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The minimum probability of error (MPE) measurement discriminates between a set of candidate
quantum states with the minimum average error probability allowed by quantum mechanics. Con-
ditions for a measurement to be MPE were derived by Yuen, Kennedy and Lax (YKL) [1]. MPE
measurements have been found for states that form a single orbit under a group action, i.e., there is
a transitive group action on the states in the set. For such state sets, termed geometrically uniform
(GU) in [2], it was shown that the ‘pretty good measurement’ (PGM) attains the MPE. Even so,
evaluating the actual probability of error (and other performance metrics) attained by the PGM on
a GU set involves inverting large matrices, and is not easy in general. Our first contribution is a
formula for the MPE and conditional probabilities of GU sets, using group representation theory.
Next, we consider sets of pure states that have multiple orbits under the group action. Such states
are termed compound geometrically uniform (CGU). MPE measurements for general CGU sets are
not known. In this paper, we show how our representation-theoretic description of optimal meas-
urements for GU sets naturally generalizes to the CGU case. We show how to compute the MPE
measurement for CGU sets by reducing the problem to solving a few simultaneous equations. The
number of equations depends on the sizes of the multiplicity space of irreducible representations. For
many common group representations (such as those of several practical good linear codes), this is
much more tractable than solving large semi-definite programs—which is what is needed to solve the
YKL conditions numerically for arbitrary state sets. We show how to evaluate MPE measurements
for CGU states for some examples relevant to quantum-limited classical optical communication.

I. INTRODUCTION

Optimal discrimination of quantum states is central to
a large number of key problems in quantum information
theory. Quantum state discrimination finds applications
in: (i) computation—for instance, in quantum algorithms
for hidden subgroup problems [3, 4]; (ii) sensing—for
instance, in task-specific optical imaging [5], quantum
reading [6], and pixelated image discrimination [7]; (iii)
communication—for instance, in decoding error correct-
ing codes for classical communication over a quantum
optical channel [8–11] and optimal M -ary phase discrim-
ination under a photon budget constraint [12]. The prob-
lem of describing a quantum measurement to optimally
discriminate between a set of quantum states, i.e., to
optimize a given metric averaged over the states and
the transition probabilities induced by the measurement,
was first considered by Yuen, Kennedy and Lax [1], who
showed that the optimal measurement is one whose meas-
urement operators satisfy a particular semi-definite pro-
gram, which is described later in this paper (we use op-
timal measurement, minimum probability of error (MPE)
measurement and Yuen-Kennedy-Lax (YKL) measure-
ment interchangeably). For arbitrary states however,
finding the solutions of the YKL semi-definite program
can be computationally hard. However, [13] have shown
that a certain measurement called the pretty good meas-
urement (PGM) comes close to the optimal measurement
for arbitrary states. Moreover, upper and lower bounds
on the MPE have been recently obtained for the general
problem [14]. Restricting to pure states with a group
symmetry makes the problem of finding the exact MPE
more tractable. Helstrom considered the problem of find-

ing the optimal measurement and the exact MPE for
states that have cyclic group symmetry [15]. This was
extended to arbitrary abelian groups with a transitive
action by Forney and Eldar [16]. In fact, they showed
that the pretty good measurement (PGM), also called
the least squares measurement (LSM), as defined in [17]
and [18], is optimal in this case. Later, for any non-
abelian group with a transitive action on the states, El-
dar et al., [19] showed that the PGM was again optimal.
However, an expression for the MPE was not known. In
[20, 21], Chiribella et al., have used representation theory
to obtain explicit expressions for the minimum probabil-
ity of error and the structure of the optimal measurement
for the GU case, which was applied to group covariant
state sets. In this paper, we also use group represent-
ation theory to obtain an expression for the minimum
probability of error, which is however in terms of double
cosets of the group and the stabilizer subgroup. This
formulation is useful in the computations we consider,
especially with the action of the symmetric group. In
[22], the YKL conditions for the optimal measurement
was were written in terms of equalities (rather than an
inequality, which is usually harder to check). Recently,
in [23], a generalization of the optimal measurement to
non-projective measurements has been considered.

When the states are compound geometrically uniform
(CGU), i.e., they have multiple orbits under the group
action (restricting to group actions that are permutation
representations), very little is known about the structure
of the optimal measurement. In [24], Chiribella et al.,
find upper and lower bounds on the number of orbits
of the CGU action for extremal measurements (which
are extremal points of a convex set of measurements).
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In this paper, our focus is to minimize the computation
in a different way. We minimize the number of equa-
tions to solve to obtain the optimal measurement and
the minimum probability of error. Solving the general
CGU state discrimination problem is particularly use-
ful for designing the optimal decoder of linear codes for
classical quantum (cq) channels, i.e., for sending clas-
sical data over a quantum (such as, an optical) channel.
It was recently shown that a generalization of Arikan’s
polar codes [25] can achieve the Holevo capacity of any
cq channel [10].

Any linear code has an automorphism group and the
action of this group on the code is a permutation action
and hence is a CGU set. This group action carries over,
in general, to modulated code words. For example, for
binary codes over a binary-phase-shift coherent-state al-
phabet (|α〉, | − α〉), the bit flip operation maps to the
π phase-shift operation in the modulated domain, i.e.,

Ûπ| ± α〉 = | ∓ α〉, where Ûπ = eiπâ
†â. Therefore, find-

ing the optimal decoder of a set of pure states with a
CGU action will not only enable finding the best per-
formance of any coherent-state-modulated linear code,
but also lend useful insight towards designing structured
optical receivers to realize the optimal measurement. In
[2], Forney gives several examples of codes whose auto-
morphism groups have a GU action on the code space.

In this paper, we consider both the GU and the CGU
actions on sets of linearly-independent pure states. In
the case of GU action, we show how one can use repres-
entation theory to explicitly calculate the probability of
error and the conditional probabilities. Then we consider
the CGU action and show that one can reduce the prob-
lem to a set of simultaneous equations. The number of
these equations depends on the sizes of the multiplicity
spaces of the representation and the number of orbits.
We will present examples to show the usefulness of this
method when the representations have small multiplicit-
ies and few orbits. In particular, we will show examples
of families of codes of length N and rate R (i.e., number
of codewords to discriminate, n = 2NR), such that the
YKL conditions give rise to n2 simultaneous equations,
whereas our method requires solving a small constant
number of simultaneous equations. This number comes
from the dimension of the multiplicity spaces as we ex-
plain later and is independent of N .

This paper is organized as follows. In Section II, we
describe the problem of discriminating between quantum
states when the states are pure and are linearly independ-
ent. We describe the Gram matrix approach to comput-
ing the YKL measurement given in Helstrom [15] along
with a caveat about this approach. In Section III, we
present some examples of brute-force calculations of the
MPE measurement for examples relevant to optical com-
munication, and demonstrate why this technique is not
scalable. In Section IV, we describe the optimal meas-
urement for GU states. This description generalizes the
ones in [15, 16] for abelian groups to non-abelian groups
using group representation theory. Then in Section V, we

generalize the results from the previous section, and de-
scribe how one can obtain the optimal measurement for
CGU states. We show how to reduce the number of sim-
ultaneous equations based on the representation of the
group, from the full number of equations as specified by
the YKL conditions. Then we give examples to illustrate
this method, and its usefulness in the context of optical
communication. Finally, in Section VI, we conclude the
paper with a summary and open questions.

II. OPTIMAL MEASUREMENTS FOR PURE
STATES

In this section, we describe two approaches to finding
the optimal measurement. Suppose we are given an en-
semble {pi, |ψi〉} , 1 ≤ i ≤ n, of n linearly-independent
pure states and an associated prior distribution. It can
be shown that when distinguishing pure states, the op-
timal measurement is an n-element projective measure-
ment, and is unique [15]. Therefore, let us assume that
the optimal measurement is given by the orthonormal
basis {|wi〉, 1 ≤ i ≤ n}. Now define two matrices: the
matrix M whose columns are the un-normalized pure-
state vectors

√
pi|ψi〉 and the matrix X whose elements

are xij =
√
pj〈wi|ψj〉. Since the states are linearly inde-

pendent, each state lies in an n dimensional Hilbert space
and M is an invertible n× n matrix. The matrix X de-
notes the solution to the state discrimination problem
since all the information about the measurement vectors
can be obtained from X. Yuen, Kennedy and Lax showed
that X must satisfy the equations [1]:

X†X = Γ, and (1)

xkmx
∗
mm = xkkx

∗
mk , (2)

where Γ is the Gram matrix of the set of states, i.e.,
(Γ)ij = 〈ψi|ψj〉. In Helstrom’s book [15], it is suggested
that these equations lead to the solution. However, we
would like to emphasize here that these two equations
alone do not give a unique solution. In [1], it was shown
that along with the above two equations, an inequality
must be satisfied. Only when the inequality is considered,
one gets a unique solution in general. However, in certain
cases of interest, one can get a small set of solutions using
the above two equations as we show later.

It is useful to view this in terms of the polar decom-
position. The left and right polar decomposition of the
matrix M is given by,

M = U
√
M†M =

√
MM†U . (3)

In the above equation, M†M is just the Gram matrix Γ
of the set of states {|ψ1〉, . . . , |ψn〉} and U is a unitary

matrix. Denote
√
M†M by P . It is known that if M is

invertible, then P and U are unique, with P being a pos-
itive semi-definite matrix. Clearly, P satisfies P †P = Γ
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as does any matrix of the form V P , where V is unitary.
Since V P always satisfies Eq. (1) for any unitary V , it
is chosen so that V P satisfies Eq. (2) as well. Therefore,
the matrix X is in general of the form V P and the meas-
urement vectors |wi〉 are columns of the matrix UV †.
Finally, note that if the solution X turns out to be such
that pkxkk = pmxmm, then Eq. (2) becomes xkm = x∗mk
for all k and m, i.e., X is Hermitian. Below, we will show
that the above condition is satisfied when {|ψi〉} is a GU
set.

III. BRUTE FORCE CALCULATION OF THE
MPE MEASUREMENT

Helstrom calculated the optimal measurement for sev-
eral simple examples [15], by assuming that any sym-
metry in Γ is carried over unaltered, to X. For example,
he considered the equiprobable ternary (n = 3) coher-
ent state set {| − α〉, |0〉, |α〉}, α ∈ R. Since the in-

ner products, 〈±α|0〉 = 〈0| ± α〉 = e−|α|
2/2 ≡ κ, and

〈±α|∓α〉 = e−2|α|2 = κ4, this ensemble has an ‘isosceles’
geometry. He argues therefore,

Γ =

 1 κ κ
κ 1 κ4

κ κ4 1

⇒ X =

 a d d
b c e
b e c

 . (4)

With this assumption of symmetry for X, the n2 = 9 sim-
ultaneous equations resulting from the YKL equality con-
ditions Eqs. (1) and (2) reduce to 5 simultaneous equa-
tions in a, b, c, d, e, which Helstrom solved (four variables
were eliminated analytically, and the last one was solved
for numerically using the Newton method) to obtain (all
entries of) X solely in terms of σ, and hence evaluated
the average probability of error, Pe = 1− (|a|2 +2|c|2)/3.

A rate R code C of length N codewords over a binary
phase-shift keying (BPSK) alphabet {|α〉, | − α〉}, has
n = 2NR codewords. Each row of the n × n Gram mat-
rix of the codebook, Γ is a permutation of the first row,
if C is a linear code. Given this symmetry, the n2 sim-
ultaneous equations of the YKL conditions reduce to n
equations, since each row of X must also be the same
permutation as the corresponding row of Γ. One might
assert—based on Helstrom’s argument on the symmetry
in Γ carrying over to X—that the number of distinct
entries 0 < d ≤ n in each row of X, would be the same as
the number of distinct Hamming weights (d) in the code.

Note that ((Γ))ij = σ2dij , with σ = 〈α| − α〉 = e−2|α|2 ,
where we define the elements dij of the code’s ‘distance
matrix’ D to be the Hamming weight between the ith

and the jth codewords. The aforesaid assertion was used
in Refs. [9, 26] to calculate the MPE measurements for
some simple BPSK codes, including the first order binary
Reed Muller RM(1,m) codes.

Upon some numerical investigation, we found the
aforesaid assertion to be false. We found examples of
subcodes of the first order binary Reed Muller code, for

Figure 1. Solving the YKL conditions numerically for the
Gram matrix of a [8, 3, 2] sub code C of the BPSK (|α〉, |−α〉)
Reed Muller (r = 2,m = 3) [8, 7, 2] code, results in the
number of distinct elements in a row of X to be one more than
the number of distinct Hamming distances in C. Elements of

the Gram matrix Γ, γij = σdij , where σ = 〈α|−α〉 = e−2|α|2 ,
and dij are the elements of the distance matrix D of the code.
The 4’s in boldface red font in each row of D results in an
entry at the corresponding position in the row in X, that is
distinct from the entries in the row of X corresponding to the
other 4’s in the row ofD. For |α|2 = 0.01, solving this example
numerically by a brute force method to find the solution to
the YKL equations yields a = 0.54, b = 0.294, c = 0.263, and
d = 0.382.

which identical entries in one row of Γ resulted in dis-
tinct entries in the corresponding row of X (see Fig. 1).
This breaking of symmetry from Γ → X led us to look
into multiple orbits, and develop the mathematics to rig-
orously understand the optimal measurements for CGU
sets, which encapsulate all linear codes. This in turn
led us to generalize and simplify the previous results for
GU sets as well, which are presented in Section IV. Our
general results on MPE measurements for CGU sets are
presented in Section V.

IV. GEOMETRICALLY UNIFORM STATES
AND THE PRETTY GOOD MEASUREMENT

We say that a set of states is geometrically uniform
(GU) if there is a group G acting transitively on them
i.e., for every two states |ψi〉 and |ψj〉 there exists a group
element g ∈ G such that R(g)|ψi〉 = |ψj〉, where R is
some representation of the group G. This implies that
all the elements of the set are obtained from a single ele-
ment, say |ψ1〉 by the action of the group. If the states
are linearly independent, then the representation of the
group on the space spanned by the states is the induced
representation of the trivial representation of the stabil-
izer subgroup of |ψ1〉. For a state discrimination problem
to be GU, one usually assumes that the priors associated
with the states in the GU set are the same for all states.
The PGM was proved to be optimal for cyclic groups
in [15], for abelian groups in [16] and for non-abelian
groups in [19]. The pretty good measurement has been
defined in [17] and [18] as a measurement to discriminate
between the states ρi with priors pi. The measurement
operators of the PGM are given by Πi = piρ

−1/2ρiρ
−1/2,

where ρ =
∑
i piρi. If the states are pure (ρi = |ψi〉〈ψi|)

and linearly independent, this measurement becomes a
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projective measurement. Consider the polar decomposi-
tion of the matrix M (defined in Eq. (3)). Observe that
ρ = MM† and so U = ρ−1/2M . The columns of U form
the measurement basis of the PGM. From the left po-
lar decomposition, notice that the columns of U are also
the measurement basis if the solution matrix X coincides
with P =

√
M†M . Since P is Hermitian, it would be the

solution of Eqs. 1 and 2 if, in addition, all the diagonal
elements of P are equal (since the priors are equal). To
see that this is true for geometrically uniform states, ob-
serve that ρ commutes with the representation R and
xkk = 〈wk|ψk〉 = 〈w1|R(g)−1R(g)|ψ1〉 = 〈w1|ψ1〉 = x11.

Now we describe the measurement using non-abelian
group representation theory along the lines of [15, 16]
where it was done for abelian groups. In accordance with
the action of the group, we have |ψi〉 = U(gi)|ψ1〉 for any
i. We assume that the priors pi are all the same. Any
transitive permutation action on a linearly independent
set is an induced representation. We pick a base point,
say |ψ1〉 and with respect to this point, there is a sub-
group G0 of G which stabilizes |ψ1〉. The representation
on the vector space spanned by |ψi〉 is the induced rep-
resentation of the trivial representation of G0 to G. If
the set of states is S, then we have that |S| = |G|/|G0|.

The Yuen, Kennedy, Lax conditions are

Υ− piρi ≥ 0,

(Υ− piρi)Πi = 0, and

Υ =
∑
i

piρiΠi =
∑
i

piΠiρi , (5)

where ρi = |ψi〉〈ψi|. Since the optimal measurement
basis for a GU set is also GU, it is easy to see that we
only need the equations where in the first two i = 1.

Let the optimal measurement basis be given by {|wi〉}
which are also GU under the G action (and let Πi =
|wi〉〈wi|). Therefore we have

Υ =
1

|G|
∑
g∈G

U(g)ρ1Π1U(g−1).

Now let this representation consist of irreducible repres-
entations λ with multiplicity mλ. Consider the Fourier
basis |λ,m, k〉 where λ labels the irreducible represent-
ation, m its multiplicity and k its representation space
whose dimension is denoted dλ. This basis depends only
on the unitary representation U(g) of the group and not
on the optimal measurement. This basis has the property
that it simultaneously block diagonalizes all the unitaries
U(g). This is the main advantage of using representation
theory since this basis also block diagonalizes Υ operator.
The reason for this is that the matrices U(g) are block
diagonal in this basis and therefore the operator Υ is also
block diagonal by Schur’s lemma. The exact definition
of this basis depends on the group. For the GU example
discussed later in the paper, we give the definition of this
basis explicitly in the appendix. Now, in order to find
the probability of error, we need to access to an arbit-
rary matrix element of Υ inside the blocks. Following

Helstrom [15] (who worked this out for cyclic groups),
we have

〈λ,m, k|Υ|λ′,m′, k′〉 =

1

|G|
∑
g

〈λ,m, k|U(g)ρ1Π1U(g−1)|λ′,m′, k′〉 . (6)

We denote ρ1 and Π1 as ρ and Π respectively. The action
of any U(g) on the state |λ,m, k〉 is given as follows

U(g)|λ,m, k〉 =
∑
k′

λ(g)k′,k|λ,m, k′〉 ,

where λ(g)k′,k is the k′, k matrix entry of the irreducible
representation λ. Using this we get

〈λ,m, k|Υ|λ′,m′, k′〉 =

1

|G|
∑
g,l,l′

λ∗(g−1)k,lλ
′(g−1)k′,l′〈λ,m, l|ρΠ|λ′,m′, l′〉 . (7)

Using the orthogonality relations among matrix entries
of irreducible representations, we obtain

〈λ,m, k|Υ|λ′,m′, k′〉 =
δλ,λ′δk,k′

dλ

∑
l

〈λ,m, l|ρΠ|λ,m′, l〉.

One can check that Υ is block diagonal with the blocks
given by multiplicity spaces. From the above equation,
we have that

Υλ,m =
|S|
dλ

∑
k

xλ,m,kγ
∗
λ,m,k〈φ|w〉 . (8)

Let σ = (1/|S|)ρ and |φ〉 = (1/
√
|S|)|ψ〉. Now using the

YKL equations, inside these invariant spaces, we see that

〈λ,m, k|(ΥΠ− σΠ)|λ′,m′, k′〉 = 0

= Υλ,mγλ,m,kγ
∗
λ′,m′,k′ − xλ,m,kγ∗λ′,m′,k′〈φ|w〉 = 0 , (9)

where xλ,m,k = 〈λ,m, k|φ〉 and γλ,m,k = 〈λ,m, k|w〉. In
order to find the optimal measurement, we need to solve
for γ. Suppose that γλ,m,k = xλ,m,k/cλ,m, where we
need to solve for cλ,m. We have from Eq. 9 that Υλ,m =
cλ,m〈φ|w〉. Using Eq. 8, we have that

Υλ,m =
|S|
dλ

∑
k

xλ,m,kγ
∗
λ,m,k〈φ|w〉

=
|S|
dλ

∑
k |xλ,m,k|2

cλ,m
〈φ|w〉 . (10)

Using the above two equations (Eq. 8 and Eq. 9) for
Υλ,m we get that

|S|
∑
k |xλ,m,k|2

dλ(cλ,m)2
= 1 .

The solution of the above equation is

cλ,m =

√∑
k |S||xλ,m,k|2

dλ
.
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We also need to check that Υ−σ ≥ 0 for this solution. In
order to do this, let |µ〉 be an arbitrary normalized state.
Then the above equation becomes 〈µ|(Υ−σ)|µ〉 ≥ 0. The
left hand side can be written in the Fourier basis as

∑
λ,m,k

|µλ,m,k|2Υλ,m −

∣∣∣∣∣∣
∑
λ,m,k

xλ,m,kµ
∗
λ,m,k

∣∣∣∣∣∣
2

=
∑
λ,m,k

|µλ,m,k|2cλ,m
∑

λ′,m′,k′

|xλ′,m′,k′ |2

cλ′,m′
−

∣∣∣∣∣∣
∑
λ,m,k

xλ,m,kµ
∗
λ,m,k

∣∣∣∣∣∣
2

. (11)

Now consider the second half of the above expression∣∣∣∣∣∣
∑
λ,m,k

xλ,m,kµ
∗
λ,m,k

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
λ,m,k

√
cλ,mγλ,m,k

√
cλ,mµ

∗
λ,m,k

∣∣∣∣∣∣
2

≤
∑
λ,m,k

|µλ,m,k|2cλ,m
∑

λ′,m′,k′

|xλ′,m′,k′ |2

cλ′,m′
, (12)

where the last line was obtained through Cauchy-
Schwartz. This shows that the γ are the solutions. We
can assume that the basis of the multiplicity space is
picked in such a way that xλ,m,k is non-zero for only
one m. This can always be done since |ψ〉 when projec-
ted onto this isotypic space is some vector, say u. The
normalized version of u can be the first basis state of
the multiplicity basis. The other basis states can be
chosen as some orthonormal set. It is then easy to see
that xλ,m,k will have a non-zero overlap with only the
first basis state by construction (this construction par-
allels that of Helstrom for the cyclic group case). Then

cλ,m =
√

Tr(Pλρ)/dλ and

|w〉 =
∑
λ,m,k

|λ,m, k〉xλ,m,k
cλ,m

=
∑
λ

√
dλ
|S|

Pλ|ψ〉√
〈ψ|Pλ|ψ〉

,

where Pλ is the projector onto the isotypic space λ.
We now calculate the probability of success using this

expression. The probability of success is given by Ps =
|〈w|ψ〉|2. This can be written as

Ps =

∣∣∣∣∣∑
λ

√
dλ
|S|
√
〈ψ|Pλ|ψ〉

∣∣∣∣∣
2

.

For any group with a representation U , an expression for
Pλ is given by (for a character χλ)

Pλ =
dλ
|G|

∑
g

χλ(g−1)U(g).

One can simplify the expression 〈ψ|Pλ|ψ〉 as follows.

〈ψ|Pλ|ψ〉 =
dλ
|G|

∑
g∈G

χλ(g−1)〈ψ|U(g)|ψ〉 . (13)

But we have 〈ψ|U(g)|ψ〉 = 〈ψ|U(g1gg2)|ψ〉 for all g1, g2 ∈
G0, where G0 is the stabilizer group of |ψ〉 i.e., the sub-
group of G such that U(g)|ψ〉 = |ψ〉, ∀g ∈ G0. This
means

〈ψ|Pλ|ψ〉 =
dλ
|G|

∑
i,g∈Ci

χλ(g−1)〈ψ|U(g)|ψ〉 , (14)

where i is a sum over (G0, G0) double coset representat-
ives and Ci is the double coset. This sum can be further
simplified to

〈ψ|Pλ|ψ〉 =
dλ
|G|

∑
i

〈ψ|U(gi)|ψ〉
∑
g∈Ci

χλ(g−1) , (15)

where gi is the double coset representative of the double
coset Ci. This can further be written as

〈ψ|Pλ|ψ〉 =
dλ
|S|
∑
i

χλ(Ci)〈ψ|U(gi)|ψ〉 , (16)

where χλ(Ci) = (1/|G0|)
∑
g∈Ci χλ(g−1). This gives

an explicit formula for the probability of success. This
means that if we can find the sum of the character val-
ues of the elements of a double coset easily, then we can
obtain the formula for the probability of success. In the
next subsection, we show how to do this for a specific
case.

A. GU example from optical communication

Let us first consider the example of the N -ary optical
pulse position modulation (PPM), which has N code-
words each consisting of n = N modes, only one of which
is excited in a coherent-state pulse |α〉, α ∈ R, where
n̄ = |α|2 is the mean photon number of the pulse. Each
row of the Gram matrix has two distinct entries: (a) one
diagonal entry, 〈ψi|ψj〉 = 1, and (b) N − 1 entries cor-
responding to distinct codewords, 〈ψi|ψj〉 = κ2, where

κ ≡ 〈0|α〉 = e−n̄/2. The PPM state set is clearly GU
under cyclic group action, for which Helstrom’s calcula-
tion of the error probability [15] can be applied to obtain

PMPE
e = N−1

N2

[√
1 + (N − 1)κ2 −

√
1− κ2

]2
. This was

also independently obtained earlier by Liu in [27].
The standard receivers employed in optical communic-

ation are homodyne detection, heterodyne detection, and
direct detection. The optimal standard receiver meas-
urement for demodulating PPM is direct detection. The
quantum-noise-limited direct detection measurement is
realized by an ideal photon-number resolving (PNR) de-
tector, which is a projective measurement on the photon
number basis {|0〉, |1〉, . . .}. In this basis, a coherent state

|α〉 = e−|α|
2/2
∑∞
k=0

αk

k! |k〉. An ideal PNR detector will
successfully discriminate the PPM codewords if either (a)
the pulse position in the codeword successfully generates
a ‘click’ (which happens with probability 1−e−n̄), or (b)
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if the pulse fails to generate a click but the receiver still
chooses the correct codeword purely by chance. Assum-
ing all the codewords are equally likely, the average prob-
ability of error, PPNR

e = N−1
N e−n̄. Dolinar showed that in

the ‘high photon number’ regime (Ne−n̄ � 1 to be pre-
cise), PPNR

e ∼ e−n̄, whereas PMPE
e ∼ e−2n̄ [28]. Thus,

the MPE has a factor of two higher error exponent com-
pared with quantum-noise-limited direct detection, in the
high-photon number limit. Even though the design of a
structured optical receiver that can exactly attain PMPE

e

at any value of n̄ remains unknown, there are receiver
structured known—the conditional pulse nulling (CPN)
receiver for discriminating PPM codewords [26, 28], and
the sequential waveform nulling (SWN) receiver which
works for discriminating any N coherent state code-
words [29]—both of which can attain the optimal error
exponent (i.e., that of the MPE measurement) in the high
photon number limit.

Let us recall that the PGM was proved to be the op-
timal (MPE) measurement for: (a) cyclic groups in [15],
for (b) abelian groups in [16], and for (c) non-abelian
groups in [19]. For the cases dealt in (b) and (c), no
systematic method to calculate the minimum error prob-
ability was given. Hence, we consider next an example
from optical communication that truly demonstrates the
power of our method since the group involved is non-
abelian, and hence no systematic method to calculate the
MPE (other than by brute-force evaluation) is known.
Two-pulse PPM is a modulation constellation containing
n =

(
N
2

)
codewords. Each codeword consists of N modes,

whose state is a tensor product of coherent state |α〉 in
two of the N modes, and vacuum (|0〉) in the remain-
ing N − 2 modes. Each row of the Gram matrix there-
fore has three distinct entries: (a) one diagonal entry,

〈ψi|ψj〉 = 1, (b)
(
N−2

2

)
entries corresponding to code-

word pairs both of whose pulses are in non-overlapping

modes, i.e., 〈ψi|ψj〉 = κ4, where κ ≡ 〈0|α〉 = e−|α|
2/2,

and finally, (c) remaining entries corresponding to code-
word pairs one of whose pulses are in the same mode,
i.e., 〈ψi|ψj〉 = κ2.

We assume some familiarity with the representation
theory of the symmetric group. The symmetric group SN
acts on this set of states and in this representation of SN ,
there are three irreducible representations. The trivial,
standard and the a third irrep whose Young diagram has
two rows with two boxes in the second row (label them
a, b, c respectively). In this case, G0 is S2×SN−2 and the
double coset representatives are e, (1, 3) and (1, 3)(2, 4)
(label these double cosets C0, C1 and C2 respectively).
The double coset sums turn out to be

χa(C0) = 1 , χa(C1) = 2(N − 2) , χa(C2) =

(
N − 2

2

)
,

χb(C0) = 1 , χb(C1) = N − 4 , χb(C2) = −(N − 3) ,

χc(C0) = 1, χc(C1) = −2 , χc(C2) = 1 . (17)

where χλ(Ci) = (1/|G0|)
∑
g∈Ci χλ(g−1). With this the

Figure 2. (Color online) The probability of error of dis-
criminating

(
N
2

)
two-pulse-PPM coherent-state codewords,

for N = 8, plotted as a function of the mean photon num-
ber n̄ = |α|2. The blue (dashed) plot corresponds to the
error probability achievable by a quantum-noise-limited PNR
measurement, whereas the red (solid) plot is the minimum
probability of error (MPE) achievable by the optimal meas-
urement allowable by quantum mechanics.

probability of success can then be easily calculated to be

PMPE
s =

∣∣∣∣ 2

N(N − 1)

[√
1 + χa(C1)κ2 + χa(C2)κ4

+ (N − 1)
√

1 + χb(C1)κ2 + χb(C2)κ4

+

((
N

2

)
−N

)√
1 + χc(C1)κ2 + χc(C2)κ4

]∣∣∣∣2 . (18)

When κ = 0, it can be seen that Ps = 1. This corres-
ponds to the states being orthogonal to each other and
the PGM is just the measurement in that basis (and it
always succeeds).

An ideal PNR detector will successfully discriminate
the codewords if either (a) both pulse positions gener-
ate a ‘click’ (each of which happens with probability
1 − |〈0|α〉|2 = 1 − κ2), (b) only one of the pulses gen-
erate a click and a random guess among the N − 1 re-
maining pulse positions yields the second pulse position
correctly by chance, or (c) neither of the pulses generate

clicks but a random guess among all
(
N
2

)
codewords yields

the correct choose by chance. The success probability is
therefore given by,

PPNR
s =

(
1− κ2

)2
+

2
(
1− κ2

)
κ2

N − 1
+

κ4(
N
2

) . (19)

The probabilities of error PMPE
e = 1 − PMPE

s , and
PPNR
e = 1 − PPNR

s are plotted as a function of the
mean photon number n̄ = |α|2 in Fig. 2. Interestingly,
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numerical evaluation of these error probabilities for for
two-pulse PPM show that, just like PPM, in the high
photon number limit (Ne−n̄ � 1), PPNR

e ∼ e−n̄, whereas
PMPE
e ∼ e−2n̄.
It is worth noting that the SWN receiver [29]—which

can be built in principle using simple linear-optic com-
ponents and single photon detectors—can attain the op-
timal (MPE measurement’s) error exponent in the high n̄
limit for discriminating any N coherent state waveforms.
Hence for two-pulse PPM, P SWN

e ∼ e−2n̄. An optical re-
ceiver structure to exactly attain PMPE

e at any finite n̄ is
significantly more complicated, and requires truly non-
classical (entangling) operations within the receiver [30].

V. OPTIMAL MEASUREMENT FOR CGU SETS

In this section, we describe how to obtain the optimal
measurement for CGU state sets. We use the Helstrom
description of the problem of finding the optimal meas-
urement for pure states i.e., by viewing it as the solution
of a set of simultaneous equations. However, as we poin-
ted out earlier, one need not obtain a unique solution.
With every obtained solution, we have to check the third
condition to find the right one. We again resort to rep-
resentation theory to simplify the equations and obtain
far fewer equations (in many practical cases of interest).

We begin by recalling the set of simultaneous equa-
tions which give the solution given above in Eqs. 1 and
2. X†X = Γ, xkmx

∗
mm = xkkx

∗
mk where Γ is the Gram

matrix of the set of states. Since we have CGU symmetry
in the problem, the Gram matrix is symmetric about a
group G and its representation U(g). Suppose this rep-
resentation decomposes into irreducible spaces λ of di-
mension dλ with multiplicity mλ (as before). Then the
Gram matrix is block diagonal in this basis with a block
corresponding to each irreducible representation. Denote
these blocks as Γ′λ. These blocks also have a special struc-
ture where they are identity in the representation space
i.e., Γ′λ = Γλ⊗ Idλ . The solution X would have the same
block diagonal decomposition since it commutes with the
same representation of G.

To see that X commutes with the above representation
of G, first note that the representation U permutes the
basis vectors. Now suppose that U(g) sends basis vectors
i and j to k and l respectively, then the (k, l)th entry
of U(g)XU†(g) is 〈wk|ψl〉, which is 〈wi|U(g)†U(g)|ψj〉.
This is equal to Xi,j and this means that X commutes
with the representation U . This means that we have

X†λXλ = Γλ inside any isotypic space of X. Notice that
these matrices are of dimension mλ×mλ, where mλ is the
dimension of the multiplicity space of the irrep λ. There-
fore, if the multiplicity spaces are small, then this task is
easy. Now, solving for such an Xλ can be done only up

to a unitary since for any Xλ that satisfies X†λXλ = Γλ,
UλXλ also satisfies it, where Uλ is an arbitrary unitary
operator. In order to find the right solution, we need to
use the set of equations in Eq. 2.

Figure 3. (Color online) The probability of error of discrim-
inating 2N binary-phase-coded PPM codewords, for N = 8,
plotted as a function of the mean photon number n̄ = |α|2.
The magenta line (circles) correspond to the error probabil-
ity achievable by an ideal homodyne detection measurement,
the blue (dashed) plot is the error probability achievable by
a non-standard yet structured receiver described in the text,
and the red (solid) plot is the minimum probability of error
(MPE) achievable by the optimal measurement allowable by
quantum mechanics.

A. CGU example from optical communication

CGU state sets are of particular importance in optical
communication. This is because all linear codes have
CGU symmetry, and explicit linear codes (viz., quantum
polar codes) are known to achieve the quantum (Holevo)
limit of the classical communication capacity over any
quantum channel [10], including the lossy-noisy bosonic
channel [31]. We now illustrate our method explained
above with a non-trivial CGU example relevant to optical
communication. Consider a modulation code comprising
n = 2N codewords, where each codeword is an N -mode
pure states. Further, N of the 2N codewords comprise a
PPM set with a coherent state |α〉 in the respective pulse
positions, while the remaining N codewords comprise a
PPM set with a coherent state |β〉 in the respective pulse
positions. This set clearly is CGU under the cyclic group
action. Therefore, in the Fourier basis, the Gram matrix
has N 2× 2 blocks. The first block is(

1 + (N − 1)e−|α|
2

C

C 1 + (N − 1)e−|β|
2

)
,

where C = exp(αβ∗ − |α|
2+|β|2

2 ) +(N − 1) exp( |α|
2+|β|2

2 ).
The other blocks are(

1−N(N − 1)e−|α|
2

D

D 1−N(N − 1)e−|β|
2

)
,
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whereD = exp(αβ∗− |α|
2+|β|2

2 )−N(N−1) exp( |α|
2+|β|2

2 ).

Also define A = 1 + (N − 1)e−|α|
2

and A′ = 1−N(N −
1)e−|α|

2

and similarly, B and B′ with α replaced with β.
Now, suppose that X has entries x11, . . . x22 for the first
block and y’s for the other 2 × 2 blocks, then we obtain
the equations

(x12 + (N − 1)y12)(x∗22 + (N − 1)y∗22) =

(x11 + (N − 1)y11)(x∗21 + (N − 1)y∗21) and

(x12 − y12)(x∗22 − y∗22) =

(x11 − y11)(x∗21 − y∗21) (20)

as well as the following equations from the Gram matrix
condition(

x11 x12

x21 x22

)†(
x11 x12

x21 x22

)
=

(
A C
C B

)
, (21)

and (
y11 y12

y21 y22

)†(
y11 y12

y21 y22

)
=

(
A′ D
D B′

)
. (22)

This can easily be generalized to more than two PPM
sets. For k PPM sets, there will be k orbits. For general
CGU sets, the number of orbits is equal to the number of
generators of individual GU sets. However, determining
the number of independent equations is more complic-
ated. For the case of three PPM generators, one obtains
three equations in the place of Eq. 20 with 3× 3 matrix
equations in place of Eq. 21 and Eq. 22. For arbitrary
CGU sets, it may not be easy to say how many equations
one will end up with as there may be interdependencies.
This would depend on the group acting on the states
as well as the states to be discriminated. The point we
would like to emphasize is that there only a small number
of these equations. In the PPM case with two generators
that we solve here, the number of equations is independ-
ent of the number (n) of states to be discriminated.

For the 2 × 2 case solved here there are a total of ten
equations. However, eight of these are in the form of
(two) matrix equations. They can be solved easily by di-
agonalizing (two) 2×2 matrices. After solving these equa-
tions, one obtains the following optimal average probab-
ility of success.

PMPE
s =

(√
1 + (N − 1)e1 + e2 + (N − 1)e3

+
√

1 + (N − 1)e1 − e2 − (N − 1)e3

+ (N − 1)
√

1− e1 + e2 − e3

+ (N − 1)
√

1− e1 − e2 + e3

)2
1

4N2
, (23)

where e1 = exp(−|α|2), e2 = exp(− 1
2 |α − β|

2) and e3 =

exp(− 1
2 (|α|2 + |β|2)).

In order to compare the minimum probability of er-
ror PMPE

e = 1 − PMPE
s to the average error probability

achievable by standard optical receivers, let us consider
the case of β = −α ∈ R in above. The modulation
format thus obtained is known as (binary) phase-coded
PPM, or PCPPM. The best standard optical receiver to
decode the 2N codewords is homodyne detection. Dir-
ect detection can only discriminate between the N pulse
positions, but cannot discern the phase. This is because
the mean photon number in the pulse, |β|2 = |α|2 = n̄
is the same for each phase. Ideal homodyne detection
of a coherent state |α〉 generates a Gaussian distributed
random variable with mean α and variance 1

4 . There-
fore, homodyne detection of all the pulse positions gener-
ates N statistically-independent real-valued random vari-
ables, of which one random variable X ∼ N (±α, 1

4 ), and

N −1 i.i.d. random variables Zi ∼ N (0, 1
4 ). The receiver

first chooses the pulse position as the one the homodyne
output corresponding to which has the largest absolute
value. Then it chooses the phase based on the sign of
the real-valued homodyne output for that pulse position.
The success probability is thus given by,

P hom
s = Pr [|X| > max1≤i≤N−1 {|Zi|}]

[
1− 1

2
erfc

(√
2n̄
)]
,

where |X| and |Zi| have folded normal distributions. We
evaluated this numerically for N = 8 and plotted the
error probability 1 − P hom

s as a function of n̄, in Fig. 3
(see magenta circles). We also calculated and plotted
the MPE using our results (Eq. (23)) as a function of
n̄ (see solid red line). Our MPE calculation helps show
how inferior the performance is (compared with the op-
timal measurement) for a PCPPM modulation for the
best standard optical receiver choice.

Now we consider a non-standard, yet intuitive and
structured optical receiver, to detect the PCPPM code-
words: The coherent-state codeword impinges a photon
counting receiver. If no click is registered over all the N
modes (which happens with probability p0 = e−n̄), the
receiver chooses randomly between the 2N codewords.
The first photon click must identify the pulse slot cor-
rectly. The photon arrivals within the time slot contain-
ing the pulse (in state |α〉 or | − α〉) are Poisson dis-
tributed. As soon as the first click arrives—the time of
arrival of which is random (exponentially distributed)—
the remainder of the pulse (which is in a coherent state
|β〉 or | − β〉 with |β|2 < |α|2) is switched into a Dolinar
receiver [28], which identifies the phase correctly with

an error probability 1
2

[
1−
√

1− e−4|β|2
]
. It is straight-

forward to show that the eventual probability of error
attained by this structured receiver is given by:

P structured
e = p0

[
2N − 1

2N

]
+

1− p0

2
−
∫ 1

p0

√
1−

(p0

x

)4

dx,

which is plotted in Fig. 3 (see dashed blue line). A
numerical evaluation of the error probabilities for the
MPE and the structured receivers show that, in the high
photon number limit (Ne−n̄ � 1), P structured

e ∼ e−n̄,
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whereas PMPE
e ∼ e−2n̄. The SWN receiver [29] can at-

tain the MPE measurement’s error exponent in the high
n̄ limit for discriminating any N coherent state wave-
forms, and hence applies to PCPPM as well. A simple
structured receiver to exactly attain PMPE

e at any finite n̄
is not known, but our calculation of the optimal measure-
ment for CGU sets allows one to use the general receiver
concept in Ref. [30], which—despite requiring complic-
ated non-classical operations within the receiver—can in
principle attain the MPE exactly at all n̄.

VI. CONCLUSIONS

We have developed a new and compact
interpretation—using group representation theory—of
the minimum probability of error (MPE) measurement
for distinguishing a set of geometrically uniform pure
quantum states—states that form a single orbit under
the group action, i.e., a transitive action. We also give
a representation theoretic proof that the pretty good
measurement, or equivalently the least squares measure-
ment is the optimal (MPE) measurement for a GU set of
states. More importantly, this representation theoretic
framework gives explicit formulae for the minimum
probability of error. This is useful in comparing the
relative performance of various receivers. Using the same
framework, we then extended our analysis to construct
optimal measurements for compound geometrically
uniform (CGU) state sets, which are states that form
multiple orbits under the group action. CGU sets appear
in many practical problems, particularly in transmitting
classical data over a (quantum) optical channel. All
linear codes formed using pure-state modulation con-
stellations, which are known to achieve the quantum
(Holevo) limit to the capacity of optical communication,
are CGU sets. We showed how to compute the optimal
measurement for CGU sets by reducing the problem
to solving a few simultaneous equations. The number
of equations depends on the sizes of the multiplicity
spaces of irreducible representations. For many group
representations (such as those of several practical good
linear codes), this is a lot more tractable than solving
large semi-definite programs, in order to solve—by
brute force—the Yuen-Kennedy-Lax conditions [1] for
determining optimal measurements for discriminating
an arbitrary set of pure states with given pairwise
inner products. We showed one example each of the

evaluation of optimal measurements for GU and CGU
states, respectively.

It is known that coherent-state (ideal laser light) mod-
ulation is sufficient to achieve the Holevo capacity, the
ultimate rate of reliable classical communication over a
lossy-noisy optical channel [32, 33]. It is also known
that linear codes (over an underlying coherent-state mod-
ulation) along with optimal measurements—which are
CGU sets by definition—suffice to attain the Holevo ca-
pacity [31]. There is however a significant gap between
the Holevo capacity and the Shannon capacity of the op-
tical channel attainable by conventional optical receivers,
viz., homodyne, heterodyne, and direct-detection receiv-
ers [34], and the gap widens in the low photon num-
ber regime [35]. It would be interesting to investigate
explicit finite blocklength code families with good sym-
metry properties, whose rate performance along with the
respective optimal measurements—calculated exactly by
the general method we developed—bridges the aforesaid
capacity gap. It would also be interesting to develop
rigorous foundations for translating the optimal CGU
measurement, to an algorithmic design of structured op-
tical receivers built using a small universal set of known
optical components and ancilla states, that can imple-
ment the optimal measurement on any given linear code.
In the high photon number regime on the other hand,
heterodyne detection is known to be asymptotically ca-
pacity optimal. However, in the high photon number
regime, the improvement attained by the MPE measure-
ment (over conventional optical receivers) in the error
exponent in discriminating symbols of a modulation con-
stellation (as seen in our GU and CGU examples in this
paper, and also in Ref. [29]) translates to a superior finite
blocklength rate achievable by the MPE measurement,
even though heterodyne detection is capacity-optimal in
this regime [36]. This suggests that translating our de-
velopment in this paper to an algorithmic design of struc-
tured MPE-attaining optical receivers, may also have a
benefit in the high photon number transmission regime,
in terms of the finite-codelength rate performance.
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APPENDIX

We recall some basic facts of representation theory
needed for the results in this paper and then show how
to obtain the double coset sums in Eq. 17. Given any
finite group G and a complex vector space V , a linear
map Φ : G → End(V ) which takes the group identity
to the identity endomorphism is called a representation
of G. Often, the space V is called the representation.
If there exists a subspace W such that the map Φ is
taken to the subspace for every element G, W is called
a sub-representation or an invariant subspace of V . The
orthogonal complement of W in V will also be an invari-
ant space. For any invariant space, the space itself and
the trivial subspace consisting of the zero vector is always
an invariant space. If the only invariant spaces of V are
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the trivial space and itself, then V is called an irredu-
cible representation. Every finite group has a finite set
of irreducible representations (sometimes called irreps)
associated with it. Any representation can be decom-
posed into irreducible representations, where there may
be many copies of a given irreducible representation in it.
Invariant spaces of a group can be related to eigenspaes of
an operator that is symmetric with respect to that group.
More precisely, suppose that a matrix A commutes with
a representation of a group G i.e., U(g)A = AU(g) for
all g ∈ G. Then the invariant spaces of G lie inside ei-
genspaces of A. Suppose that U has the following block
diagonal decomposition

U(g) =
⊕
λ

Imλ ⊗ λ(g) ,

where mλ is the multiplicity space of the irrep λ i.e.,
the number of times λ appears in U . Then A has the
decomposition given by

A =
⊕
λ

Aλ ⊗ Idλ ,

where Aλ is a matrix inside the multiplicity space and dλ
is the dimension of λ. Note that if, in particular, mλ = 1,
then Aλ is one-dimensional and therefore is an eigenvalue
of A. Even if mλ 6= 1 but are small, we only need to
diagonalize Aλ for all λ to determine the eigenvalues of
A.

Now, we give the details of the calculations used to
produce Eq. 17. The case for the trivial representation
is simple. We explain here how to obtain the coset sums
for the standard representation (denoted b) and the rep-
resentation we denoted as c. We assume familiarity with
the representation theory of the symmetric group. The
double coset sum for C0 is also trivial to obtain since
χx(C0) (where x represents b or c) is the multiplicity of
the trivial G0 representation in x. This, by Frobenius re-
ciprocity, is the multiplicity of the representation x in the
induced representation, which is 1 for both b and c. So,
now if we evaluate the double coset sum χx(C1), then be-
cause both b and c are non-trivial irreducible representa-
tions, χx(C2) = −1−χx(C1). Thus, we only need to eval-
uate one double coset sum χx(C1) for b and c. In order to

do this, note that the double coset sum is actually a mul-
tiple of a coset sum i.e., χx(C1) = 2(N − 2)χx((13)G0).
Now in order to evaluate χx((13)G0), find the trivial G0

states in the induced representation. First, we repres-
ent the states in the induced representation as |{i, j}〉
(and there are

(
N
2

)
of these and they form an orthonor-

mal basis of the induced representation). One can see
that there are three trivial G0 states (this follows from
Frobenius reciprocity and the fact that this induced rep-
resentation is multiplicity free). The first one is also a
trivial SN state and is

∑
i,j:i 6=j |{i, j}〉 (denote this by

|t〉). The second one comes from the standard SN rep-
resentation (i.e., representation b). Note that the states
in the representation b are given by

|si〉 =
∑
j:j 6=i

|{i, j}〉 − 2

N
|t〉 . (24)

Therefore, the (unnormalized) trivial G0 state in b can
be seen to be |s1〉 + |s2〉 (denote this by |u〉). Now, we
can find χb(C1) as

χb(C1) = 2(N − 2)
〈u|(13)|u〉
〈u|u〉

. (25)

This turns out to be N − 4. Therefore, χb(C2) =
−(N − 3). Now, in c, the trivial G0 state turns out to be
(denoted |v〉).

|v〉 = |{1, 2}〉 − 1

N − 2
|u〉 − 1(

N
2

) |t〉 . (26)

The double coset sum χc(C1) can be calculated as follows.

χc(C1) = 2(N − 2)
〈v|(13)|v〉
〈v|v〉

. (27)

This turns out to be −2. This means that χc(C2) =
1. One can also double check by calculating χb(C2) and
χc(C2) independently.

χb(C2) =
〈u|(13)(24)|u〉
〈u|u〉

, χc(C2) =
〈v|(13)(24)|v〉
〈v|v〉

.

(28)


