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Quantum physics allows for unconditionally secure communication through insecure communication chan-

nels. The achievable rates of quantum-secured communication are fundamentally limited by the laws of quantum

physics and in particular by the properties of entanglement. For a lossy communication line, this implies that

the secret-key generation rate vanishes at least exponentially with the communication distance. We show that

this fundamental limitation can be violated in a realistic scenario where the eavesdropper can store quantum

information for only a finite, yet arbitrarily long, time. We consider communication through a lossy bononic

channel (modeling linear loss in optical fibers) and we show that it is in principle possible to achieve a constant

rate of key generation of one bit per optical mode over arbitrarily long communication distances.

PACS numbers: 03.67.Dd, 03.65.-w, 03.67.Hk

I. INTRODUCTION

Quantum key distribution (QKD) promises uncondi-

tional secure communication through insecure communica-

tion channels [1]. In real world implementations of QKD,

however, the achievable secret-key rates are still relatively low

compared with standard telecommunication rates. The rates

of secret-key generation are not only constrained by exper-

imental imperfections, which can be amended in principle,

but are also limited by the fundamental features of quantum

physics. As recently shown in [2], the entanglement between

the two ends of the communication channel ultimately bounds

the maximum rate of secret-key generation:

R ≤ Esq(N ) , (1)

where Esq(N ) is an entropic quantity called the squashed en-

tanglement of the channel [3], which is function of the quan-

tum communication channel N linking the legitimate sender

Alice to the legitimate receiver Bob.

In this paper we consider the case where the communication

channel N is a lossy (and noisy) bosonic channel. This means

that information is encoded in a collection of bosonic modes

whose corresponding canonical operators are denoted aj , a†j
and satisfy the commutation relations [aj′ , a

†
j ] = δjj′ . In

the Heisenberg picture the quantum channel maps the canon-

ical operators aj , a†j to aj → √
η aj +

√
1− η vj , a†j →

√
η a†j +

√
1− η v†j , where η ∈ [0, 1] is the attenuation factor

(also called transmissivity) and vj , v†j are the canonical ladder

operators of an environment bosonic mode. The lossy channel

is obtained if the environment mode is initially in the vacuum

state, while the lossy and noisy channel corresponds to the en-

vironment mode being in a thermal state with NT mean pho-

ton number. These channels attenuate the input power by a

factor η and model the ubiquitous processes of linear absorp-

tion and scattering of light.

When applied to the case of the lossy bosonic channel, the

squashed entanglement bound in (1) yields [2]:

R ≤ log

(

1 + η

1− η

)

, (2)

where the rate is measured in bits (throughout this paper

log ≡ log2) per bosonic mode (given the bandwidth of the

channel, this can be easily translated in bits per second). For

both free space and fiber optics communication, the attenua-

tion factor η = e−ℓ/ℓ0 scales exponentially with the distance

ℓ between sender and receiver, where the characteristic length

ℓ0 depends on experimental conditions. For long distances,

R ≤ 2 η = 2 e−ℓ/ℓ0 , and the key rate decays at least expo-

nentially with increasing communication distance. This result

marks a striking difference between quantum-secured com-

munication and (insecure) classical communication. In the

latter case, one can in principle achieve a finite communica-

tion rate over arbitrarily long distances, just by sufficiently

increasing the signal power [4]. Unfortunately, this is not

the case for quantum communication where a fundamental

rate-distance tradeoff exists, requiring the use of quantum re-

peaters to perform QKD on long distances.

It is thus clear that to go around the fundamental rate-

distance tradeoff in (2) one should renounce unconditionally

security. Here we discuss QKD conditioned on the assump-

tion that technological limitations allow an eavesdropper Eve

to store quantum information reliably only for a known and

finite – but otherwise arbitrarily long – time. Such an eaves-

dropper may also have unlimited computational power, in-

cluding a quantum computer. Indeed, any physical realization

of a quantum memory can reliably store quantum information

only for a time of the order of its coherence time. We stress

that we do not require the legitimate receiver to have better

quantum storage technologies than the eavesdropper. As will

be shown, the legitimate parties could have a much shorter

memory time than the eavesdropper and the communication

will still be secure.

II. SECURITY DEFINITIONS

According to the state of the art, one requires a quantum

cryptography protocol to be unconditionally and composably

secure. Unconditional security means that one does not rely

on unproven statements (e.g, about the complexity of factor-

izing large numbers, or in general about the computational

power of the eavesdropper). Composable security means that
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the given protocol is secure also when used as a subroutine

within an overarching protocol [5].

Suppose that a given communication protocol aims at es-

tablishing a secret message described as a random variable

X . The information about X in the hands of the eavesdrop-

per Eve is described, without loss of generality, by a bipartite

quantum state of the form

ρXE =
∑

x

pX(x) |x〉〈x| ⊗ ρE(x) . (3)

Ideally, one would like Eve’s state to be completely uncorre-

lated with the message X , that is, ρXE = ρX ⊗ ρE [6]. To

quantify the deviation from such an ideal setting one considers

the trace distance [7]

D(ρXE , ρX ⊗ ρE) :=
1

2
‖ρXE − ρX ⊗ ρE‖1 . (4)

Therefore, the security of the communication protocol is as-

sessed by the condition

D(ρXE , ρX ⊗ ρE) ≤ ǫ , (5)

which implies that the state ρXE is indistinguishable, up to a

probability smaller than ǫ, from the state ρX ⊗ ρE , that is, the

given communication protocol is secure up to a probability

smaller than ǫ [8]. As a matter of fact this criterion guarantees

unconditional and composable security [8].

In this paper we renounce unconditional security and seek

security conditioned on the fact that the eavesdropper can

store quantum information only for a finite and known time τ .

This means that Eve is forced to make a measurement within

a time τ after obtaining the quantum state. Suppose that Eve

has made a measurement Λ described by the POVM (positive

operator valued measurement) elements {Λy}y [9]. After the

measurement has been made, the state has ‘collapsed’ to

ρ′XE =
∑

y

TrE(ρXE I⊗ Λy) |y〉E〈y| (6)

=
∑

x,y

pX(x)Tr (ρE(x) Λy) |x〉〈x| ⊗ |y〉E〈y| . (7)

Since ρ′XE is diagonal in the basis {|x〉 ⊗ |y〉}, we have

D(ρ′XE , ρ
′
X ⊗ ρ′E) =

∑

x,y

|pXY (x, y)− pX(x)pY (y)| (8)

=: D(pXY , pXpY ) , (9)

where pXY (x, y) = pX(x)pY |x(y) with pY |x(y) =
Tr (ρE(x) Λy) and pY (y) =

∑

x pX(x)pY |x(y), that is, the

trace distance equals the distance between classical probabil-

ities. Finally, optimizing over Eve’s choice of her measure-

ment, we obtain the following security condition:

sup
Λ
D(pXY , pXpY ) ≤ ǫ . (10)

In this paper, instead of working directly with condition

(10), we require

Iacc(X ;E)ρ ≤ ǫ′ , (11)

where Iacc(X ;E)ρ denotes the accessible information of Eve

aboutX given the state ρXE [10]. The latter implies condition

(10), for ǫ =
√

2 ln (2) ǫ′, via Pinsker inequality [11]

max
Λ

D(pXY , pXpY ) ≤
√

2 ln (2) Iacc(X ;E)ρ . (12)

It is worth recalling that accessible information was used as

a security quantifier during the first years of quantum cryptog-

raphy, since it was found that a security criterion based on the

accessible information does not in general guarantee compos-

able security in an unconditional manner [8]. Here instead we

have shown that composability holds under condition (10) if

we give up full unconditional security and seek security un-

der the assumption that the eavesdropper can store quantum

information only for a finite and known time — i.e, she has a

quantum memory with limited storage time.

III. SUMMARY OF THE RESULTS

We present two novel key-generation protocols for

continuous-variable quantum optical communication through

a lossy bosonic channel with transmissivity η, modeling linear

attenuation and scattering. These protocols are composably

secure under the condition that Eve’s as a quantum memory

with finite, and known, but otherwise arbitrarily long, storage

time.

The first protocol is a direct-reconciliation protocol (in

which we allow information reconciliation by forward pub-

lic communication from the sender Alice to the receiver Bob).

We obtain a simple formula for the asymptotic key rate (see

Fig. 1):

rdr = 1 + log

(

η

1− η

)

. (13)

This protocol can generate a nonzero key rate for any η > 1/3.

By comparison, the maximum unconditionally secure key rate

from direct reconciliation is given by the quantum capacity

formula log
(

η
1−η

)

[12] and is positive only for η > 1/2 [13].

The second protocol is a reverse-reconciliation protocol

(we allow information reconciliation by backward public

communication from Bob to Alice). In this setting we show

that Alice and Bob can in principle generate key at an asymp-

totic rate of more than 1 bit per bosonic mode sent through

the channel. This is true for any nonzero value of the trans-

missivity η, provided sufficient input energy is provided —

hence reproducing the feature of insecure classical communi-

cation in a quantum-secured communication framework. The

achievable asymptotic key rate is (see Fig. 2)

rrr = 1 + log

(

1

1− η

)

. (14)

By comparison, the maximum fully unconditional key rate is

upper bounded by the expression in (2) and vanishes as 2η for

small values of η.
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FIG. 1: Achievable key rate for the pure loss channel (NT = 0) vs

the channel transmissivity η, in bits per mode, for direct reconcilia-

tion protocols. Blue solid line: Achievable locked-key rate as given

by the expression in (13). Red dashed line: Maximum fully uncondi-

tional secret-key rate, given by the expression max{0, log
(

η

1−η

)

}

[12].
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FIG. 2: Achievable key rate for the pure loss channel (NT = 0) vs

the channel transmissivity η, in bits per mode, for reverse reconcili-

ation protocols. Blue solid line: Achievable locked-key rate as from

the expression in (14). Red dashed line: Upper bound for the secret-

key rate (assisted by two-way public communication), given by the

expression in (2). Yellow dash-dotted line: Achievable asymptotic

secret-key rate according to the standard security definition as given

by the reverse coherence information log
(

1

1−η

)

[14].

We also consider the case of lossy and noisy bosonic chan-

nel, which models the presence of experimental imperfec-

tion or a thermal-like background with NT mean photons per

mode. The lossy and noisy channel is also used to model an

‘active attack’ from the eavesdropper, who injects noise in the

channel. In this case we obtain an asymptotic rate equal to

rrr = 1 + log

(

1

1− η

)

− g(NT ) , (15)

which is nonzero at arbitrary distances provided NT . 0.3
(see Fig. 3)

These protocols are instances of quantum data locking pro-

tocols (see Sec. V). We henceforth call locked key a key which

is generated by a quantum data locking protocol, just to re-

mind us that this key is not unconditionally secure, but secure

conditioned on the assumption of finite memory storage time.
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FIG. 3: Tolerable excess noise NT vs the transmissivity η for the

reverse-reconciliation quantum data locking protocol, from Eq. (15).

The asymptotic locked-key generation rate is nonzero for values of

(η,NT ) below the curve.

IV. COMPARISON WITH OTHER MODELS

It is known that high rates of secret-key generation can be

attained against an eavesdropper endowed with an imperfect

quantum memory, as for example in the Bounded Storage

Model, where Eve can store only a constrained number of

qubits (see e.g. [15]). Even under bounded storage, no known

protocol attains a constant rate as a function of distance. Else-

where we have shown that quantum data locking allows for

a substantial enhancement of the key rate [16, 17]. Here we

show for the first time that such an assumption allows us to

generate key at a constant rate across virtually any distance. It

is an open question whether the quantum data locking could

be applied in the bounded storage model to attain rates of key

generation independent on the distance.

Our results must be compared with the bounds on the opti-

mal secret-key rate obtained requiring fully unconditional se-

curity. In the asymptotic setting, the security is usually quan-

tified by the quantum mutual information (see e.g. [18]). The

gain in key generation rate that we achieve follows from the

existence of a large gap between the quantum mutual infor-

mation and the accessible information of the adversary. This

gap is well known in quantum information theory: it is the

quantum discord [19], which quantifies the quantum correla-

tions that the adversary cannot access by local measurements

on her share of the quantum system.

V. QUANTUM DATA LOCKING AND QUANTUM ENIGMA

MACHINES

In a typical quantum data locking protocol [20–23], the two

legitimate parties, say Alice and Bob, publicly agree on a set

of MK quantum codewords. They then use a preshared se-

cret key of logK bits, labeled by s = 1, 2, . . . ,K , to secretly

agree on a set of M (equally probable) codewords, labeled by

x = 1, 2, . . . ,M , used to encode logM bits of classical infor-

mation. These quantum codewords are sent through n uses of

a quantum channel from Alice to Bob. Suppose an eavesdrop-

per Eve tampers with the communication line and obtains one
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of the states ρnE(x, s). The correlations between Eve’s quan-

tum system and the input message x are described by the state

ρnXE =
1

M

M
∑

x=1

|x〉〈x| ⊗ 1

K

K
∑

s=1

ρnE(x, s) , (16)

where {|x〉}x=1,...,M is an orthonormal basis for an auxiliary

quantum system encoding the messages x — notice that the

summation over s comes from the fact that Eve does not know

the value of the secret key. One can prove that, if the states

ρnE(x, s) have a suitable form and forK large enough, Eve can

only obtain a negligible amount of the classical information —

as quantified by the accessible information — carried by the

label x.

In the most powerful quantum data locking schemes known

up to now, a constant-size preshared secret seed of about

logK = log 1/ǫ bits allows Alice and Bob to encrypt logM
bits (with M arbitrarily large), with the guarantee that Eve’s

accessible information is of the order of ǫ logM bits [24–26].

It is worth remarking that quantum data locking provides

a strongest violations of classical information theory in the

quantum setting. Indeed, according to a famous theorem of

Shannon’s, which assesses the security of one-time pad en-

cryption, to encrypt m bits of classical information Alice and

Bob need at least m bits of preshared secret key [27]. Quan-

tum data locking violates this Shannon’s result by an expo-

nential amount.

A quantum data locking protocol can be seen as a quantum

counterpart of the twentieth century Enigma machine [28].

Following [28, 29] we call ‘quantum enigma machine’ an op-

tical cipher that harnesses the quantum data locking effect.

A. Quantum bootstrapping

The first works on quantum data locking only considered

the ideal case of a noiseless communication scenario. Only

recently the quantum data locking effect has been considered

in a noisy setting [28–30] (see also [31]). Here we combine

quantum data locking with a key-recycling technique that has

been successfully applied to quantum data locking in a noisy

communication scenario [16, 20, 32].

We assume that eavesdropper Eve and the legitimate re-

ceiver can store quantum information for a time τE and τB ,

respectively.

Suppose then that Alice and Bob, using the quantum chan-

nel n times, run a quantum data locking protocol to commu-

nicate logM = nχ bits of classical information, and con-

sume logK = nk bits of preshared secret key. Bob may

need to perform a collective measurement over n quantum

systems in order to decode. Since, as from our assumption,

Bob’s quantum memory can store quantum information only

for times shorter than τB , this requires that the n quantum

signals should be sent within this time interval (this is always

possible for τB large enough or by increasing the repetition

rate).

On the other hand, if Eve has a quantum memory with fi-

nite coherence time τE , this implies that she is forced to mea-

sure within a time τE after receiving the signals, otherwise

her memory will decohere anyway. Therefore, what the legit-

imate parties Alice and Bob can do is to wait for a time longer

than τE before sending more information through the channel.

After waiting such a time, Alice and Bob can safely recycle

part of the obtained key as a fresh key to run another round of

quantum data locking.

Thus, for χ > k, Alice and Bob can recycle part of the

newly established key and use it as a seed for another round

of quantum data locking. By repeating this procedure many

times they will asymptotically obtain a overall locked-key rate

of r = χ − k bits per channel use, with a negligible amount

of initially shared secret key.

While r = χ − k is the rate of bits per channel use, one

could expect a lower rate in terms of bits per second, due

to the waiting times between quantum data locking subrou-

tines. There is a simple strategy to solve this problem: Alice

and Bob can use the dead times to run two (or more) inde-

pendent quantum data locking protocols. In this way they

can in principle achieve a rate of bits per second as high as

rν = (χ − k)ν, where ν is the number of channel uses per

second. Notice that this holds for any value of τE , as long as

it is known to Alice and Bob, and independently of τB (for

instance we can take τB = τE or even τB < τE).

VI. THE DIRECT RECONCILIATION PROTOCOL

Alice prepares multimode coherent states that encode both

the input message x ∈ {1, . . . ,M} and the value of the secret

seeds s ∈ {1, . . . ,K} she shares with Bob. The encoding is

by a random code (whose codebook is public) that assigns to

each pair (x, s) an n-mode coherent states

|αn(x, s)〉 =
n

⊗

j=1

|αj(x, s)〉 , (17)

where αj(x, s) is the amplitude of the coherent state of

the j-th bosonic mode sent through the channel. This is

schematically depicted in Fig. 4, where the lossty channel

is represented as a beam-plitter. To construct the random

code, the amplitudes of the coherent states are independently

drawn from a circularly symmetric Gaussian distribution, de-

noted G(0,N), with zero mean and mean photon number
∫

d2α |α|2G(0,N) = N .

The receiver Bob obtains the attenuated coherent states

|√η αn(x, s)〉 =
n

⊗

j=1

|√η αj(x, s)〉 . (18)

The goal of Bob, who knows the value of s, is to decode x. It

is known that he can do that (with asymptotically negligible

error) with an asymptotic bit-rate for x given by [4]

χdr := lim
n→∞

logM

n
= g(ηN) , (19)

where

g(N) = (N + 1) log (N + 1)−N logN . (20)
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FIG. 4: The lossy bosonic channel can be modeled as a beam-splitter

with transmissivity η and the environment mode initially in the vac-

uum state. In the direct reconciliation protocol, Alice sends coherent

state down the channel.

To guarantee the security of the communication protocol,

we have to bound Eve’s accessible information. For any x
and s, Eve obtains the attenuated coherent states

|
√

1− η αn(x, s)〉 =
n

⊗

j=1

|
√

1− η αj(x, s)〉 . (21)

We can show (see Sec. VIII) that Eve’s accessible information

about Alice’s input message x is negligibly small, provided

Alice and Bob initially share enough bits of secret key. For N
large enough, and asymptotically in n, this is achieved for

kdr := lim
n→∞

logK

n
= 2g[(1− η)N ]− g[2(1− η)N ] . (22)

Applying the key-bootstrapping routine (see Sec. V A), this

yields a net asymptotic locked-key generation rate of

rdr = χdr − kdr = g(ηN)− 2g[(1− η)N ] + g[2(1− η)N ] ,
(23)

which in the limit of N → ∞ becomes

rdr = 1 + log

(

η

1− η

)

. (24)

VII. THE REVERSE RECONCILIATION PROTOCOL

In the first phase of the protocol Alice prepares n instances

of a two-mode squeezed vacuum state, with N mean photons

per mode, that is, ρnAA′ = ρ⊗n
AA′ with

ρAA′ = |ζN 〉AA′〈ζN | (25)

and

|ζN 〉AA′ =
1√
N + 1

∞
∑

ℓ=0

(

N

N + 1

)ℓ/2

|ℓ〉A|ℓ〉A′ , (26)

where |ℓ〉 denotes the photon-number state with ℓ photons. Al-

ice keeps the modes labeled with ‘A’ and sends throughn uses

of a lossy bosonic channel those labeled with ‘A′’, see Fig. 5.

At the end of this first phase of the communication protocol,

Alice, Bob and Eve share the 3n-mode state ρnABE = ρ⊗n
ABE ,

where ρABE is a 3-mode Gaussian state with zero mean and

covariance matrix VABE (whose explicit form is given in the

Appendix).

In the second phase of the communication protocol, Bob

makes a collective measurement on his share of n bosonic

modes, described by the state ρnB = ρ⊗n
B , where ρB is a Gaus-

sian state with zero mean and variance VB (see Appendix

for details). Indeed, Bob applies a measurement Γ(s) cho-

sen from a set of measurements parameterized by the label

s = 1, . . . ,K . The value of s is determined by the secret

key he shares with Alice. That is, while the list of possible K
measurement is public and hence known to Eve, the specific

choice of Γ(s) is known only by Alice and Bob.

Bob’s measurement is defined as follows. First, Alice and

Bob publicly agree on a set of MK n-mode coherent states

|βn(x, s)〉 =
n

⊗

j=1

|βj(x, s)〉 , (27)

for x = 1, . . . ,M and s = 1, . . . ,K . These coherent states

are defined by sampling the amplitudes βj(x, s) i.i.d. from

a circularly symmetric Gaussian distribution with zero mean

and variance ηN . For any given s, we consider the sliced

operator

Σ(s) =
M
∑

x=1

P
n
B |βn(x, s)〉〈βn(x, s)|Pn

B , (28)

where P
n
B is the projector on the strongly δ-typical subspace

defined by ρ⊗n
B (see, e.g. [33]). Applying the operator Cher-

noff bound (see Appendix for details) we obtain that the

bounds

(1− ǫ)M2−ng(ηN)
P
n
B ≤ Σ(s) ≤ (1 + ǫ)M2−ng(ηN)

P
n
B

(29)

hold true with arbitrarily high probability provided M ≫
2ng(ηN). It follows that for any given s the operators

Γx(s) =
P
n
B |βn(x, s)〉〈βn(x, s)|Pn

B

(1 + ǫ)M2−ng(ηN)
(30)

define a subnormalized POVM in Bob’s typical subspace,

which can be completed by introducing the operator Γ0(s) =
P
n
B − ∑

x Γx(s). In this way we have defined Bob’s mea-

surement Γ(s) for all values of s. After performing the mea-

surement, Bob declares an error if he obtains the measurement

output corresponding to Γ0(s). This event, however, happens

with a negligible probability (see Appendix for details).

In the third phase of the protocol, Alice makes a mea-

surement on her share of bosonic modes. For a given value

of s (which is known to Alice and Bob) and x, we con-

sider Alice’s conditional state ρnA(x, s). As a matter of fact,

Bob’s measurement induces a virtual backward communica-

tion channel from Bob to Alice. As a result, for given s, Al-

ice obtains an ensemble of states {ρnA(x, s), p(x, s)}x=1,...,M ,

where p(x, s) = Tr(Γx(s)ρ
n
B(s)). The maximum amount of

classical information (per mode) about x that Alice can ex-

tract from this ensemble of states is given, in the asymptotic

setting, by the associated Holevo information [34] [35]:

χrr =
1

n

[

S(ρnA)−
∑

x

p(x, s)S(ρnA(x, s))

]

, (31)
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FIG. 5: The lossy bosonic channel can be modeled as a beam-splitter

with transmissivity η and the environment mode initially in the vac-

uum state. In the first phase of the reverse reconciliation protocol,

Alice sends one mode of a two-mode entangled state (denoted by the

symbol ‘∞’) down the channel.

where S(ρ) = −Tr (ρ log ρ) denotes the von Neumann en-

tropy. From the explicit expressions for p(x, s), ρnA(x, s) and

ρnA (given in the Appendix) we obtain

χrr = g(N)− g[(1− η)N ′] (32)

where N ′ = N/(1 + ηN). χrr also quantifies the rate (in

bits per mode) of shared randomness that can be established,

with the assistance of public communication, by Alice and

Bob [36].

Finally, to show the security of the communication proto-

col, we need to bound Eve’s accessible information about x.

Bob’s measurement also induces a virtual quantum channel

to Eve. For any given s, the ensemble of states obtained by

Eve is {ρnE(x, s), p(x, s)}x=1,...,M , where ρnE(x, s) is Eve’s

state conditioned on Bob’s measurement result x. Given the

explicit form of ρnE(x, s) we show (see Sec. VIII and the Ap-

pendix) that Eve’s accessible information about x is negligibly

small for K such that

krr := lim
n

logK

n
(33)

= 2g[(1− η)N ]− g[(1− η)N ′]− g[(1− η)N ′′] , (34)

with N ′′ = N(1 + 2ηN)/(1 + ηN). In conclusion, applying

the bootstrapping routine, we obtain a net rate of locked-key

generation of (in bits per mode)

rrr = χrr−krr = g(N)−2g[(1−η)N ]+g[(1−η)N ′′] , (35)

which in the limit of N → ∞ reads

rrr = 1 + log

(

1

1− η

)

. (36)

Similar results are obtained if the channel from Alice to

Bob is lossy and noisy. In this case the reverse reconciliation

protocol achieves an asymptotic locked-key rate of

rrr = 1 + log

(

1

1− η

)

− g(NT ) , (37)

where NT is the mean number of thermal photons per mode

in the channel.

VIII. SECURITY PROOFS

We discuss in details the case of the lossy channel. The

proof for the lossy and noisy channel can be obtained in a

similar way.

The starting point of the proof are some mathematical

tools presented in [17]. There we assumed that Eve’s states

ρnE(x, s) belongs to a finite-dimensional space of dimension

dn. Given the bipartite state

ρnXE =
1

M

M
∑

x=1

|x〉〈x| ⊗ 1

K

K
∑

s=1

ρnE(x, s) , (38)

the following bound hold for the associated accessible infor-

mation (see [17]):

Iacc ≤ logM − dn

M
min
|φ〉

{

H [Q(φ)]− η

[

M
∑

x=1

Qx(φ)

]}

,

(39)

where

Qx(φ) =
1

K

K
∑

s=1

〈φ|ρnE(x, s)|φ〉 , (40)

H [Q(φ)] =
∑M

x=1 η(Qx(φ)), with η( · ) = −( · ) log ( · ).
The minimum is over all vectors φ in Eve’s dn-dimensional

Hilbert space.

As shown in [17], if the ensemble of states from which the

codewords are sampled is such that for any unit vector |φ〉,

µ := Es[〈φ|ρnE(x, s)|φ〉] =
1

dn
(41)

(Es denotes the expectation value over s), and

Σ := Es[〈φ|ρnE(x, s)|φ〉2]
= Es[〈φ, φ|ρnE(x, s)⊗ ρnE(x, s)|φ, φ〉] , (42)

(here |φ, φ〉 ≡ |φ〉 ⊗ |φ〉) then the right hand side of (39) is

smaller than ǫ logM provided that

K > max

{

2γn
(

1

ǫ2
lnM +

2

ǫ3
ln

5

ǫ

)

,
dn

M

4 ln 2 ln dn

ǫ2

}

,

(43)

with

γn =
Σ

µ2
. (44)

In our setting n counts the number of modes employed in

one quantum data locking routine. Putting M = 2nχ and

ǫ = e−nc

with c ∈ (0, 1), condition (43) yields an asymptotic

rate of secret-key consumption (in bits per mode)

k = lim
n→∞

1

n
logK = max {log γ, log d− χ} . (45)

In our continuous-variable setting, Eve’s space is infinite-

dimensional. Therefore, to apply the result of [17] we need to
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map Eve’s space into a finite dimensional one. In both the di-

rect and reverse reconciliation protocol, the expectation value

over s of the state of Eve has the form (see details in the Ap-

pendix)

ρnE = Es[ρ
n
E(x, s)] = ρ⊗n

E , (46)

that is, the average state is a direct product. In particular, ρE is

a Gaussian state with zero mean, variance VE , and mean pho-

ton number (1 − η)N . We can hence consider the δ-typical

subspace projector Pn
ρ associated with ρ⊗n

E . We use this pro-

jector to define an auxiliary bipartite state of the form

σn
XE =

1

M

M
∑

x=1

|x〉〈x| ⊗ 1

K

K
∑

s=1

σn
E(x, s) , (47)

where

σn
E(x, s) = P

n
ρ ρ

n
E(x, s)P

n
ρ (48)

is obtained by slicing with the δ-typical subspace projector.

From the properties of the typical projector we have

‖σn
XE − ρnXE‖1 ≤ δ . (49)

Since the two states are δ-close in trace-norm, the security

of the state ρnXE follows, up to a probability δ, from that of

σn
XE . In such a way we have reduced the problem to a finite

dimensional one, where the dimension is that of the δ-typical

subspace, i.e.,

dn := Tr
(

P
n
ρ

)

∈ [2n[S(ρE)−cδ], 2n[S(ρE)+cδ]] (50)

(for some constant c).
We use a notion of typical subspace that is a slightly dif-

ferent from the one usually considered (see for instance [33]).

Given a hermitian operator ξ we consider its spectral decom-

position

ξ =
∑

ℓ

pℓ Pℓ , (51)

where the sum is over the eigenvalues pℓ and the correspond-

ing eigenprojectors Pℓ, in such a way that pℓ 6= pℓ′ for ℓ 6= ℓ′

(that is, Tr (Pℓ) equals the degeneracy of pℓ). We look at each

projector Pℓ as an event whose probability is πℓ = pℓTr (Pℓ).
Given ξ⊗n, we then define the δ-typical projector Pn

ξ as (we

omit the subscript δ to simplify the notation)

P
n
ξ =

∑

pℓ1
pℓ2

···pℓn∈Tn
δ

Pℓ1 ⊗ Pℓ2 ⊗ · · · ⊗ Pℓn (52)

where the sum is over the sequences pℓ1pℓ2 · · · pℓn which are

δ-typical with respect to the probability distribution πℓ. No-

tice that this construction of the typical projector coincides

with the usual one when all the eigenvalues of ξ are non de-

generate.

First we compute (41):

µ = Es[〈φ|σn
E(x, s) |φ〉] (53)

= Es[〈φ|Pn
ρ ρ

n
E(x, s)P

n
ρ |φ〉] (54)

= 〈φ|Pn
ρ ρ

⊗n
E P

n
ρ |φ〉 . (55)

Then, from the equipartition properties of the δ-typical sub-

space we have (for some constant c)

2−n[S(ρE)+cδ] ≤ µ ≤ 2−n[S(ρE)−cδ] . (56)

To compute (42) we need to introduce another typical sub-

space projector. We consider the state (ρE ⊗ ρE)
⊗n and its

associated (2δ)-typical subspace projector, denoted as P
n
ρ⊗ρ.

Notice that [Pn
ρ ⊗ P

n
ρ ,P

n
ρ⊗ρ] = 0, and that Pn

ρ ⊗ P
n
ρ ≤ P

n
ρ⊗ρ.

We also consider the state

ρn2E := Es[ρ
n
E(x, s)⊗ ρnE(x, s)] = ρ⊗n

2E . (57)

By explicit computation (see Appendix) we can show that,

in both the direct and reverse reconciliation protocols, ρ2E is

a Gaussian state with zero mean and covariance matrix V2E .

Moreover, ρ2E commutes with ρE ⊗ ρE since they are both

diagonal in the photon-number basis (see Appendix). It fol-

lows that ρ2E also commutes with P
n
ρ⊗ρ. We also have that,

given that ρE has mean photon number (1 − η)N , then both

ρ2E and ρE ⊗ ρE have 2(1− η)N mean photons.

We can now compute (42):

Σ = Es[〈φ, φ|σn
E(x, s)⊗ σn

E(x, s) |φ, φ〉] (58)

= Es[〈φ, φ|Pn
ρ
⊗2 ρnE(x, s)⊗ ρnE(x, s)P

n
ρ
⊗2 |φ, φ〉] (59)

= 〈φ, φ|Pn
ρ
⊗2 ρ⊗n

2E P
n
ρ
⊗2 |φ, φ〉 . (60)

Since Pn
ρ
⊗2 commutes with P

n
ρ⊗ρ and P

n
ρ
⊗2 ≤ P

n
ρ⊗ρ, we have

Σ ≤ 〈φ, φ|Pn
ρ⊗ρ ρ

⊗n
2E P

n
ρ⊗ρ |φ, φ〉 . (61)

To conclude, let us consider the sliced operator

P
n
ρ⊗ρ ρ

⊗n
2E P

n
ρ⊗ρ. Since [Pn

ρ⊗ρ, ρ
⊗n
2E ] = 0 we can apply a

classical argument concerning typical type classes (see, e.g.,

[37]). Let us denote as qℓ the eigenvalues of ρ2E . We notice

that the eigenvectors of P
n
ρ⊗ρ ρ

⊗n
2E P

n
ρ⊗ρ are those of ρ⊗n

2E
which are in the range of Pn

ρ⊗ρ (that is, they are δ-typical for

(ρE ⊗ ρE)
⊗n). Consider then an eigenvector whose δ-typical

type is π̃, the corresponding eigenvalue of Pn
ρ⊗ρ ρ

⊗n
2E P

n
ρ⊗ρ is

w =
∏

ℓ

qnπ̃ℓ

ℓ = 2n
∑

ℓ π̃ℓ log qℓ . (62)

Being ρ2E a zero-mean, thermal-like, Gaussian state, qℓ =
Z−12−βℓ, where ℓ is the photon number. This yields

w = 2−n(β〈ℓ〉π̃+logZ) (63)

= 2−n(β2(1−η)N+logZ+β∆〈ℓ〉) (64)

= 2−n(S(ρ2E)+β∆〈ℓ〉) . (65)

Here 〈ℓ〉π̃ =
∑

ℓ π̃ℓℓ is the mean photon number given by the

δ-typical distribution π̃. Since π̃ is δ-typical for (ρE⊗ρE)⊗n,

we expect 〈ℓ〉π̃ = 2(1 − η)N , ∆〈ℓ〉 = 〈ℓ〉π̃ − 2(1 − η)N
being the fluctuation about the expectation value. Finally we

have used S(ρ2E) = β2(1 − η)N + logZ . In the Appendix

we show that, for a δ-typical type π̃,

|β∆〈ℓ〉| ≤ 2cδ[(1− η)N + 1] (66)
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(for some constant c), from which we obtain

w ≤ 2−n(S(ρ2E)+2cδ[(1−η)N+1]) , (67)

and hence

Σ ≤ 2−n(S(ρ2E)+2cδ[(1−η)N+1]) . (68)

From these results, in the limits that n → ∞ and δ → 0,

we obtain the following bound on the key consumption rate:

k = max {2S(ρE)− S(ρ2E), S(ρE)− χ} . (69)

For the direct reconciliation protocol we have (see deriva-

tion in Appendix): χ = g(ηN), S(ρE) = g((1 − η)N), and

S(ρ2E) = g(2(1 − η)N). For any given η > 0 and N large

enough we then obtain

k = 2S(ρE)−S(ρ2E) = 2g[(1−η)N ]−g[2(1−η)N ] . (70)

For the reverse reconciliation protocol we have (see Ap-

pendix) χ = g(N)− g((1− η)N ′), with N ′ = N/(1 + ηN),
S(ρE) = g((1−η)N), and S(ρ2E) = g((1−η)N ′)+g((1−
η)N ′′), with N ′′ = N(1 + 2ηN)/(1 + ηN). For any given

η > 0 and N large enough we then obtain

k = 2S(ρE)− S(ρ2E) (71)

= 2g[(1− η)N ]− g[(1− η)N ′]− g[(1− η)N ′′] . (72)

IX. CONCLUSION

Quantum cryptography promises unconditionally secure

communication through insecure communication channels.

However, fundamental properties of quantum entanglement

bound the ultimate secret-key generation rates that can be

achieved through a communication channel [2]. For the rele-

vant case of a lossy communication line, as e.g. free-space of

fiber optics communication, the bound of [2] implies that the

secret-key generation rate must decrease at least exponentially

with increasing communication distance.

Here we have analyzed the rate-distance tradeoff under the

realistic assumption that one can store quantum information

reliably only for a finite time. Clearly, any quantum mem-

ory device can store quantum information only for a time of

the order of its coherence time. We have shown that for any

given finite, yet arbitrarily long, storage time, the quantum

data locking effect can be applied to generate key at a constant

rate over arbitrarily long distances through an optical channel

with linear loss. Moreover, we have shown that this result

holds also in the presence of moderate noise or experimental

imperfections modeled as a thermal background.

It remains an open problem to show that these high rates

of key generation can be achieved in practice. One major

problem is to find a decoding measurement that can be exper-

imentally realized with current technologies and still allows

us to achieve a constant key rate over long communication

distances. If this question will find a positive answer, our re-

sults could pave the way to a new family of QKD protocols

that yield a constant key rate that does not decay with increas-

ing communication distance. This would also imply that long

distance quantum communication can be in principle realized

without employing quantum repeaters.
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Appendix A: The direct reconciliation protocol

In the direct reconciliation protocol, the n-mode codewords

obtained by Eve read

ρnE(x, s) = |
√

1− η αn(x, s)〉〈
√

1− η αn(x, s)| , (A1)

where |√1− η αn(x, s)〉 = ⊗n
j=1|

√
1− η αj(x, s)〉 is a n-

mode coherent state, where the amplitudesαj(x, s)’s are sam-

pled i.i.d. from a circularly symmetric Gaussian distribution

G(0,N) = 1
2πN e−|α|2/N with zero mean and variance N .

Therefore the expectation value over s of ρnE(x, s) reads

Es[ρ
n
E(x, s)] =

(∫

dµ|
√

1− η α〉〈
√

1− η α|
)⊗n

(A2)

= ρ⊗n
E , (A3)

where dµ = d2αG(0,N)(α), and ρE is a single-mode ther-

mal state with mean photon number (1 − η)N . The spectral

decomposition of ρE is

ρE =
1

(1− η)N + 1

∞
∑

ℓ=0

(

(1 − η)N

(1− η)N + 1

)ℓ

|ℓ〉〈ℓ| , (A4)

where |ℓ〉 is the ℓ-photon state. The von Neumann entropy of

ρE is

S(ρE) = g((1− η)N) . (A5)

Therefore, denoting as P
n
ρ the δ-typical projector associated

with ρnE we have (for some constant c) (see e.g. [33])

2n[g((1−η)N)−cδ] ≤ Tr(Pn
ρ ) ≤ 2n[g((1−η)N)+cδ] (A6)

and

2−n[g((1−η)N)+cδ]
P
n
ρ ≤ P

n
ρ ρ

n
E P

n
ρ ≤ 2−n[g((1−η)N)−cδ]

P
n
ρ .

(A7)

Consider the operator ρ⊗2
E . This is a two-mode thermal

state with 2(1 − η)N mean photons. Its spectral decompo-

sition can be obtained from (A4):

ρ⊗2
E =

(

1

(1 − η)N + 1

)2 ∞
∑

ℓ=0

(

(1 − η)N

(1− η)N + 1

)ℓ

Pℓ ,

(A8)

where Pℓ denotes the projector on the subspace with ℓ pho-

tons. The ℓ-photon subspace is generated by the ℓ + 1
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two-mode vectors {|0〉|ℓ〉, |1〉|ℓ − 1〉, . . . |ℓ〉|0〉}, therefore

Tr (Pℓ) = ℓ+ 1.

Let us now consider the expectation value over s of the op-

erator ρnE(x, s) ⊗ ρnE(x, s):

Es[ρ
n
E(x, s)⊗ ρnE(x, s)] =

(∫

dµ|
√

1− ηα〉〈
√

1− ηα| ⊗ |
√

1− ηα〉〈
√

1− ηα|
)⊗n

(A9)

= ρ⊗n
2E . (A10)

The state ρ2E is a Gaussian state with zero mean and 2(1 −
η)N mean photons. Its spectral decomposition is:

ρ2E =
1

2(1− η)N + 1

∞
∑

ℓ=0

(

2(1− η)N

2(1− η)N + 1

)ℓ

|ψ+
ℓ 〉〈ψ+

ℓ | ,

(A11)

where

|ψ+
ℓ 〉 = 2−ℓ/2

ℓ
∑

i=0

√

(

ℓ

i

)

|i〉|ℓ− i〉 . (A12)

From this we compute the von Neumann entropy of ρ2E :

S(ρ2E) = g(2(1− η)N) . (A13)

Finally, since |ψℓ〉 is a ℓ-photon state, we obtain that ρ2E com-

mutes with ρE⊗ρE , which also implies that [ρ⊗n
2E ,P

n
ρ⊗ρ] = 0.

Appendix B: The reverse reconciliation protocol

1. Bob’s measurement

We recall the statement of the operator Chernoff bound

[38]. Let {ξt}t=1,...,T be a collection of i.i.d. operator-valued

random variables, where each ξt is a positive hermitian oper-

ator in a Hilbert space of dimension D, satisfying ξt ≤ I and

with mean value E[ξt] = µ ≥ aI for some a ∈ (0, 1). Then

for any ǫ > 0 (and provided that (1 + ǫ)µ < 1) we have

Pr

{

1

T

T
∑

t=1

ξt ≥ (1 + ǫ)µ

}

≤ D exp

(

−T ǫ
2a

4 ln 2

)

, (B1)

and

Pr

{

1

T

T
∑

t=1

ξt ≤ (1− ǫ)µ

}

≤ D exp

(

−T ǫ
2a

4 ln 2

)

, (B2)

To define Bob’s POVM we apply this bound to the opera-

tors

ξ(x, s) = P
n
B |βn(x, s)〉〈βn(x, s)|Pn

B , (B3)

where Pn
B is the projector on Bob’s typical subspace. For any

given s, we have a collection {ξ(x, s)}x=1,...,M of M i.i.d.

operator-valued random variables, with ξ(x, s) ≤ P
n
B , and

E[ξ(x, s)] ≥ 2−n[g(ηN)+cδ]
P
n
B . Hence by restricting to Bob’s

typical subspace, we meet the conditions for applying the op-

erator Chernoff bound with a = 2−n[g(ηN)+cδ]. It follows

from (B1) that for any s, the operator

Σ(s) =
M
∑

x=1

P
n
B |βn(x, s)〉〈βn(x, s)|Pn

B (B4)

satisfies Σ(s) ≤ M(1 + ǫ)2−n[g(ηN)+cδ]
P
n
B with arbitrary

high probability if M ≫ 2−n[g(ηN)+cδ]. This in turn implies

that the operators

Γx(s) =
P
n
B |βn(x, s)〉〈βn(x, s)|Pn

B

(1 + ǫ)M2−n[g(ηN)+cδ]
(B5)

define a subnormalized POVM, that is,
∑

x Γx(s) ≤ I (here

the identity is intended as the identity operator in the typical

subspace).

To complete the subnormalized POVM we introduce the

operator

Γ0(s) = I−
∑

x

Γ0(s) . (B6)

However, that the probability associated to the POVM element

Γ0(s) is negligibly small. Applying (B2) we obtain that

∑

x

Γx(s) ≥
1− ǫ

1 + ǫ
≃ 1− ǫ2 , (B7)

from which it follows Γ0(s) . ǫ2.

2. Alice’s and Eve’s conditional states

For the reverse reconciliation protocol it is easier to work

in the Wigner function representation.

In the first phase of the reverse reconciliation protocol the

tripartite state ρnABE = ρ⊗n
ABE is broadcast by Alice through

the quantum channel. ρ⊗n
ABE is the tensor product of n three-

mode zero-mean Guassian states (for a review on Gaussian

states see, e.g., [39]). The Wigner function of ρABE reads

W (RABE) = N exp

(

−1

2
RABEV

−1
ABER

T

ABE

)

, (B8)

where RABE = (qA, pA, qB, pB, qE , pE) is the three-mode

quadrature vector. The covariance matrix can be easily com-

puted and reads:
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VABE =
1

2

















C 0 S
√
η 0 S

√
1− η 0

0 C 0 −S√η 0 −S√1− η

S
√
η 0 Cη + (1− η) 0 (C − 1)

√

η(1− η) 0

0 −S√η 0 Cη + (1− η) 0 (C − 1)
√

η(1 − η)

S
√
1− η 0 (C − 1)

√

η(1 − η) 0 C(1 − η) + η 0

0 −S√1− η 0 (C − 1)
√

η(1 − η) 0 C(1 − η) + η

















(B9)

where C = 2N + 1 and S = 2
√

N(N + 1). From VABE we obtain the covariance matrix of the joint state of Alice and Bob,

VAB =
1

2







C 0 S
√
η 0

0 C 0 −S√η
S
√
η 0 Cη + (1− η) 0

0 −S√η 0 Cη + (1− η)






(B10)

and that of Eve and Bob,

VBE =
1

2









Cη + (1− η) 0 (C − 1)
√

η(1 − η) 0

0 Cη + (1 − η) 0 (C − 1)
√

η(1− η)

(C − 1)
√

η(1 − η) 0 C(1 − η) + η 0

0 (C − 1)
√

η(1− η) 0 C(1− η) + η









. (B11)

In the second phase of the protocol Bob makes a measure-

ment described by the POVM elements Γx(s) (30). To sim-

plify the notation we drop the normalization factor and write

Γx(s) ≃ P
n
B |βn(x, s)〉〈βn(x, s)|Pn

B . (B12)

We compute Alice’s (not-normalized) conditional state:

ρnA(x, s) = TrB[I
n
A ⊗ Λ(s)

x ρ⊗n
AB] (B13)

= TrB
[

I
n
A ⊗ P

n
B |βn(x, s)〉〈βn(x, s)|Pn

B ρ
⊗n
AB

]

.

(B14)

We apply the property of strong typicality,

‖Pn
B |βn(x, s)〉〈βn(x, s)|Pn

B − |βn(x, s)〉〈βn(x, s)|‖1 ≤ δ,

to obtain, up to an error smaller than δ in trace distance,

ρnA(x, s) ≃ TrB
[

I
n
A ⊗ |βn(x, s)〉〈βn(x, s)| ρ⊗n

AB

]

(B15)

=

n
⊗

j=1

TrB [IA ⊗ |βj(x, s)〉〈βj(x, s)| ρAB ] (B16)

=

n
⊗

j=1

ρAj
(x, s) . (B17)

Then the probability of the outcome ‘x’ can be obtained as

p(x, s) = Tr [ρnA(x, s)].
In the Wigner function representation, the equation

ρAj
(x, s) = TrB [IA ⊗ |βj(x, s)〉〈βj(x, s)| ρAB ] reads

WAj(x,s)(RA) = (2π)n
∫

d2nRBWβj(x,s)(RB)WAB(RAB) ,

(B18)

where WAB(RAB) is the Wigner function of ρAB and

Wβj(x,s)(RB) is the Wigner function of the coherent state

|βj(x, s)〉. With a lengthly but straightforward calculation we

found that the Wigner function of ρAj
(x, s) is also Gaussian

with covariance matrix

VAj(x,s) =

[

(1− η)N

1 + ηN
+

1

2

](

1 0
0 1

)

. (B19)

From VAj(x,s) we can compute the von Neumann entropy

of the conditional states ρAj
(x, s), which is S(ρAj

(x, s)) =
g[(1− η)N ′] with N ′ = N/(1 + ηN).

By applying the same reasoning we compute the covariance

matrix of Eve’s conditional states ρEj
(x, s):

VEj(x,s) =

[

(1− η)N

1 + ηN
+

1

2

](

1 0
0 1

)

. (B20)

We also compute the mean R̄j = (q̄Ej
, p̄Ej

) and obtain

q̄Ej(x,s) =
N
√

η(1− η)

1 + ηN

Re[βj(x, s)]√
2

(B21)

p̄Ej(x,s) =
N
√

η(1− η)

1 + ηN

Im[βj(x, s)]√
2

. (B22)

Notice that the mean is also a function of the mode label j
through the amplitude βj(x, s). We remark that Alice’s and

Eve’s conditional states have the same covariance matrix but

different mean.

3. Calculations for the security proof

From the form of the conditional state ρnE(x, s) =
⊗n

j=1 ρ
n
Ej

(x, s) we can compute

Es[ρ
n
E(x, s)] = ρ⊗n

E (B23)
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(notice that, for how Bob’s measurement has been defined, the

expectation value over s equals the expectation value over x).

ρE is a Gaussian state with zero mean. Its covariance matrix

can be obtained directly from (B11) and reads

VE =
1

2

(

C(1− η) + η 0
0 C(1 − η) + η

)

(B24)

=

[

(1 − η)N +
1

2

](

1 0
0 1

)

. (B25)

That is, ρE is a thermal state with (1 − η)N mean photons,

whose entropy is S(ρ(1−η)N ) = g[(1− η)N ]. We then obtain

2−n[g[(1−η)N ]+δ]
P
n
ρ ≤ P

n
ρ ρ

⊗n
E P

n
ρ ≤ 2−n[g[(1−η)N ]−δ]

P
n
ρ .

(B26)

The spectral decomposition of ρE is as in Eq. (A4). Similarly,

the operator ρE ⊗ ρE is identical to its homologous analyzed

for the direct reconciliation protocol, with spectral decompo-

sition given in Eq. (A8).

We now consider the operator ρ2E = Es[ρEj
(x, s) ⊗

ρEj
(x, s)]. Using the results of Sec. B 2 we found that ρ2E

is a Gaussian state with zero mean and covariance matrix

V2E =









(1 − η)N + 1
2 0 η(1− η)NN ′ 0

0 (1− η)N + 1
2 0 η(1 − η)NN ′

η(1− η)NN ′ 0 (1− η)N + 1
2 0

0 η(1− η)NN ′ 0 (1− η)N + 1
2









, (B27)

with N ′ = N/(1+ ηN). From the covariance matrix V2E we

compute the von Neumann entropy S(ρ2E) = g[(1−η)N ′]+
g[(1 − η)N ′′], with N ′′ = N(1 + 2ηN)/(1 + ηN). Finally,

its spectral decomposition is

ρ2E =
1

(1− η)2N ′N ′′

∞
∑

t,m=0

(

(1 − η)N ′

(1− η)N ′ + 1

)t

×
(

(1− η)N ′′

(1− η)N ′′ + 1

)m

|ψt,m〉〈ψt,m| , (B28)

with

|ψt,m〉 = 2
−t−m

2

t
∑

j=0

m
∑

k=0

(

t

j

)(

m

k

)

(−1)k
√

(t+m− j − k)!

×
√

(j + k)! |t+m− j − k〉|j + k〉 . (B29)

Notice that |ψt,m〉 is a state with exactly ℓ = t +m photons.

It follows that ρ2E commutes with ρE ⊗ ρE (see Eq. (A8)).

4. Active attack

An active Gaussian attack from the eavesdropper can be

modeled as a beam-splitter that mixes the mode from Alice

with a mode from a two-mode entangled state. As shown in

Fig. 6, the eavesdropper Eve obtains both the modes of the

two-mode entangled state. In this setting, if Alice’s two-mode

entangled state hasN mean photons per mode, and Eve’s two-

mode entangled state has NT mean photons per mode, then

the joint four-mode Gaussian state of Alice, Bob and Eve has

covariance matrix:

VABEE′ =

1

2

























C 0 S
√
η 0 S

√

1− η 0 0 0
0 C 0 −S

√
η 0 −S

√

1− η 0 0

S
√
η 0 CT (1 − η) + Cη 0 (C − CT )

√

η(1 − η) 0 −ST

√

1− η 0

0 −S
√
η 0 CT (1− η) + Cη 0 (C − CT )

√

η(1 − η) 0 ST

√

1− η

S
√

1− η 0 (C − CT )
√

η(1 − η) 0 C(1 − η) + CT η 0 ST η 0

0 −S
√

1− η 0 (C − CT )
√

η(1 − η) 0 C(1− η) + CT η 0 −ST η

0 0 −ST

√

1− η 0 ST η 0 CT 0
0 0 0 ST

√

1− η 0 −ST
√
η 0 CT

























,

(B30)

where C = 2N+1, S = 2
√

N(N + 1), and CT = 2NT +1,

ST = 2
√

NT (NT + 1). We can use this covariance matrix

instead of (B9) and repeat the calculations done in subsections
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FIG. 6: A scheme for an active Gaussian attack. The beam splitter

mixes Alice’s mode with one mode from an entangled pair (denoted

by the symbol ‘∞’). The eavesdropper Eve obtains both the modes

of the two-mode state.

B 1-B 3 for the reverse reconciliation protocol. We obtain

χrr = g(N)− g[(1− η)Ñ ] , (B31)

with Ñ = N(1 + NT )/[1 + NT − (N − NT )η], and, for

N ≫ 1, NT ,

krr = g(NT ) + 2g[(1− η)N + ηNT ]− g[(1− η)Ñ ]− g[N̂ ] ,
(B32)

with N̂ = 2(1−η)N+ (1−η)+NT (2η2−1)
η . Finally, in the limit

N → ∞ we obtain

rrr = χrr − krr = 1 + log

(

1

1− η

)

− g(NT ) . (B33)

Appendix C: Fluctuations of the mean photon number ∆〈ℓ〉

Let us consider the distribution π, with

πℓ =
1

(1− η)N + 1

(

(1− η)N

(1− η)N + 1

)ℓ

(ℓ+ 1) , (C1)

and a δ-typical type π̃. The empirical entropy given by π̃ is

S = −
∞
∑

ℓ=0

π̃ℓ log πℓ . (C2)

For δ-typical type we have small fluctuation of S around its

average, that is,

∆S = −
∞
∑

ℓ=0

π̃ℓ log πℓ +
∞
∑

ℓ=0

πℓ log πℓ ∈ [−cδ, cδ] . (C3)

From (C1) we obtain

S = log [(1− η)N + 1]

− log

(

(1− η)N

(1− η)N + 1

)

〈ℓ〉π̃ − 〈log (ℓ+ 1)〉π̃ , (C4)

which yields

∆S = − log

(

(1− η)N

(1 − η)N + 1

)

∆〈ℓ〉 −∆〈log (ℓ + 1)〉 .
(C5)

For N large enough we have

∆S ≃ log e

[

∆〈ℓ〉
(1 − η)N

− ∆〈ℓ〉
(1 − η)N + 1

]

, (C6)

where we have used the fact that 〈ℓ〉π̃ fluctuates about (1 −
η)N . Finally we obtain

log e∆〈ℓ〉
(1 − η)N

≃ [(1− η)N + 1]∆S . (C7)

Since for N large enough β = log e
(1−η)N , we have

β∆〈ℓ〉 ≃ [(1− η)N + 1]∆S . (C8)
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