λ2(Y ) can
be simulated by the gates in the repertoire set generated
from W , i.e.,

Λ2(Y ) = X(1)X(2)Y (3)W (1, 3)3 CX(1, 2)W (2, 3)3

CX(1, 2)W (2, 3)3X(2)X(1), (A12)

the circuit for which is shown in Fig. 6. This equality
can be verified directly by matrix multiplication or by
using the elementary gate multiplication and identities
(see chapter 4 of Ref. [1]). More specifically, by checking
all possible control bits (00, 01, 10, 11) one can verify that
the combination of the five control gates in the middle of
the circuit (Fig. 6) gives rise to a Control-Control-Y −1

gate, but conditioned on the first two qubits not both
being 0. Including the Y gate makes this block of gates
become a Control-Control-Y gate conditioned on the first
two qubits being both 0. The X gates on both qubits be-
fore and after the previous block make the whole circuit
become a Control-Control-Y gate (conditioned on first
two qubits being both 1), i.e., Λ2(Y ), hence completing
the proof.
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