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We analyse a model for fault-tolerant quantum computation with low overhead suitable for sit-
uations where the noise is biased. The basis for this scheme is a gadget for the fault-tolerant
preparation of magic states that enable universal fault-tolerant quantum computation using only
Clifford gates that preserve the noise bias. We analyse the distillation of |T 〉-type magic states using
this gadget at the physical level, followed by concatenation with the 15-qubit quantum Reed-Muller
code, and comparing our results with standard constructions. In the regime where the noise bias
(rate of Pauli Z errors relative to other single-qubit errors) is greater than a factor of 10, our scheme
has lower overhead across a broad range of relevant noise rates.

I. INTRODUCTION

Fault-tolerant quantum computation provides a means
to process quantum information with faulty devices us-
ing quantum error-correcting codes together with logi-
cal gate constructions that do not propagate errors, in
such a way that a quantum computation of arbitrary
length can occur provided the error rate is below a thresh-
old [1]. For two decades now, the focus for research
into quantum architectures has been to increase this er-
ror threshold as high as possible. The high-threshold
schemes of Knill [2] and Raussendorf, Harrington, and
Goyal [3] have error thresholds of around 1%, and there
has not been significant improvement in these threshold
values in the subsequent decade of research. Unfortu-
nately, these high-threshold schemes possess dauntingly
large overheads, that is, a significant excess in the num-
ber of physical qubits and gates necessary to construct
the fault-tolerant logical operations. For example, the
high-threshold scheme for quantum computation based
on surface codes [3] has an overhead that increases with
problem size, but typical numbers are of the order of
106 or more physical qubits per logical qubit when magic
state distillation is included [4]. There is considerable
motivation, then, for the design of fault tolerant schemes
with low overhead [5–10].

In this paper, we explore a method for reducing this
overhead in systems where the noise is biased, specifi-
cally, where dephasing (the Z error rate) is dominant
over other errors. Our results are motivated by previ-
ous studies of architectures with high error threshold in
such a noise bias regime [11]. Although the increase in
the error threshold in these noise-biased architectures is
relatively modest compared with standard constructions,
we demonstrate that the overhead can be reduced by at
least a factor of four across a wide range of noise regimes.

One of the most significant contributions to the large
overhead in existing fault-tolerant quantum computing
schemes is the distillation of high-fidelity magic states
that enable a universal logic gate set using only Clif-
ford operations, and several investigations have explored
how to reduce this particular cost [5, 8]. Building on

these previous results, we propose and analyse a sim-
ple fault-tolerant gadget capable of directly preparing en-
coded magic states in a system affected by biased noise.
This gadget has significant error correction capabilities
for Z errors, but ignores all other errors. We derive ex-
pressions for the logical error rates on the encoded magic
state preparation in terms of the circuit parameters, and
demonstrate that for bare error rates of less than 10−3

and biases of at least 102, the logical error rate of the en-
coded magic state is lower than the bare error rate. The
simplicity of this gadget should result in reduced over-
heads when used in a larger fault-tolerant construction.

To quantify these gains, we consider the overhead in-
volved in using these magic states to prepare high-fidelity
magic states in a quantum Reed-Muller code, and com-
pare with standard distillation methods. Here, we find
that for biases of at least a factor of 10, the overhead for
|T 〉-type magic state distillation using the scheme at the
physical level followed by concatenated layers of the 15-
qubit quantum Reed-Muller distillation is almost always
lower than using the quantum Reed-Muller distillation
directly, for a broad range of physical and target error
rates. Our comparison uses only non-Clifford gate count,
and so ignores the fact that our gadget offers a reduction
in Clifford gate overhead as well.

The paper is structured as follows. We introduce the
noise model, quantum codes, and gate set for biased noise
in Section II. In Section III, we present the circuit for
fault-tolerant production of magic states, and detail its
operation. Section IV presents an analysis of how errors
can arise and propagate through the circuit, including a
calculation of the logical noise rate affecting the output
encoded state. Section V provides an illustration of how
this gadget could be used within a larger fault-tolerant
scheme with lower overhead, by considering the specific
case of encoding the output state into a Reed-Muller code
for further distillation using standard techniques. Sec-
tion VI presents some concluding remarks.
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II. QUANTUM CODES AND LOGIC GATES
FOR BIASED NOISE

A. Errors and bias

A standard noise model for studying quantum error
correcting codes and fault-tolerant circuits is for single-
qubit X, Y , and Z errors to occur with equal proba-
bility, i.e., a uniform single-qubit depolarization chan-
nel, independently on all qubits. While this noise model
has a theoretical simplicity, it is not representative of
the observed noise on many physical manifestations of a
qubit. In particular, for qubits defined by nondegenerate
energy levels with Hamiltonian proportional to Z, the
noise model is generically described by a dephasing (Z-
error) rate that is distinct from the rates for relaxation
and other non-energy-preserving errors. Examples in-
clude trapped ions [12], superconducting qubits [13], and
electron spins in semiconductors [14]. For these qubits,
the observed Z-error rate can be substantially larger than
all other error rates.

We consider a phenomenological noise model that in-
cludes both independent single qubit errors occurring at
any location in the circuit (preparations, gates, measure-
ments, and waiting times) as well as correlated two-qubit
errors occurring at two-qubit gates. Unlike in standard
noise models, our single qubit errors are described by
independent Pauli Z and X errors occurring at differ-
ent rates. Let pz and px denote the probability of Z
and X errors, respectively, resulting from the noise on
a gate, or during a state preparation or measurement.
We assume px < pz, that is, that X errors occur with a
lower frequency than Z errors, and define the bias to be
η = pz/px. As an example, for a qubit encoded in a pair
of electron spins in semiconductor quantum dots [14], de-
phasing dominates over relaxation processes resulting in
a noise bias of at least η = 103.

For the correlated errors, because we will make use of
an entangling gate that is diagonal in the Z basis, as-
sume that only correlated Z errors occur on both qubits
in a two qubit gate with rate pzz. (Note that correlated
Z errors are distinct error processes to independent Z
errors occurring on two qubits, which occur with prob-
ability p2z � pz.) Capacitive coupling of electron spins
in semiconductor quantum dots [14] provides an example
of this situation as well. For simplicity, we assume that
pzz is also much less than pz and of the same order of
magnitude as px.

B. Quantum codes for biased noise

With a noise bias, it is natural to select a quantum er-
ror correcting code that offers better properties (specifi-
cally, distance) for Z errors than other errors. The sim-
plest such code is an n-qubit repetition code for Z errors,
which has distance n for Z errors but no correction ca-
pability for other errors. (That is, it can detect up to

n− 1 Z errors, and correct up to (n− 1)/2 Z errors, but
cannot detect nor correct X errors.) This stabilizer code
has n − 1 stabiliser generators, of the form XjXj+1, for
1 ≤ j < n, and hence encodes one logical qubit. As logi-
cal operators we then have XL = X1, ZL = Z⊗n. Code
states for the repetition code expressed in the X basis
are

|+〉L = |+〉⊗N , |−〉L = |−〉⊗N . (1)

C. Quantum gates for a fault-tolerant construction

Along with selecting a set of quantum codes, a scheme
for fault-tolerant quantum computation requires a uni-
versal gate set and a method for performing logical oper-
ations in a fault-tolerant way. To take advantage of the
noise bias, we require that all gates commute with Z and
thus maintain the direction of the noise bias, i.e., they
do not map Z errors into X errors.

We use a modification of the gate set of Ref. [11].
The elementary operations that we perform on physi-
cal qubits consist of preparation and measurement in
the X basis, as well as a two-qubit entangling opera-
tion CZ(θ)ij = exp(i θ2Zi ⊗ Zj) acting on qubits i and
j, generated by the Hamiltonian HZiZj ∝ Zi ⊗ Zj .
For θ = π/2, this gate is equivalent to the CPHASE
gate up to local bias-preserving transformations, where
CPHASE is the two qubit Clifford gate with matrix rep-
resentation CPHASE = diag(1, 1, 1,−1). (Specifically,
CPHASEij = exp(iπ4 ) exp(−iπ4Zi) exp(−iπ4Zj)CZ(θ)ij).
However, for general rotations θ 6= π/2, CZ(θ) is not a
Clifford gate.

This choice of gates is motivated by the noise bias.
Specifically, X errors act trivially on preparations and
measurements in the X basis, and hence only Z errors
affect these operations. Moreover, CZ(θ) commutes with
Z, meaning that Z errors on the input will remain Z
errors on the output, preserving the noise bias.

With these elementary operations, we can use the re-
sults of Ref. [11] to perform fault-tolerant encoded ver-
sions of the Clifford operations in the set{

P|+〉L ,MXL ,MZL ,CNOT
}

(2)

where P|+〉L denote preparation of an encoded qubit in
the logical state |+〉L, MXL and MZL denotes measure-
ment of the logical operators XL and ZL, respectively,
and CNOT is the logical controlled-NOT operation.

To obtain a universal gate set, we supplement these
Clifford operations with preparation of magic states
P|+i〉L and P|T 〉L through the use of a gadget based on
CZ(θ) gates with θ 6= π/2. Here, |+i〉 = |0〉 + i|1〉 and
|T 〉 = |0〉 + eiπ/4|1〉 (we omit normalisation for clarity).
The |T 〉 state in particular is not a stabilizer state. One
method to prepare such magic states in a fault-tolerant
way is to prepare encoded versions of these states in an
appropriate quantum error correcting code, and to use
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Block 1 P|+〉L
CZ(θ)⊗n

MZL MX

Block 2 P|+〉L
MZLZL

MX

Block 3 P|+〉L |θ〉L

FIG. 1: Representation of the magic state preparation gadget
in terms of logical qubits and operators. Each line represents
a logical qubit, encoded in an n qubit repetition code. The
section marked with a dashed box is used for error correction.

the error correction properties of the code to yield high-
fidelity encoded magic states despite having noisy prepa-
rations at the physical level. In the next section, we
describe a scheme to implement the encoded magic state
preparations P|+i〉L and P|T 〉L when the noise is biased,
in a simple way, using the CZ(θ) gate and the repetition
code.

III. ENCODED MAGIC STATE PREPARATION

In this section, we present the scheme to prepare en-
coded magic states such as |+i〉L and |T 〉L in an n-qubit
repetition code.

The fault-tolerant gadget is shown in Fig. 1. The basic
non-Clifford operation in this gadget is a gate CZ(θ)⊗n,
which entangles blocks 1 and 2 by applying CZ(θ) as if
it were a transversal operation. Note that CZ(θ) does
not act transversally on the repetition code, and so this
gate does not preserve the codespace. However, mapping
out of the codespace can be fixed by performing quantum
error correction with this code. The final stage (within
the dashed box in Fig. 1) is an error-correction gadget
introduced in Ref. [11]. It is an adaptation of a one-bit
teleportation circuit that teleports the state from block
2 onto block 3 while correcting Z errors. The output of
this final stage is a valid codestate under ideal operations,
which depends on the choice of θ and the intermediate
measurement outcomes. We show that the output for
particular values of θ can be converted using Pauli op-
erations conditioned on these intermediate outcomes to
the Clifford magic state |+i〉L deterministically, and to
the non-Clifford magic state |T 〉L with some probability
(i.e., for certain outcomes).

A. Magic state preparation

Blocks 1 and 2 are each prepared as |+〉L = |+〉⊗n, and
then entangled using the CZ(θ)⊗n performed pairwise
between the blocks. The action of this operation is as
follows. On each individual pair of qubits, one from each
block, CZ(θ) acts as

CZ(θ)|+〉|+〉 = e−i
θ
2ZZ(|0〉+ |1〉)(|0〉+ |1〉)

= (II +XX)|0〉|θ〉 , (3)

where we have defined the state |θ〉 = e−iθ/2|0〉+eiθ/2|1〉.
Therefore,

CZ(θ)⊗n|+〉L|+〉L = [(II +XX)|0〉|θ〉]⊗n . (4)

The CZ(θ)⊗n operation does not preserve the codespace
of the two blocks. As we will show, the action of CZ(θ)⊗n

can be viewed as providing a rotation on the logical state
of block 2 conditional on the logical state of block 1, with
the addition of systematic correlated X “errors” on both
blocks as well as correctable Z errors that map out of the
codespace. Both of these effects can be corrected by the
gadget.

The measurement of ZL on the first block will reveal
the parity of the number of such correlated X errors, thus
collapsing the state on one of two possibilities

|Ψ+〉 =
∑

a∈{0,1}n
|a| even

n⊗
i=1

(XX)ai |0〉|θ〉 (5)

|Ψ−〉 =
∑

a∈{0,1}n
|a| odd

n⊗
i=1

(XX)ai |0〉|θ〉. (6)

The measurement of ZL on the first block can be per-
formed as in Fig. 2, and can be repeated rz times. (We
visit the issue of optimal rz in the subsequent error anal-
ysis in Secs. IV and V.)

Next, every qubit of the first block is measured in the
X basis. Denoting xi = ±1 the result of the measurement
on the ith qubit, the states on block 2 are transformed
to ∣∣Ψ′+〉 =

∑
a∈{0,1}n
|a| even

n⊗
i=1

(xiX)ai |θ〉 ≡ A+|θ〉⊗n (7)

∣∣Ψ′−〉 =
∑

a∈{0,1}n
|a| odd

n⊗
i=1

(xiX)ai |θ〉 ≡ A−|θ〉⊗n, (8)

where A± implicitly depends on the measurement out-
comes xi. Note that ZLA± = ±A±ZL due to the parity
constraint. Thus, we can denote the state on block 2
at this stage by A±|θ〉⊗n = A±(eiθZ/2|+〉)⊗n, and we
see that we have used the CZ(θ) gate to implement a
Z-rotation, up to known errors.

B. Error correction

The remaining part of the gadget (within the dashed
box in Fig. 1) is an error correction gadget, as introduced
in Ref. [11]. In this final stage, a third register in the
state |+〉L is appended and the system and a measure-
ment of ZLZL is performed on blocks 2 and 3. Because
the operators A± have well-defined commutation/anti-
commutation relations with ZL, we can ignore their pres-
ence to study the effect of the measurement. (The ef-
fect of these operators is only to flip the sign of the
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Ancilla P|+〉 • • • MX

•
•

•

FIG. 2: The MZL gadget. Each controlled gate is a CPHASE
gate acting between a qubit in block 1 and an ancilla qubit.

measurement outcome in a deterministic way.) More-
over, the ZLZL measurement commutes with (eiθZ/2)⊗n,
so we can also ignore the presence of this rotation to
study the effect of the measurement. With these two
simplifications, the ZLZL measurement is performed on
the state |+〉L|+〉L. Denoting the outcome as (−1)b,
the result is the preparation of one of two encoded Bell
states |0〉L|0〉L + |1〉L|1〉L for the b = 0 outcome and
|0〉L|1〉L+ |1〉L|0〉L = (ILXL)(|0〉L|0〉L+ |1〉L|1〉L) for the
b = 1 outcome. The full state of blocks 2 and 3 at this
stage can be written as

A±IL(eiθZ/2 ⊗ I)⊗n(ILXL)b(|0〉L|0〉L + |1〉L|1〉L)

= A±IL(eiθZ/2 ⊗ I)⊗n(ILXL)b(|+〉L|+〉L + |−〉L|−〉L)

= A±IL(eiθZ/2 ⊗ I)⊗n(ILXL)b(|+〉⊗2n + |−〉⊗2n). (9)

Finally, each qubit of the second block is measured in
the X basis. For such measurements, using the following
identity:

〈α|〈β|(II +XX) =

{
2〈α|〈β| if α = β

0 otherwise
(10)

for α, β ∈ {+,−}, it is straightforward to show from the
definition of the A± operators that, under ideal opera-
tion, the X basis measurements on blocks 1 and 2 are ei-
ther perfectly correlated or perfectly anticorrelated. Note
that if the X basis measurements on block 1 and 2 are not
perfectly correlated/anticorrelated in this way, we reject
the state.

To determine the final state on block 3, we use another
simple identity:

〈α|eiθZ/2|β〉 = eiθ/2 + αβe−iθ/2 , α, β ∈ {+,−} . (11)

Denoting αi the outcome of the ith X measurement, and
|α| the total number of +1 outcomes, the final state is

(
1 + (−1)be−iθ

)|α|(
1− (−1)be−iθ

)n−|α||+〉L
+
(
1− (−1)be−iθ

)|α|(
1 + (−1)be−iθ

)n−|α||−〉L . (12)

The above expression gives a code state depending on
the choice of θ and the intermediate measurement results
on block 2. Certain magic states can be prepared for spe-
cific choices of θ, such that the output is Pauli-correctable
to a fixed state independent of the intermediate measure-
ment outcomes. For preparing |+i〉L, we choose θ = π/2,

•
•

•

Ancilla P|+〉 • • • • • • MX

•
•

•

FIG. 3: The MZLZL gadget. Each controlled gate is a condi-
tional phase gate between data qubits and the ancilla.

and note that all possible output states are equivalent up
to correctable Pauli errors.

For |T 〉L, choosing θ = π/4, the output state is Pauli
correctable to the desired state if and only if n − |α| =
|α|±1. The number of vectors satisfying this requirement
in the field Zn2 , for odd n, is(

n
n−1
2

)
+

(
n
n+1
2

)
= 2

(
n
n−1
2

)
. (13)

Thus, the probability of the state being acceptable is:

paccept = 2−n × 2

(
n
n−1
2

)
= 21−n

(
n
n−1
2

)
. (14)

For n = 3, this expression gives paccept = 3/4; for n =
9 we have paccept = 1/2. Note that, for n = 3, the
failure channel when all three X measurement outcomes
are equal results in the Clifford state |+i〉L.

IV. ERROR ANALYSIS

In this section, we consider how physical errors at the
various points in the gadget of Fig. 1 lead to logical XL

and ZL errors, and place upper bounds on these logical
error rates.

A. Logical XL error bound

A logical XL error occurs if an X error affects any
of the qubits in the output block. Working backwards
through the steps in the gadget, we see that an X error
on block 3 occurs in only two ways: either an X error
occurs on one of the qubits in block 3 (with total proba-
bility εx,3), or the measurement MZLZL used in the error
correction gadget is faulty (with probability εx,MZLZL

).
Therefore the logical XL error probability EXL is upper
bounded by

EXL ≤ εx,3 + εx,MZZ
. (15)

To determine εx,3 on block 3, we note that X errors do
not affect the state preparation P|+〉L , but a non-trivial
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X error can occur during any of the rzz CPHASE gates,
on any of the n qubits. Therefore,

εx,3 ≤ rzznpx . (16)

A faulty MZLZL measurement can result from a Z error
on the majority of rzz ancillas (each of which could occur
during any of 2n CPHASE gates, or during preparation
or measurement), or from an X error on one of the qubits
in block 2 (with total probability εx,2). Thus

εx,MZLZL
≤
(
rzz
rzz+1

2

)(
(2n+ 2)pz

) rzz+1
2 + εx,2 . (17)

An X error on block 2 could occur from a direct X error
any of the n qubits of the block, on any of the n CZ(θ)
operations, or on any of rzz CPHASE gates. Addition-
ally, an X error can result from a faulty measurement of
MZL on block 1, with probability εx,MZL

. Thus,

εx,2 ≤ n(rzz + 1)px + εx,MZL
. (18)

A faulty MZL measurement could result from an X error
on any of the n CZ(θ) operations or on any of the rz
CPHASE gates. Additionally, it could result from a Z
error on the majority of rz ancillas, each of which could
occur on any of n CPHASE gates, or during preparation
or measurement. Thus,

εx,MZL
≤ n(rz + 1)px +

(
rz
rz+1
2

)(
(n+ 2)pz

) rz+1
2 . (19)

Combining these expressions, as well as choosing the
number of repetitions for MZL and MZLZL to be the
same, rz = rzz ≡ r, we obtain the following bound on
the logical XL error rate:

EXL ≤ n(3r+ 2)px +

(
r

m

)[(
2(n+ 1)

)m
+ (n+ 2)m

]
pmz ,

(20)
where we have defined m = (r + 1)/2. Note the effect of
repeated measurement r is to exponentially suppress the
effect of Z errors at the expense of linearly increasing the
effect of X errors.

From this expression, we can identify the most signifi-
cant contribution to the logical XL error rate EXL in var-
ious noise regimes and choices of r. Choosing r = n (as
is standard in related constructions) will maximally sup-
press the contribution from Z errors, and so the X errors
will contribute most significantly to the logical XL error
rate EXL unless the bias is extremely high (� (25pz)

−1).
Choosing r = 1, both Z and X errors contribute directly
(with rate proportional to px and pz, respectively) to log-
ical XL errors. Therefore, in a noised-biased regime, the
optimal choice of r is nontrivial, and we may benefit from
choosing r < n. We return to the best choice of r in the
next section.

B. Logical ZL error bound

Logical ZL errors occur if the error correction gadget
fails. The first such failure mode is when a Z error oc-
curs on all n qubits in either blocks 1 or 2; the result
is a logical error that cannot be detected by the error
correction gadget. On block 1, Z errors can occur dur-
ing preparation, measurement, the CZ(θ) gates, or any
of rz CPHASE gates. The same holds for block 2, but
with rzz CPHASE gates instead of rz. Additionally, a
single X error on an ancilla for the measurements MZL

and MZLZL could cause ZL errors on block 1 and block
2, respectively. Such an error can happen on each qubit
in any of rz repetitions n CPHASE gates for MZL or any
of rzz repetitions of 2n CPHASE gates for MZLZL . The
probability εz,1 of any of the above possibilities occurring
is upper bounded by

εz,1 ≤
((

(rz+3)+(rzz+3)
)
pz

)n
+n(rz+2rzz)px . (21)

A second source of logical ZL errors is the possibility
of preparing the incorrect magic state |θ〉L as a result of
a faulty X measurement. (Note that such failures are
distinct from cases where the X measurement results are
correct, but correspond to a different angle than the one
desired; in such cases the output can be discarded.) We
simplify the calculation by treating any such incorrect
angle as a logical ZL error. Because the X measurements
on block 2 are compared with the X measurements on
block 1, all such fault channels will be detected unless
correlated Z errors occur on both qubits in a pair on
blocks 1 and 2. When such a pair of errors occurs on
blocks 1 and 2, the resulting state is different from the
desired |θ〉L state. Such a process could happen either
as a correlated error in the CZ(θ)⊗n gate or as a pair of
independent Z errors on a pair of qubits. (Note that this
is the sole error process where the repetition code does
not directly protect against Z errors.) While correlated
errors can occur only at a CZ(θ) gate, independent Z
errors on pairs of qubits can occur during preparation,
any of the operations, or at measurement. This yields an
upper bound of

εz,2 ≤ npzz + n
(
(rz + 3)pz

)2
. (22)

Thus, again making the assumption that rz = rzz ≡ r,
we obtain a bound on the total logical ZL error rate for
the circuit:

EZL ≤
(
2(r + 3)pz

)n
+ npzz + 3nrpx + n

(
(rz + 3)pz

)2
.

(23)
As with the logical XL error rate, the effect of repeated

measurement r is to exponentially suppress the effect of
Z errors in the first term at the expense of increasing
the effect of X errors linearly with r. However, here the
contribution from εz,3 (correlated errors that lead to in-
correct X measurement results) is not suppressed further
by increasing r and will always have a leading order con-
tribution ∼ p2z regardless of the number of repetitions r
or the size of the code n.
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The logical XZ and ZL error rate expressions moti-
vate some deeper consideration into the best choice of the
number of measurement repetitions r. As noted above,
the standard approach is to choose r = n, which ensures
the measurements are fault-tolerant to Z errors on the
ancilla and thereby reduce (primarily) the logical XL er-
ror rate. Depending on the noise bias, however, it may
be beneficial to choose r < n and allow an increase in the
logical XL error rate with the aim of reducing the logical
ZL error rate and the associated overhead. We return to
this issue using a specific example in the next section.

C. Results for logical error rates

The logical XL and ZL error rates for various choices
of noise bias, for the codes n = 3 and setting px = pzz,
are shown in Fig. 4. We see that choosing the number of
measurement repetitions to be r = n, both logical error
rates drop below the bare pz error rate provided that pz
is less than ∼ 3×10−3 and the bias is greater than 102. If
instead one chooses r = 1 (no measurement repetitions),
the logical XL error rate increases from the bare pz error
rate by about an order of magnitude, independent of the
bias, but the ZL error rate is reduced by a greater amount
than the r = n case. While at first sight this dependence
on r appears to be a nuisance, we will see in the next
section how to benefit from this enhanced Z suppression
when using our gadget within a distillation protocol.

V. EXAMPLE: OVERHEAD FOR
DISTILLATION

The method presented in the previous section provides
an approach to preparing encoded magic states with re-
duced resources in a situation where the noise is biased.
The implication for fault-tolerant quantum computing is
that, by being able to prepare encoded magic states with
low error rates at the base level of encoding with few re-
sources, the overhead costs at higher levels of encoding
are correspondingly reduced.

A full picture of the benefits of this approach for a
quantum computing architecture would require detailed
simulations. However, to obtain a lower bound on the
potential gains, we can compare our approach to stan-
dard techniques for a specific well-studied task such as
magic state distillation. A standard approach in quanti-
fying overhead for distillation is to assume that Clifford
gates are ideal and “free”, and to enumerate the number
of non-Clifford gates that are required in the distillation
to achieve a desired fidelity. (We note that such an anal-
ysis is somewhat unfair to our scheme, as it ignores the
savings in the number of Clifford operations as a result
of using this gadget. We return to this issue at the end
of this section.)

With this perspective, we use the gadget for encoded
magic states as described in Sec. III, with logical error
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FIG. 4: (Color online) Logical XL error rates (solid lines) and
ZL error rates (dashed lines) for the gadget with n = 3 and
setting px = pzz, with number of measurement repetitions
r = n (top); with r = 1 (bottom). While r = n gives com-
parable reductions in both XL and ZL error rates, the r = 1
offers more significant reduction in the ZL error rate while
increasing the XL error rate by about an order of magnitude
for all values of bias. (In the bottom plot, the solid lines are
nearly indistinguishable for all values of noise bias.)

rates given by Eqns. (20) and (23). We then perform
an analysis based on |T 〉-type magic state distillation us-
ing the 15-qubit quantum Reed-Muller (RM) code (see
Ref. [20] for a detailed analysis), concatenated on the rep-
etition code of the gadget presented here. The “bare” er-
ror rate for the Reed-Muller code will be the logical error
rate from the repetition code. We make the choice n = 3
to minimise the overhead, and assume that pzz = px.

The overhead for this scheme, quantified as the aver-
age number of non-Clifford gates used in the process, can
be obtained by counting the number of CZ(θ) gates (but
not CSIGN gates) used on average to prepare an encoded
magic state, and then using this number to determine the
overhead of the magic state preparation in the quantum
RM code. For n = 3, the scheme uses 3 CZ(θ) gates
and has a success probability of 3/4; therefore the av-
erage non-Clifford gate cost is 4. (The rejection rate is
only negligibly increased in the presence of noise.) The
distillation of magic states in the quantum RM code re-
quires 15 copies of the noisy |T 〉 state, and so using the
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n = 3 scheme at the physical level and subsequently en-
coding in an l-layer concatenated 15-qubit quantum RM
code will have overhead 4 · 15l. (Note that this is ignor-
ing any potential use of non-|T 〉 magic states produced
by the gadget when the incorrect X measurement results
are obtained.)

We have not yet fixed the number of measurement rep-
etitions r in the scheme, and so we now consider the op-
timal choice for the purposes of RM distillation. The
quantum Reed-Muller code used in this example has a
peculiar property from the perspective of biased noise:
it is far more effective at detecting X errors than Z er-
rors. This imbalance in error correction properties of the
quantum RM code means that the logical error rate after
concatentation is determined by the gadget’s logical ZL
error rate rather than the logical XL error rate at the
lower level. That is, there is an advantage to sacrificing
the logical XL error rate of Eq. (20) to allow for even a
relatively modest reduction in the logical ZL error rate
of Eq. (23).

Figure 5 presents the final logical error rate of the n =
3 gadget followed by one layer of concatenation with a
15-qubit quantum RM code. The choice of number of
repetitions r = 1 (no repetitions) almost always gives a
superior reduction in total error rate. (Note that there
is a substantial reduction in the number of Clifford gates
by choosing r = 1 as well, as the optimal choice for noise
reduction also minimises the number of measurements,
although this additional savings is not captured by this
simplistic accounting of overhead using total number of
non-Clifford gates.)

Observing the final noise bias affecting the output of
the noise-bias gadget concatenated with a 15-qubit quan-
tum RM code with r = n and r = 1 gives some insight.
As an example, for a bare Z error rate of 10−3 and bare
noise bias of 103, choosing r = n = 3 yields a final noise
bias of approximately 4 × 1012, meaning that the log-
ical noise is very strongly dominated by Z errors. By
contrast, choosing r = 1, with the other parameters the
same as above, gives an output bias of 0.8, indicating
that the final logical Z and X error rates have become
comparable.

To assess the overhead of this noise-bias gadget, we
compare with a standard application of the 15-qubit
quantum RM code for distillation, where l′ layers has
an overhead of 15l

′
. Clearly, using the noise-bias gadget

will be superior if, for a given target logical error rate,
we require l < l′, i.e., that the noise-bias gadget at the
physical level eliminates the need for at least one layer of
concatenation, compared to without the noise-bias gad-
get.

In Fig. 6, we show the overhead required for the noise-
bias scheme to achieve a target error rate of 10−8, 10−12,
and 10−18 for a variety of noise biases, and compare with
the overhead of the standard approach using quantum
RM distillation. The value of r is selected at each point
to optimize the scheme, but we note that the choice r = 1
is nearly always the optimal choice, except for very large

10−5 10−4 10−3 10−2
10−25

10−19

10−13

10−7

10−1

Bare Error Rate

L
o
g
ic
a
l
E
rr
o
r
R
a
te

bias= 101

bias= 102

bias= 103

bias= 104

y = x

10−5 10−4 10−3 10−2
10−25

10−19

10−13

10−7

10−1

Bare Error Rate

L
og
ic
al

E
rr
or

R
a
te

bias= 101

bias= 102

bias= 103

bias= 104

y = x

FIG. 5: (Color online) Logical XL error rates (solid lines) and
ZL error rates (dashed lines) with n = 3 followed by one layer
of concatentation with a 15-qubit quantum Reed-Muller code.
(top) with r = n; (bottom) with r = 1.

bare error rates. We see that, across a broad range of
physical error rates as well as target error rates, using this
scheme almost always eliminates the need for one layer
of RM code concatenation, with an associated savings in
overhead of a factor of 15/4, provided the bias is greater
than 10.

Although we have used the number of non-Clifford
gates as our measure of ‘overhead’, a more informative
measure would be to use the total number of opera-
tions including Cliffords. We can estimate the overheads
by this measure as well. The standard RM distillation
scheme uses 139 operations [20], whereas the n = 3 noise-
bias gadget uses 41 on average, a savings of a factor of
approximately 3.5. This savings in overhead is compa-
rable to counting non-Clifford gates: the standard quan-
tum RM scheme uses 15 non-Cliffords and ours uses 4 on
average, a savings of a factor of 3.75.

Note also that our method of assessment is unfavorable
for the noise-biased scheme, because we account for gate
errors in the noise-bias gadget but not in the distillation
using the quantum RM code. For instance, if we com-
pare the use of the noise-bias gadget concatenated with
a single quantum RM code with two layers of concatena-
tion of the quantum RM code, then in the former case
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FIG. 6: (Color online) Overhead of the scheme for various
values of the bias, for a target error rate of 10−8 (top), 10−12

(middle), and 10−16 (bottom). For comparison, the overhead
for n = 1 (no noise biased encoding) with the same target
error rate is shown.

Clifford errors of the first encoding layer are taken into
account while in the latter both layers are assumed to be
error-free. For this reason, the actual savings offered by
our scheme will be larger.

VI. CONCLUSION

We have demonstrated that a method for encoded
magic state preparation that operates when the noise is
biased can offer a reduction in overhead compared with
standard schemes. The precise gains will depend on the
details of the architecture, and in particular the amount
of noise and bias at the physical level as well as the de-
sired target logical error rate.

We briefly consider two regimes of target logical er-
ror rate. First, consider the regime of high noise and
a relaxed target of 10−8, which might be relevant for
quantum chemistry calculations or ‘initial’ applications
of quantum processors. In this regime, our approach pro-
vides a reduction in overhead by at least a factor of ∼ 4
(we use our scheme plus one round of RM distillation, as
opposed to needing 2 rounds of RM distillation without)
for error rates 10−4 < pz < 2× 10−3 provided the bias is
greater than 10.

Second, consider a more demanding target of say
10−16, as may be required for large-scale quantum com-
puting. The noise-bias approach provides a similar im-
provement in overhead and circuit complexity in the ‘rea-
sonable’ noise regime 4 × 10−4 < pz < 4 × 10−3 for bi-
ases greater than 10, requiring two concatenated quan-
tum RM code layers rather than three.

Our encoded magic-state gadget is explicitly based on
the use of a phase-flip repetition code defined by Eq. (1),
which offers protection against Z errors but none against
X errors. It would be worthwhile to consider if our results
can be generalized to other stabilizer codes that have dif-
fering minimum distance for X and Z errors. Examples
of such codes include symmetric Shor codes, Bacon-Shor
subsystem codes [21, 22], quantum polar codes, quantum
Reed-Muller codes, and Kitaev codes on non-self-dual
lattices [23].
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