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BOSON SAMPLING IS ROBUST TO SMALL ERRORS IN THE NETWORK MATRIX

ALEX ARKHIPOV

Abstract. We demonstrate the robustness of BosonSampling to imperfections in the linear optical network
that cause a small deviation in the matrix it implements. We show that applying a noisy matrix Ũ that is
within ǫ of the desired matrix U in operator norm leads to an output distribution that is within ǫn of the

desired distribution in variation distance, where n is the number of photons. This lets us derive a sufficient
tolerance for beamsplitters and phaseshifters in the network.

This result only concerns errors that result from the network encoding a different unitary than desired,
and not from other sources of noise such as photon loss and partial distinguishability.

1. Background

1.1. BosonSampling. BosonSampling [1] is a computational problem inspired by linear optics and closely
related to the matrix permanent. It models a one-step linear-optical experiment where n identical photons
are produced in distinct modes and passed simultaneously through a linear network that encodes an m×m
unitary matrix U . The initial state |1n〉 consists of one boson in each of the first n modes, with the rest
empty1. A photon counting measurement is performed on each output mode, and we consider the outcome
to be the list of photon counts S = (s1, . . . sm), where the si are nonnegative integers whose sum is S. This
output is random, and we define DU to be the resulting probability distribution over outcomes.2

As a computational problem, we can define BosonSampling as follows:

Definition 1 (BosonSampling). Given an m×m matrix U and a parameter n, sample the distribution of
photon counts DU given by

Pr
DU

[S] =

∣

∣Per
(

U[n],S

)∣

∣

2

s1! · · · sm!
, (1.1)

where Per is the matrix permanent and U[n],S is the submatrix of U consisting of the first n rows and the
columns given by S with multiplicity.

We can think of the linear optical network as acting on the n-photon Hilbert space each of whose basis
elements is labelled by each photon count. Its dimension is N =

((

m
n

))

, the number of partitions of n
unlabelled photons into m labelled modes. Let ϕ be the homomorphism from the unitary m×m unitary U
defining the action of one photon the N×N unitary matrix ϕ (U) defining the action on n identical photons.
See [1] for a precise definition of ϕ and a proof that it is indeed a homomorphism.

The definition of BosonSampling is motivated by a surprising result about its computational complexity
that gives evidence that it cannot be approximated by a classical computer, and thus evidence against the
Church-Turing Thesis.

1.2. Experimental realization. The definition of BosonSampling is partially motivated by it modelling a
linear optical experiment. Moreover, the prospect of a computation beyond what is possible in the efficient
classical world asks for a such a computational device to be built and tested, if only to check that quantum
mechanics works as we’d expect.

Four independent groups (based in Brisbane [2], Oxford [3], Vienna [4], and Rome [5]) have built devices
to implement the BosonSampling setup for small numbers of photons and modes, and checked the results
to be as statistically expected. These experiments were done with n = 3 photons are a number of modes

This research was supported by Scott Aaronson’s NSF Waterman Award.
1In this work, we will loosen this assumption to allow any pure n-boson state
2We deviate slightly from the definitions in [1] in which considers only the m× n submatrix A of U consisting of the first n

rows, the ones relevant to that start state |1n〉, and defines the distribution DA in terms of this.

1



m ranging between 5 and 9. While these are modest parameters, the goal is to eventually scale up the
experiments to the point that the problem it solves is intractable for the fastest classical computers of the
time.

1.3. Experimental noise. The question of scaling naturally leads to the issue of noise. Real experiments
have imperfections that cause them to deviate slightly from the ideal model, and we would like to understand
what level of error is tolerable that it creates only a small deviation in the output distribution.

There are four main sources of noise:

(1) Incorrect or correlated initial states
(2) Imperfect coding of the unitary U by the linear optical network
(3) Partial distinguishability of photons (caused by non-simultaneous arrival), such as mode mismatch

within the circuits
(4) Photon loss (whether in the network or due to failure to measure)

In this work, we will consider (2), the effect of imperfect coding of the unitary. In current experiments,
although individual components are accurate, there is difficulty in either aligning a large number of com-
ponents or in fabricating precise integrated optics. As a result, inaccurate unitaries remain a significant
source of output error in some experiments. The 5-mode and 7-mode experiments in [12] achieved respective
fidelities of 0.975 and 0.950, a minority but significant contribution to the variation distance in the output
distribution.

1.4. Bounds on noise. Many results have proven upper and lower bounds on the amount of noise in
various forms that a BosonSampling experiment can withstand in terms of the number of photons n, either
in terms of accuracy of the output distribution or in preserving the conjectured computational hardness of
BosonSampling.

Leverrier and Patrón [6] demonstrate that to obtain a nearly-correct output distribution, each linear
optical element must have fidelity 1−O

(

1/n2
)

under certain assumptions.
The work of Kalai and Kindler [7] argues that a noise level of additive ω (1/n) Gaussian error applied to

the overall unitary matrix leads to large deviations in the output distribution, and therefore allows classical
simulation.

Shchesnovich [14] gives sufficient conditions for an experimental realization of BosonSampling to demon-
strate a conflict with the Extended Church-Turing Thesis. He also proves that for a small distinguishability
error, a state fidelity of O

(

1
n

)

is necessary and sufficient to obtain constant distance in the distribution.
Rohde and Ralph [15] give evidence that linear optical systems remain out of reach of classical simulation

even in the presence of photons loss and mode mismatch.
Tichy [16] bounds the difference in outcomes between partial-distinguishable and perfectly identical pho-

tons.

2. Main Result

We look at the effect caused by imperfections in the linear optical network that cause a deviation in the
unitary matrix that it encodes. We assume that the actual network still applies a unitary matrix Ũ (in
particular, it takes pure states to pure states), but one that is slightly different from the desired matrix U .
We will give an upper bound for the error in the output distribution in terms of the error in U . In particular,
we will show that for n photons, an operator distance of o (1/n) suffices to give o (1) error in the output
distribution.

Our main result is a bound on the error in the BosonSampling distribution DU (Definition 1) caused by
inaccuracy in the single-particle unitary U that encodes the action of the beamsplitters and phaseshifters.

Theorem 2. For unitary matrices U and Ũ , the L1 distance between the corresponding n-photon Boson-
Sampling distributions DU and DŨ is bounded as

‖DŨ −DU‖1 ≤ n
∥

∥

∥
Ũ − U

∥

∥

∥

op
(2.1)

Note that there is no dependence on the number of modes m. As a result, the accuracy of the unitaries
only needs to depend on the number of photons n, with o

(

1
n

)

error sufficing.
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Corollary 3. To obtain vanishingly small error ‖DŨ −DU‖1 = o (1), it suffices for the unitary representing

the entire transformation to have
∥

∥

∥
Ũ − U

∥

∥

∥

op
= o

(

1
n

)

.

This can be achieved by having each beamsplitter and phaseshifter in the network be sufficiently accurate.
Since such a network can be made with a depth of O (n logm) components (Theorem 45 of [1]), it suffices
to divide the tolerable error by that amount.

Corollary 4. In order to have ‖DŨ −DU‖1 = o (1), it suffices for every component in the network to have

an accuracy of
∥

∥

∥
Ã−A

∥

∥

∥

op
= o

(

1
n2 logm

)

.

3. Comparison to Previous Results

3.1. Comparison to previous work. The result is comparable to the standard result for qubit-based
circuits of Bernstein and Vazirani [10]. To better parallel our main result, we state here with identical gates
and in particle language. We also generalized qubits to m-mode qudits, which does not affect the bound.

Theorem 5. Bernstein-Vazirani, adapted Suppose one applies a noisy unitary matrix Ũ to each of n dis-
tinguishable particles (qudits), then measures each particle to sample an n-tuple of measurement outcomes
from {1, 2, . . . ,m} Then, the distance in the outcome distribution DŨ from that with error-free matrix U is
bounded as

‖DŨ −DU‖1 ≤ n
∥

∥

∥
Ũ − U

∥

∥

∥

op
(3.1)

Previous work on BosonSampling noise sensitivity has given necessary bounds for the required accuracy
of the linear optical network. In other words, it’s shown that above certain thresholds of noise, one gets
large inaccuracies in the distribution of outcomes. Thus, it proves a certain level of noise to be prohibitive
for BosonSampling. This work, in contrast, shows a certain level of accuracy to be sufficient.

The work of Leverrier and Patrón [6] demonstrates that each linear optical element must have fidelity
1−O

(

1/n2
)

by considering a composite experiment in which the network is applied followed by its inverse,
with independent noise in each part. As shown in Appendix A, this corresponds to a required single-operator
distance of O

(

1/n2
)

, which has a factor of logm gap from our sufficient bound of o
(

1/
(

n2 logm
))

per

operator being sufficient. From our methods in Section 4.4, this implies an overall distance of
∥

∥

∥
Ũ − U

∥

∥

∥

op
=

O (logm/n), again a factor of logm off of our result.
The work of Kalai and Kindler [7] argues that a noise level of additive ω (1/n) Gaussian error applied

to the overall unitary matrix leads to large deviations in the output distribution. Specifically, above such a
threshold, one finds vanishingly little correlation between the original and noise permanent of a submatrix,
and thus between outcomes of a BosonSampling experiment. Translating to our error model of unitary
noise in Appendix A, a typical such error corresponds to operator distance ω (1/

√
n), significantly above the

O (1/n) distance that we show.
In both cases, once we convert the error measures to a consistent scale, we find the sufficient bound for

noise shown in this work is consistent with the necessary bound shown in the previous. Moreover, a gap
remains for potential improvement.

Our resulting scaling is similar to that obtained in [13], where for a small distinguishability error, a state
fidelity of O

(

1
n

)

is necessary and sufficient to obtain constant distance in the distribution.

4. Proof of Result

4.1. Outline of proof. We give an outline of the proof here, and prove each part in the upcoming sections.
Let Ψ0 be the initial n-boson state, and let ϕ be the homomorphism from a unitary acting on one boson

to that acting on n identical bosons. Applying unitaries U and Ũ respectively to the initial state Ψ0 produce:

Ψ = ϕ (U)Ψ0

Ψ̃ = ϕ
(

Ũ
)

Ψ0

Measuring Ψ and Ψ̃ respectively in the standard basis gives outcome distributions DU and DŨ
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The main step is Theorem 6, which states that the distance between the n-boson unitaries is at most a
factor of n times that between the 1-boson unitaries

∥

∥

∥
ϕ
(

Ũ
)

− ϕ (U)
∥

∥

∥

op
≤ n

∥

∥

∥
Ũ − U

∥

∥

∥

op
(4.1)

We then conclude with a standard argument (Lemma 10) that the distance between the output distributions
is at most the operator distance between the matrices that produced them

‖DŨ −DU‖1 ≤
∥

∥

∥
ϕ
(

Ũ
)

− ϕ (U)
∥

∥

∥

op
(4.2)

4.2. Effect of the homomorphism. We first show that close unitaries U and Ũ induce nearby n-boson

unitaries ϕ (U) and ϕ
(

Ũ
)

. Thus, if two operations act similarly on single bosons, then they also act similarly

on n identical bosons. The blowup is simply a factor of n, the number of bosons.

Theorem 6. Let ϕ be the homomorphism that takes a m × m unitary matrix U acting on a single boson
and produces a N ×N unitary matrix acting on n identical bosons with N =

((

m
n

))

. Then,
∥

∥

∥
ϕ
(

Ũ
)

− ϕ (U)
∥

∥

∥

op
≤ n

∥

∥

∥
Ũ − U

∥

∥

∥

op
(4.3)

In order to prove this, it will be useful to have two lemmas. Lemma 7 expresses the operator distance
between two unitary matrices A and B in terms of the eigenvalues of AB−1. Lemma 8 relates the eigenvalues
of ϕ (M) to those of M .

Lemma 7. If A and B are unitary, their operator distance can be expressed in terms of the eigenvalues {λi}
of AB−1 as

‖A−B‖op = max
i

|λi − 1| . (4.4)

Proof. Since AB−1 is unitary, it diagonalizes via unitaries as AB−1 = V diag(λi)V
∗

. Use the operator norm’s
invariance to left-multiplication or right-multiplication by a unitary, we have

‖A−B‖op =
∥

∥AB−1 − I
∥

∥

op

= ‖V (diag (λi)− I) V ∗‖op
= ‖diag (λi − 1)‖op
= max

i
|λi − 1| .

�

Lemma 8. If M has eigenvalues (λ1, . . . , λm), then the eigenvalues of ϕ (M) are λs1
1 · · ·λsm

m for each ordered
partition S of n into m parts with sizes s1, . . . , sm.

Proof. Let vi be the eigenvector corresponding to λi. We will construct eigenvectors of ϕ (M) in terms of
the vi and note that they have the desired eigenvalues.

For each eigenvector vi, let vi (x) be the formal polynomial (vi)1 x1 + · · ·+(vi)n xn. For each S, let pS be
the degree-n polynomial

pS (x) = vs11 (x) . . . · · · vsmm (x) (4.5)

If we consider ϕ (M) as it acts on the Fock basis, we see that each pS (x) is an eigenvector with eigenvalue
λs1
1 · · ·λsm

m :

ϕ (M) (pS (x)) = (Mv1)
s1 (x) · · · (Mvm)

sm (x)

= (λ1v)
s1 (x) · · · (Mλmv)

sm (x)

= λs1
1 · · ·λsm

m (pS (x))

Since we have one eigenvalues for each S, the number of which equal the dimension
((

m
n

))

of ϕ (M), this is
the full set of eigenvalues. �
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Now, we’re ready to prove Theorem 6, which we restate here.

Theorem 9. Let ϕ be the homomorphism that takes a m × m unitary matrix U acting on a single boson
and produces a N ×N unitary matrix acting on n identical bosons with N =

((

m
n

))

. Then,
∥

∥

∥
ϕ
(

Ũ
)

− ϕ (U)
∥

∥

∥

op
≤ n

∥

∥

∥
Ũ − U

∥

∥

∥

op
(4.6)

Proof. Let (λ1, . . . , λm) be the eigenvalues of ŨU−1. From Lemma 8, the eigenvalues of ϕ
(

Ũ
)

ϕ (U)−1,

which equals ϕ
(

ŨU−1
)

because ϕ is a homomorphism, are λs1
1 · · ·λsm

m for each ordered partition S of n into

m parts, which we write as λS for brevity.
We now bound the distance of λS from 1 in terms of the distances of the λi from 1. As eigenvalues of a

unitary matrix, the λi are complex phases with norm 1, we can inductively apply

|ab− 1| = |ab− a+ a− 1|
≤ |a| |b− 1|+ |a− 1|

to get

∣

∣λS − 1
∣

∣ ≤
∑

i

si |λi − 1| ≤ nmax
i

|λi − 1| (4.7)

From Lemma 7, we have

max
i

|λi − 1| =
∥

∥

∥
Ũ − U

∥

∥

∥

op
(4.8)

and

max
S

∣

∣λS − 1
∣

∣ =
∥

∥

∥
ϕ
(

Ũ
)

− ϕ (U)
∥

∥

∥

op
, (4.9)

so equation 4.7 gives the desired result
∥

∥

∥
ϕ
(

Ũ
)

− ϕ (U)
∥

∥

∥

op
≤ n

∥

∥

∥
Ũ − U

∥

∥

∥

op
(4.10)

�

4.3. Bounding distance between the output distributions. In Section 4.2, we showed that Ũ being

close to U implies that the corresponding n-boson transition matrices ϕ (U) and ϕ
(

Ũ
)

are close. We now

argue that applying close transition matrices to the same input produces close measurement distributions.
Let Ψ0 be the initial n-boson state. For BosonSampling, this is a Fock basis state |1n〉, but this is not

necesarry for this result. Applying unitaries U and Ũ to Ψ0 produces states that we call

Ψ = ϕ (U)Ψ0

Ψ̃ = ϕ
(

Ũ
)

Ψ0

The distributions DU and DŨ are produced by measuring Ψ and Ψ̃ respectively in the standard basis.
We show that the distance between the distributions is bounded by the operator distance between the

respective operators that produced them.

Lemma 10. ‖DŨ −DU‖ ≤
∥

∥

∥
ϕ
(

Ũ
)

− ϕ (U)
∥

∥

∥

op

Proof. We first bound the Euclidian distance of the resulting states from the definition of the operator norm
∥

∥

∥
Ψ̃−Ψ

∥

∥

∥
=

∥

∥

∥

(

ϕ (U)− ϕ
(

Ũ
))

Ψ0

∥

∥

∥

≤
∥

∥

∥
ϕ
(

Ũ
)

− ϕ (U)
∥

∥

∥

op
‖Ψ0‖

=
∥

∥

∥
ϕ
(

Ũ
)

− ϕ (U)
∥

∥

∥

op
(4.11)

Now, we show that variation distance between DU and DŨ is bounded by this distance
∥

∥

∥
Ψ̃−Ψ

∥

∥

∥
.
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The variation distance ‖DŨ −DU‖1 corresponding to the distributions obtained from a standard basis
measurement is bounded by the trace distance, the maximum such variation over all projective measurements.

‖DŨ −DU‖1 ≤
∥

∥

∥
Ψ̃−Ψ

∥

∥

∥

tr
(4.12)

We use the expression for trace distance between pure states and bound this expression in terms of
∥

∥

∥
Ψ̃−Ψ

∥

∥

∥
.

‖DŨ − DU‖1 ≤
∥

∥

∥
Ψ̃−Ψ

∥

∥

∥

tr

=

√

1−
∣

∣

∣

〈

Ψ̃ | Ψ
〉∣

∣

∣

2

≤
√

1−
(

Re
〈

Ψ̃ | Ψ
〉)2

=

√

1−
(

1− 1

2

∥

∥

∥
Ψ̃−Ψ

∥

∥

∥

)2

≤
∥

∥

∥
Ψ̃−Ψ

∥

∥

∥

�

Combining this with Equation 4.11 gives the bound

‖DŨ −DU‖1 ≤
∥

∥

∥
ϕ
(

Ũ
)

− ϕ (U)
∥

∥

∥

op
, (4.13)

which, along with Theorem 6
∥

∥

∥
ϕ
(

Ũ
)

− ϕ (U)
∥

∥

∥

op
≤ n

∥

∥

∥
Ũ − U

∥

∥

∥

op
(4.14)

gives the main result.

4.4. Error tolerance of components of the linear optical network. We now investigate the maximum
error on components of the linear optical network that still guarantees that the a output distribution is
vanishingly close to the ideal one. This requires bounding the error of the unitary produced by a linear
optical network in terms of that of its components.

Proposition 11. If each component Ã of a linear optical network is within operator distance ǫ of the ideal
component A

∥

∥

∥
Ã−A

∥

∥

∥

op
≤ ǫ, (4.15)

then the produced unitary U acting on the first n modes has accuracy

∥

∥

∥
Ũ − U

∥

∥

∥

op
= O (nǫ logm) (4.16)

and the measured output has

‖DŨ −DU‖1 = O
(

n2ǫ logm
)

. (4.17)

Proof. We wish to bound the operator distance error of the network in terms of that of its components. We
use two familiar facts about operator distance:

• For components are applied in parallel, the overall operator distance error is at most that of each
component, So, if each component has some maximum error, so does each layer in the network.

• For components applied in series, the total operator distance error is at most the sum of the operator
distance error of the components.
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A linear optical network for n fixed input modes and m output modes can be implemented using O (mn)
beamsplitters and phaseshifters in a network of depth O (n logm) (Theorem 45 of [1]). So, if each optimal
element is within operator norm ǫ of the ideal, we are guaranteed the following accuracy for a linear optical
network

∥

∥

∥
Ũ − U

∥

∥

∥

op
= O (n logm)

∥

∥

∥
Ã−A

∥

∥

∥

op
= O (nǫ logm) (4.18)

Applying the main theorem then gives an overall error of �

‖DŨ −DU‖1 = O
(

n2ǫ logm
)

. (4.19)

Corollary 12. In order to have ‖DŨ −DU‖1 = o (1), it suffices for every component in the network to have

an accuracy of
∥

∥

∥
Ã−A

∥

∥

∥

op
= o

(

1
n2 logm

)

.

5. Interpretation

Note that we do not obtain that a constant error suffices. In fact, constant error does not suffice, as
shown in [7, 6], suggesting that fault-tolerance is necessary to perform scalable quantum computing. This is
not surprising – we expect that more photons require higher accuracy for the unitary because each photon
interaction with the unitary introduces error. Similarly, as the network requires more and more components,
each component must have better accuracy to maintain the same overall accuracy.

We conjecture that the requirement we obtain that
∥

∥

∥
Ũ − U

∥

∥

∥

op
= o

(

1
n

)

is the best possible. It parallels

the Bernstein-Vazirani result for qubit-based circuits [10]. Because each photon passes through the network
and experiences its imperfections, it is natural to conjecture that the acceptable error in the network falls
inversely with the number of photons. Likewise, since each photon passes through a depth O (n logm)-

network, one might has guessed that the acceptable error of each component is O
(

1
n logm

)

time that of the

full network, as corresponding to the sufficient bound in 12.

5.1. Future work. This work solely addresses one type of noise: errors in the beamsplitters and phase-
shifters that cause them to implement a slightly erroneous unitary matrix. We would like to extend these
results to other sources of noise. The more plausible potential extensions of this approach are those dealing
with continuous errors rather than discrete ones like photon losses. One such source is the partial distin-
guishability of the photons as they pass through the network, a phenomenon that has been mathematically
modelled by Tichy [9] and Xu [8].

The gaps between the sufficient bound proven here and the necessary bounds proven in [6, 7] mean that
an improvement must be possible to at least one of the sides. Moreover, all the results are fine-tuned for
models of noise, so it would be ideal to bound the error under each of the noise models.

6. appendix A: Translation Between Noise Models

Previous work on BosonSampling noise [6, 7] used different measures of error than we did. In order to put
these results on the same scale as ours, we will find the amount of operator distance error that corresponds
to the errors they prove prohibitive. Note that because these results are optimized for their specific model
of error, the converted results are not necessarily the strongest possible.

The work of Leverrier and Patrón [6] demonstrates that each linear optical element must have fidelity
1 − O

(

1/n2
)

. This corresponds to operator distance O
(

1/n2
)

for each element. From the observation
in Section 4.4 that the operator distance of the whole network is at most it depth times that of each
component, and the result that O (n logm) depth suffices (Theorem 45 of [1]), this corresponds to necessary
error O (logm/n).

The work of Kalai and Kindler [7] argues that a noise level of additive ǫ = ω (1/n) Gaussian error is
prohibitive for Boson Sampling. We show that this corresponds to operator distance

∥

∥

∥
Ũ − U

∥

∥

∥

op
= ω(1/

√
n) (6.1)
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so that we may put it on the same scale as out result.
Consider an ǫ-noise of a matrix X . In order to match with operator distance, we consider X to be the

entire m×m unitary matrix, rather than an n× n submatrix, since we expect the error to affect entries in
the whole matrix just as it does the submatrix. Since each entry of a unitary matrix has a norm of 1/

√
m

in RMS average, the error should be ǫ/
√
m.

So, an ǫ-noise of a unitary matrix U is given by

Ũ =
√
1− ǫU +

√
ǫG/

√
m, (6.2)

where G is a matrix of i.i.d. complex Gaussians. To first order in ǫ, the difference Ũ − U is given by

Ũ − U = −ǫU/2 +
√
ǫG/

√
m+O(ǫ2) (6.3)

Since U and G/
√
m have entries of the same RMS-norm, for small ǫ, the term with coefficient

√
ǫ dominates

the remaining terms:

Ũ − U =
√
ǫG/

√
m+O(ǫ) (6.4)

Then, the prohibitive amount of noise ǫ = ω(1/n) corresponds to

Ũ − U = ω(1/
√
m)G/

√
m (6.5)

Finally, with the result from [11] that a random m × m Gaussian matrix has operator norm Θ (
√
m) with

high probability, ‖G/
√
m‖op = Θ(1), and so the corresponding operator distance is

∥

∥

∥
Ũ − U

∥

∥

∥

op
= ω(1/

√
n) (6.6)
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