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We report a point-particle ponderomotive model of a Dirac electron oscillating in a high-frequency
field. Starting from the Dirac Lagrangian density, we derive a reduced phase-space Lagrangian that
describes the relativistic time-averaged dynamics of such a particle in a geometrical optics laser
pulse propagating in vacuum. The pulse is allowed to have an arbitrarily large amplitude provided
that radiation damping and pair production are negligible. The model captures the Bargmann-
Michel-Telegdi (BMT) spin dynamics, the Stern-Gerlach spin-orbital coupling, the conventional
ponderomotive forces, and the interaction with large-scale background fields (if any). Agreement
with the BMT spin precession equation is shown numerically. The commonly known theory, in which
ponderomotive effects are incorporated in the particle effective mass, is reproduced as a special case
when the spin-orbital coupling is negligible. This model could be useful for studying laser-plasma
interactions in relativistic spin-1/2 plasmas.

I. INTRODUCTION

In recent years, many works have been focused on in-
corporating quantum effects into classical plasma dynam-
ics [1, 2]. In particular, various models have been pro-
posed to marry spin equations with classical equations of
plasma dynamics. This includes the early works by Tak-
abayasi [3, 4] as well as the most recent works presented
in Refs. [5–13]. Of particular interest in this regard is the
regime when particles interact with high-frequency elec-
tromagnetic (EM) radiation. In this regime, it is pos-
sible to introduce a simpler time-averaged description,
in which particles experience effective time-averaged, or
“ponderomotive,” forces [14–16]. It was shown recently
that the inclusion of spin effects yields intriguing cor-
rections to this time-averaged dynamics [17, 18]. How-
ever, current “spin-ponderomotive” theories remain lim-
ited to regimes when (i) the particle de Broglie wave-
length is much less than the radiation wavelength and
(ii) the radiation amplitude is small enough so that it
can be treated as a perturbation. These conditions are
far more restrictive than those of spinless particle theo-
ries, where non-perturbative, relativistic ponderomotive
effects can be accommodated within the effectively mod-
ified particle mass [19–23]. One may wonder then: is it
possible to derive a fully relativistic, and yet transpar-
ent, theory accounting also for the spin dynamics and
the Stern-Gerlach-type spin-orbital coupling?

Excitingly, the answer is yes, and the purpose of this
paper is to propose such a description for the first time.
More specifically, what we report here is a point-particle
ponderomotive model of a Dirac electron [24]. Starting
from the Dirac Lagrangian density, we derive a phase-
space Lagrangian (75) with a canonical Hamiltonian (76)
that describes the relativistic time-averaged dynamics of
such particle in a geometrical optics (GO) laser pulse
propagating in vacuum [25]. The pulse is allowed to
have an arbitrarily large amplitude (as long as radiation
damping and pair production are negligible) and, in case
of nonrelativistic interactions, a wavelength comparable
to the electron de Broglie wavelength. The model cap-

tures the spin dynamics, the spin-orbital coupling, the
conventional ponderomotive forces, and the interaction
with large-scale background fields (if any). Agreement
with the Bargmann-Michel-Telegdi (BMT) spin preces-
sion equation [26] is shown numerically. The aforemen-
tioned “effective-mass” theory for spinless particles [23]
is reproduced as a special case when the spin-orbital cou-
pling is negligible. Also notably, the point-particle La-
grangian that we derive has a canonical structure, which
could be helpful in simulating the corresponding dynam-
ics using symplectic methods [27].

This work is organized as follows. In Sec. II the ba-
sic notation is defined. In Sec. III the main assump-
tions used throughout the work are presented. To arrive
at the point-particle ponderomotive model, Secs. IV-
VII apply successive approximations and reparameter-
izations to approximate the Dirac Lagrangian density.
Specifically, in Sec. IV we derive a ponderomotive La-
grangian density that captures the average dynamics of
a Dirac particle. In Sec. V we obtain a reduced La-
grangian model that explicitly shows orbital-spin cou-
pling effects. In Sec. VI we deduce a “fluid” Lagrangian
model that describes the particle wave packet dynamics.
In Sec. VII we calculate the point-particle limit of such
“fluid” model. In Sec. VIII the ponderomotive model
is numerically compared to a generalized non-averaged
BMT model. In Sec. IX the main results are summa-
rized.

II. NOTATION

The following notation is used throughout the pa-
per. The symbol “

.
=” denotes definitions, “h. c.” de-

notes “Hermitian conjugate,” and “c. c.” denotes “com-
plex conjugate.” Unless indicated otherwise, we use nat-
ural units so that the speed of light and the Plank con-
stant equal one (c = ~ = 1). The identity N × N ma-
trix is denoted by IN . The Minkowski metric is adopted
with signature (+,−,−,−). Greek indices span from 0
to 3 and refer to spacetime coordinates xµ = (x0,x)
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with x0 corresponding to the time variable t. Also,
∂µ ≡ ∂/∂xµ = (∂t,∇) and d4x ≡ dtd3x. Latin in-
dices span from 1 to 3 and denote the spatial variables,
i.e., x = (x1, x2, x3) and ∂i ≡ ∂/∂xi. Summation over
repeated indexes is assumed. In particular, for arbitrary
four-vectors a and b, we have a · b ≡ aµbµ = a0b0 − a · b
and a2 ≡ a · a. The Feynman slash notation is used:
/a
.
= aµγ

µ, where γµ = (γ0,γ) are the Dirac matrices
(see below). The average of an arbitary complex-valued
function f(x,Θ) with respect to a phase Θ is denoted by
〈f〉. In Euler-Lagrange equations (ELEs), the notation
“δa :” means that the corresponding equation is obtained
by extremizing the action integral with respect to a.

III. BASIC FORMALISM

As for any quantum particle or non-dissipative wave
[28], the dynamics of the Dirac electron [24] is governed
by the least action principle δΛ = 0, where Λ is the
action integral

Λ =

∫
L d4x, (1)

and L is the Lagrangian density given by [29]

L =
i

2

[
ψ̄γµ(∂µψ)− (∂µψ̄)γµψ

]
− ψ̄q /Aψ − ψ̄mψ. (2)

Here q and m are the particle charge and mass, ψ is a
complex four-component wave function, and ψ̄

.
= ψ†γ0 is

its Dirac conjugate. The Dirac matrices γµ satisfy

γµγν + γνγµ = 2gµνI4, (3)

where gµν is the Minkowski metric tensor. Hence,

/a/b + /b/a = 2(a · b)I4, (4)

/a/a = a2I4, (5)

for any pair of four-vectors a and b. In this work, the
standard representation of the Dirac matrices is used:

γ0 =

(
I2 0
0 −I2

)
, γ =

(
0 σ
−σ 0

)
, (6)

where σ = (σx, σy, σz) are the 2× 2 Pauli matrices. No-
tice that these matrices satisfy

(γµ)† = γ0γµγ0. (7)

We consider the interaction of an electron with an EM
field such that the four-vector potential A has the form

A(εx,Θ) = Abg(εx) + Aosc(εx,Θ). (8)

Here Abg(εx) describes a background field that is slow, as
determined by the small dimensionless parameter ε (yet
to be specified). The other part of the vector potential

Aosc(εx,Θ) = Re
[
Aosc,c(εx)eiΘ

]
, (9)

describes a rapidly oscillating EM wave field, e.g., a laser
pulse. Here Aosc,c(εx) is a complex four-vector describing
the laser envelope with a slow spacetime dependence, and
Θ is a rapid phase. The EM wave frequency is defined
by ω(εx)

.
= −∂tΘ, and the wave vector is k(εx)

.
= ∇Θ.

Accordingly, kµ
.
= −∂µΘ = (ω,k). We describe Aosc

within the geometrical-optics approximation [30] and as-
sume that the interaction takes place in vacuum. Then,
k satisfies the vacuum dispersion relation

k2 = ω2 − k2 = 0, (10)

which can also be expressed as

/k/k = k2I4 = 0. (11)

Furthermore, a Lorentz gauge condition is chosen for the
oscillatory field such that

∂µA
µ
osc = 0. (12)

In this work, we neglect radiation damping and assume

ω′/ωc � 1, (13)

where ωc
.
= m is the Compton frequency and ω′ is the fre-

quency in the electron rest frame. Then, pair production
(and annihilation) can be neglected. We also assume

ε
.
= max

(
1

ωτ
,

1

|k|`

)
� 1, (14)

where τ and ` are the characteristic temporal and spa-
tial scales of k, Abg, and Aosc,c. Using this ordering and
the Lagrangian density (2), we aim to derive a reduced
Lagrangian density that describes the ponderomotive (Θ-
averaged) dynamics of an electron accurately enough to
capture the spin-orbital coupling effects to the leading
order in ε. As shown in Refs. [31, 32], this requires
that O(ε) terms be retained when approximating the La-
grangian density (2). Such reduced Lagrangian density
is derived as follows.

IV. PONDEROMOTIVE MODEL

In this section, we derive a ponderomotive Lagrangian
density for the four-component Dirac wave function.

A. Wave function parameterization

Consider the following representation for the four-
component wave function:

ψ(x) = ξeiθ. (15)

Here θ(x) is a fast real phase, and ξ(εx,Θ) is a complex
four-component vector slow compared to θ(x). In these
variables, the Lagrangian density (2) is expressed as



3

L =
i

2

[
ξ̄γµ(∂µξ)− (∂µξ̄)γ

µξ
]

+ ξ̄
(
/π − q /Aosc −mI4

)
ξ, (16)

where

πµ(εx)
.
= pµ − qAµbg, (17)

pµ(εx)
.
= −∂µθ. (18)

It is convenient to parameterize ξ in terms of the “semi-
classical” Volkov solution (Appendix A) since the latter
becomes the exact solution in the limit of vanishing ε.
Specifically, we write

ξ(εx,Θ) = Ξeiθ̃ϕ. (19)

Here ϕ is a near-constant function with an asymptotic
representation of the form

ϕ(εx,Θ) =

∞∑
n=−∞

ε|n|ϕn(εx)einΘ. (20)

(so that ϕ → ϕ0 → const at ε → 0), the real phase θ̃ is
given by

θ̃(εx,Θ)
.
=

q

π · k

∫ Θ

π · Aosc dΘ′

− q2

2(π · k)

∫ Θ (
A2

osc −
〈
A2

osc

〉)
dΘ′ (21)

and has the property 〈θ̃〉 = 0, and Ξ is a matrix defined
as follows:

Ξ(εx,Θ)
.
= I4 +

q

2(π · k)
/k /Aosc. (22)

Notice also that the Dirac conjugate of ξ is given by

ξ̄ = (Ξeiθ̃ϕ)†γ0 = e−iθ̃ϕ†Ξ†γ0 = e−iθ̃ϕ̄γ0Ξ†γ0, (23)

where

γ0Ξ†γ0 =γ0

[
I4 +

q

2(π · k)
/A
†
oscγ

0γ0/k
†
]
γ0

=I4 +
q

2(π · k)
/Aosc/k. (24)

Here we used Eqs. (3), (7), and (22).

B. Lagrangian density in the new variables

Inserting Eqs. (19) and (23) into Eq. (16) leads to

L = ϕ̄γ0Ξ†γ0/πΞϕ︸ ︷︷ ︸
=L1

−ϕ̄mγ0Ξ†γ0Ξϕ︸ ︷︷ ︸
=L2

−ϕ̄γ0Ξ†γ0q /AoscΞϕ︸ ︷︷ ︸
=L3

+
i

2

[
ϕ̄γ0Ξ†γ0γµΞ(∂µϕ)− c. c.

]
︸ ︷︷ ︸

=L4

−ϕ̄γ0Ξ†γ0(/∂θ̃)Ξϕ︸ ︷︷ ︸
=L5

+
i

2
ϕ̄
[
γ0Ξ†γ0γµ(∂µΞ)− h. c.

]
ϕ︸ ︷︷ ︸

=L6

. (25)

Let us explicitly calculate each term in Eq. (25). Substi-
tuting Eqs. (22) and (24) into L1 leads to

L1 =ϕ̄γ0Ξ†γ0/πΞϕ

=ϕ̄

[
I4 +

q

2(π · k)
/Aosc/k

]
/π

[
I4 +

q

2(π · k)
/k /Aosc

]
ϕ

=ϕ̄

[
/π +

q

2(π · k)
( /Aosc/k/π + /π/k /Aosc)

+
q2

4(π · k)2
/Aosc/k/π/k /Aosc

]
ϕ

=ϕ̄

[
/π + q /Aosc +

qAosc · k
π · k /π −

qAosc · π
π · k

/k

+
q2Aosc · k
π · k

/Aosc −
q2A2

osc

2(π · k)
/k

]
ϕ, (26)

where we used Eqs. (4), (5), and (11). Similarly,

L2 =− ϕ̄mγ0Ξ†γ0Ξϕ

=− ϕ̄m
[
I4 +

q

2(π · k)
/Aosc/k

] [
I4 +

q

2(π · k)
/k /Aosc

]
ϕ

=− ϕ̄m
[
I4 +

q

2(π · k)
( /Aosc/k + /k /Aosc)

]
ϕ

=− ϕ̄m
(

1 +
qAosc · k
π · k

)
ϕ, (27)

where we used Eq. (11) to get the third line and Eq. (4)
to get the last line. For L3, one obtains

L3 =− ϕ̄γ0Ξ†γ0q /AoscΞϕ

=− ϕ̄
[
I4 +

q /Aosc/k

2(π · k)

]
q /Aosc

[
I4 +

q/k /Aosc

2(π · k)

]
ϕ

=− ϕ̄
[
q /Aosc +

q2

π · k
/Aosc/k /Aosc

+
q3

4(π · k)2
/Aosc/k /Aosc/k /Aosc

]
ϕ

=− ϕ̄
[
q /Aosc +

2q2Aosc · k
π · k

/Aosc −
q2A2

osc

π · k
/k

+
q3Aosc · k
2(π · k)2

/Aosc/k /Aosc

]
ϕ. (28)

The terms L4, L5, and L6 in Eq. (25) involve spacetime

derivatives of (θ̃, Ξ, ϕ), which have slow spacetime and
rapid Θ dependences. For notational convenience, let us
write the derivative operator ∂µ as follows:

∂µf(εxν ,Θ) = εdµf(εxν ,Θ)− kµ∂Θf(εxν ,Θ), (29)

where f is an arbitrary function and dµ indicates a deriva-
tion with respect to the first argument of f . Then, L4
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can be written as follows:

L4 =
i

2

[
ϕ̄γ0Ξ†γ0γµΞ(∂µϕ)− c. c.

]
= − i

2

[
ϕ̄γ0Ξ†γ0/kΞ(∂Θϕ)− c. c.

]
+
iε

2

[
ϕ̄γ0Ξ†γ0γµΞ(dµϕ)− c. c.

]
= − i

2
[ϕ̄/k(∂Θϕ)− (∂Θϕ̄)/kϕ]

+
iε

2

[
ϕ̄γ0Ξ†γ0γµΞ(dµϕ)− c. c.

]
, (30)

where in the third line, we used Eqs. (11), (22), and (24).
Similarly, substituting Eq. (21) into L5 leads to

L5 = −ϕ̄γ0Ξ†γ0(/∂θ̃)Ξϕ

= ϕ̄

[
I4 +

q /Aosc/k

2(π · k)

]
/k(∂Θθ̃)

[
I4 +

q/k /Aosc

2(π · k)

]
ϕ

− εϕ̄
[
I4 +

q /Aosc/k

2(π · k)

]
(/dθ̃)

[
I4 +

q/k /Aosc

2(π · k)

]
ϕ

= ϕ̄/kϕ

[
qAosc · π
π · k

− q2A2
osc

2(π · k)
+
q2
〈
A2

osc

〉
2(π · k)

]

− εϕ̄
[
I4 +

q /Aosc/k

2(π · k)

]
(/dθ̃)

[
I4 +

q/k /Aosc

2(π · k)

]
ϕ. (31)

Finally, the last term L6 gives

L6 =
i

2
ϕ̄
[
γ0Ξ†γ0γµ(∂µΞ)− h. c.

]
ϕ

=
iε

2
ϕ̄

{[
I4 +

q /Aosc/k

2(π · k)

]
/d

[
q/k /Aosc

2(π · k)

]
− dµ

[
q /Aosc/k

2(π · k)

]
γµ
[
I4 +

q/k /Aosc

2(π · k)

]}
ϕ. (32)

Substituting Eqs. (26)-(32) into Eq. (25) leads to

L = − i
2

[ϕ̄/k(∂Θϕ)− (∂Θϕ̄)/kϕ]

+ ϕ̄

[
/π + /k

q2
〈
A2

osc

〉
2(π · k)

−mI4

]
ϕ+ F + G, (33)

where

F .
=
iε

2

[
ϕ̄γ0Ξ†γ0γµΞ(dµϕ)− c. c.

]
(34)

and

G .
= ϕ̄

[
qχ

π · k
(/π −mI4)− q2χ

π · k
/Aosc −

q3χ

2(π · k)2
/Aosc/k /Aosc

]
ϕ− εϕ̄

[
I4 +

q /Aosc/k

2(π · k)

]
(/dθ̃)

[
I4 +

q/k /Aosc

2(π · k)

]
ϕ

+
iε

2
ϕ̄

{[
I4 +

q /Aosc/k

2(π · k)

]
/d

[
q/k /Aosc

2(π · k)

]
− dµ

[
q /Aosc/k

2(π · k)

]
γµ
[
I4 +

q/k /Aosc

2(π · k)

]}
ϕ. (35)

Here we introduced χ(εx,Θ)
.
= k(εx) · Aosc(εx,Θ). From

Eqs. (12) and (29), one has kµ∂ΘA
µ
osc = εdµA

µ
osc, so

χ = ε

∫ Θ

dµA
µ
osc(εx,Θ′) dΘ′. (36)

It is seen then that χ = O(ε), so G = O(ε).

C. Approximate Lagrangian density

The reduced Lagrangian density L that governs the
time-averaged, or ponderomotive, dynamics can be de-
rived as the time average of L, as usual [33, 34]. In our
case, the time average coincides with the Θ-average, so

L .
= 〈L〉. (37)

Remember that we are interested in calculating L with
accuracy up to O(ε). Using Eqs. (11) and (20) and also

the fact that χ is shifted in phase from Aosc by π/2 [cf.
Eq. (36)], it can be shown that 〈G〉 = O(ε2). Therefore,
the contribution of G to L can be neglected. Similarly,
we can also neglect the first term in Eq. (33) since

− i

2
〈ϕ̄/k(∂Θϕ)− (∂Θϕ̄)/kϕ〉

=

∞∑
n=−∞

nε|2n|φ̄n/kφn = O(ε2), (38)

where we substituted the asymptotic expansion (20).
The second term in Eq. (33) gives〈

ϕ̄

[
/π + /k

q2
〈
A2

osc

〉
2(π · k)

−mI4

]
ϕ

〉

= ϕ̄0

[
/π + /k

q2
〈
A2

osc

〉
2(π · k)

−mI4

]
ϕ0 +O(ε2). (39)
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By following similar considerations, we also calculate
〈F〉, namely as follows. Averaging the first term in F
gives〈
ϕ̄0γ

0Ξ†γ0γµΞdµϕ0

〉
= ϕ̄0

〈[
I4 +

q /Aosc/k

2(π · k)

]
γµ
[
I4 +

q/k /Aosc

2(π · k)

]〉
dµϕ0

= ϕ̄0

[
γµ +

q2

4(π · k)2

〈
/Aosc/kγ

µγνkν /Aosc

〉]
dµϕ0

= ϕ̄0

[
γµ +

q2

4(π · k)2

〈
/Aosc/k (2kµ − /kγµ) /Aosc

〉]
dµϕ0

= ϕ̄0

[
γµ + kµ

q2

2(π · k)2

〈
/Aosc/k /Aosc

〉]
dµϕ0

= ϕ̄0Γµdµϕ0, (40)

where we used Eqs. (3) and (11). We also introduced the
modified Dirac matrices

Γµ(εx)
.
=γµ + kµ

q2

2(π · k)2

〈
/Aosc/k /Aosc

〉
=γµ + kµ

q2

2(π · k)2

〈
/Aosc(2χ− /Aosc/k)

〉
=γµ − kµ q2

2(π · k)2

〈
/Aosc /Aosc

〉
/k

=γµ − kµ
q2
〈
A2

osc

〉
2(π · k)2

/k. (41)

Gathering the previous results, we obtain the following
reduced Lagrangian density

L =
i

2

[
φ̄Γµ(∂µφ)− (∂µφ̄)Γµφ

]
+ φ̄

[
/π + /k

q2
〈
A2

osc

〉
2(π · k)

−mI4

]
φ+O(ε2), (42)

where φ
.
= ϕ0. Since only slow spacetime dependences

appear in Eq. (42), we dropped the “εdµ” notation for
slow spacetime derivatives and returned to the “∂µ” no-
tation.

V. REDUCED MODEL

In this section, the Lagrangian density (42) is fur-
ther simplified by considering only positive kinetic en-
ergy particle states. The resulting model describes two-
component wave functions instead of four-component
wave functions, which leads to explicit identification of
the spin-coupling term.

A. Particle and antiparticle states

First let us briefly review the case when ε is vanishingly
small so that ∂µφ can be neglected. Then, Eq. (42) can

be approximated as

L0[θ, φ, φ̄] = φ̄

[
/π + /k

q2
〈
A2

osc

〉
2(π · k)

−mI4

]
φ. (43)

where φ, φ̄, and θ can be treated as independent vari-
ables. [The Lagrangian density L0 depends on θ in the
sense that it depends on πµ, which is defined through ∂µθ
(Sec. IV A).] When varying the action with respect to φ̄,
the corresponding ELE is

δφ̄ :
(
/λ−mI4

)
φ = 0, (44)

where

λµ(εx)
.
= πµ + αkµ (45)

is a quasi four-momentum [35] and

α(εx)
.
=
q2
〈
A2

osc

〉
2(π · k)

. (46)

The local eigenvalues are obtained by solving

det
(
/λ−mI4

)
= 0. (47)

Since the local dispersion relation (47) has the same form
as that of the free-streaming Dirac particle [36], one has

λ · λ = π · π + q2
〈
A2

osc

〉
= m2, (48)

where we used Eq. (10). Solving for π0 leads to

π0 = −∂tθ − qVbg = ±
√

(∇θ − qAbg)2 +m2
eff . (49)

Here meff is the “effective mass” [19–21] given by

m2
eff(εx)

.
= m2 − q2

〈
A2

osc

〉
(εx). (50)

Equation (49) is the well known Hamilton-Jacobi equa-
tion that governs the ponderomotive dynamics of a rel-
ativistic spinless particle interacting with an oscillating
EM vacuum field and a slowly varying background EM
field [37–40]. The two roots in Eq. (49) represent solu-
tions for the particle and the antiparticle states.

B. Eigenmode decomposition

Corresponding to the eigenvalues given by Eq. (49),
there exists four orthonormal eigenvectors hq which are
obtained from Eq. (44) and represent the particle and the
antiparticle states. Since hq form a complete basis, one
can write ξ = hqφ

q, where φq are scalar functions. Recall
also that pair production is neglected in our model due
to the assumption (13). Let us hence focus on particle
states, merely for clarity, which correspond to positive
kinetic energies

εeff =
√

π2 +m2
eff (51)
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in the limit of vanishing ε. We will assume that only such
states are actually excited (we call these eigenmodes “ac-
tive”), whereas the antiparticle states acquire nonzero
amplitudes only through the medium inhomogeneities
(we call these eigenmodes “passive”). When designat-
ing the active mode eigenvectors by h1,2 and the passive
mode eigenvectors by h3,4, we have

φq =

{
O(ε0), q = 1, 2
O(ε1), q = 3, 4.

(52)

As shown in Ref. [31], due to the mutual orthogonality of
all hq, the contribution of passive modes to L is o(ε), so it
can be neglected entirely. In other words, for the purpose
of calculating L, it is sufficient to adopt ξ ≈ h1φ

1 +
h2φ

2. It is convenient to write this active eigenmode
decomposition in a matrix form

φ(εx) = Ψη, (53)

where

Ψ(εx) =

√
m+ λ0

2εeff

(
I2
σ·λ
m+λ0

)
(54)

is a 4× 2 matrix having h1 and h2 as its columns and

η(εx)
.
=

(
η1

η2

)
. (55)

It is to be noted that η1(εx) and η2(εx) describe wave
envelopes corresponding to the spin-up and spin-down
states of the Dirac electron.

When inserting the eigenmode representation (53) into
Eq. (42), one obtains [31]

L = K − η† (E − U) η + o(ε), (56)

where

K .
=
i

2

[
η†Ψ†γ0ΓµΨ(∂µη)− c. c.

]
, (57)

E .
= ∂tθ + εeff + qVbg, (58)

U .
=
i

2

[
Ψ†γ0Γµ(∂µΨ)− h. c.

]
. (59)

The terms K and U , which are of order ε, represent cor-
rections to the lowest-order (in ε) Lagrangian density.
Specifically, for K one obtains (Appendix B 1)

K =
i

2

[
η†(dtη)− (dtη

†)η
]
, (60)

where dt
.
= ∂t+v0·∇ is a convective derivative associated

to the zeroth-order velocity field

v0(εx)
.
=
∂εeff

∂p
=

π

εeff
. (61)

Regarding U , one obtains the ponderomotive spin-orbit
coupling Hamiltonian (Appendix B 2)

U =
1

2
σ ·Ωeff , (62)

where

Ωeff(εx) =
q

εeff

(
Bbg −

λ×Ebg

m+ λ0

)
+

q2

2εeff(π · k)

[
k×∇

〈
A2

osc

〉
−

(λ× k)∂t
〈
A2

osc

〉
m+ λ0

−
k0λ×∇

〈
A2

osc

〉
m+ λ0

]

+
q2
〈
A2

osc

〉
2εeff(π · k)2

{(
k0λ

m+ λ0
− k

)
×
[
k0qEbg + k× qBbg − (πµ∂µ)k

]
− λ× k

m+ λ0

[
k · qEbg − (πµ∂µ)k0

]}
(63)

and π · k = εeff (ω − k · v0).
When substituting Eqs. (51), (60), and (62) into

Eq. (56), one obtains the following effective Lagrangian
density

L = −η†
(
∂tθ +

√
π2 +m2

eff + qVbg

)
η

+
i

2

[
η†(dtη)− (dtη

†)η
]

+
1

2
η†σ ·Ωeffη. (64)

The first line of Eq. (64) represents the zeroth-order La-
grangian density that would describe a spinless relativis-
tic electron. The second line, which is of order ε, in-
troduces spin-orbit coupling effects. Also note that the

Lagrangian density (64) is analogous to that describing
circularly-polarized EM waves in isotropic dielectric me-
dia when polarization effects are included [41].

VI. CONTINUOUS WAVE MODEL

Here we construct a “fluid” description of the Dirac
electron described by Eq. (64). Let us adopt the repre-

sentation η = z
√
I, where I(x)

.
= η†η is a real function

(called the action density) and z(x) is a unit vector such
that z†z ≡ 1. [From now on, we drop ε in the function ar-
guments to simplify the notation, but we will continue to
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assume that the corresponding functions are slow.] Since
the common phase of the two components of z can be
attributed to θ, we parameterize z in terms of just two
real functions ζ(x) and ϑ(x):

z(ϑ, ζ) =

(
e−iϑ/2 cos(ζ/2)
eiϑ/2 sin(ζ/2)

)
. (65)

Like in the case of the Pauli particle [32], ζ determines the
relative fraction of “spin-up” and “spin-down” quanta.
Notice that, under this reparameterization, the spin vec-
tor S(x) is given by

S
.
=

1

2
z†σz =

sin ζ cosϑ
sin ζ sinϑ

cos ζ

 , (66)

where S
.
= |S| = 1/2.

Expressing Eq. (64) in terms of the four independent
variables (θ, I, ζ, ϑ) leads to

L[θ, I, ζ, ϑ] = −I
[
∂tθ +

√
π2 +m2

eff + qVbg

−1

2
(dtϑ) cos ζ − S(ζ, ϑ) ·Ωeff

]
, (67)

where one can immediately recognize the first line of
Eq. (67) as Hayes’ representation of the Lagrangian den-
sity of a GO wave [42]. Four ELEs are yielded. The first
one is the action conservation theorem

δθ : ∂tI + ∇ · (IV) = 0. (68)

The flow velocity is given by V = v0 + u, where

u
.
= − ∂

∂p

[
1

2
(v0 ·∇ϑ) cos ζ + S(ζ, ϑ) ·Ωeff

]
(69)

is the spin-driven deflection of the electron’s center of
mass. The second ELE is a Hamilton-Jacobi equation

δI : ∂tθ +
√
π2 +m2

eff + qVbg

− 1

2
(dtϑ) cos ζ − S(ζ, ϑ) ·Ωeff = 0, (70)

whose gradient yields the momentum equation

∂tπ + (v0 ·∇)π = qEbg + qv0 ×Bbg

+
∇
〈
A2

osc

〉
2εeff

+ ∇
[

1

2
(dtϑ) cos ζ + S ·Ωeff

]
. (71)

Note that the first line is the well known relativistic mo-
mentum equation. The first term in the second line rep-
resents the well known nonlinear ponderomotive force
due to the oscillating EM field [39] while the last two
terms represent the ponderomotive Stern-Gerlach spin
force. Finally, the remaining two ELEs are

δζ : (dtϑ) sin ζ = 2(∂ζS) ·Ωeff , (72)

δϑ : ∂t(I cos ζ) + ∇ · (v0I cos ζ) = 2(∂ϑS) ·Ωeff . (73)

These equations describe the phase-averaged electron
spin precession. Together, Eqs. (68)-(73) provide a com-
plete “fluid” description of the ponderomotive dynamics
of a Dirac electron.

VII. POINT-PARTICLE MODEL

A. Ponderomotive model

The ray equations corresponding to the above field
equations can be obtained as a point-particle limit. In
this limit, I can be approximated with a delta function,

I(t,x) = δ(x−X(t)), (74)

where X(t) is the location of the center of the wave
packet. As in Refs. [31, 32], the Lagrangian density (67)
can be replaced by a point-particle Lagrangian Leff

.
=∫

L d3x, namely,

Leff [X,P, Z, Z†] = P · Ẋ +
i~
2

(
Z†Ż − Ż†Z

)
−Heff(t,X,P, Z, Z†), (75)

where the effective Hamiltonian is given by

Heff(t,X,P, Z, Z†)
.
= γeffmc

2 + qVbg −
~
2
Z†σ ·ΩeffZ.

(76)
Here P(t)

.
= ∇θ(t,X(t)) is the canonical momentum,

and Z(t)
.
= z(t,X(t)) is a complex two-component

spinor. For clarity, we have re-introduced c and ~.
The effective Lorentz factor associated with the particle
oscillation-center motion is

γeff(t,X,P)
.
=

√
1 + a2

0 +

(
P

mc
− qAbg

mc2

)2

, (77)

where

a2
0(t,X)

.
= −

q2
〈
A2

osc

〉
m2c4

(78)

is positive under the assumed metric. For example, sup-
pose a standard representation of the laser vector po-
tential is Aosc = Re

[
A⊥(x)eiΘ

]
, where A⊥ · k = 0

[37, 43, 44]. Then, the Lorentz condition (12) determines
the scalar potential envelope Vosc,c = i(∇ · A⊥)c2/ω =
O(ε). Hence, Eq. (78) yields

a2
0 ≈

q2|A⊥|2

2m2c4
, (79)

where we neglected a term of O(ε2). Note also that,
loosely speaking, a2

0 is the measure of the particle quiver
energy in units mc2. Accordingly, nonrelativistic inter-
actions correspond to a0 � 1.

The effective precession frequency Ωeff is given by

Ωeff(t,X,P) = Ω1 + Ω2 + Ω3 +O(ε2), (80)

where
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Ω1(t,X,P)
.
=

q

γeffmc

(
Bbg −

Λ×Ebg

mc+ Λ0

)
, (81)

Ω2(t,X,P)
.
=− mc2

2γeff(Π · k)

[
k×∇a2

0 −
(Λ× k)∂ta

2
0

mc2 + Λ0c
− ωΛ×∇a2

0

mc2 + Λ0c

]
, (82)

Ω3(t,X,P)
.
=− mc2a2

0

2γeff(Π · k)2

(
ωΛ

mc2 + Λ0c
− k

)
×
[
ωqEbg

c2
+

k× qBbg

c
− (Πµ∂µ)k

]
+

mc a2
0

2γeff(Π · k)2

Π× k

mc+ Λ0
[k · qEbg − (Πµ∂µ)ω] . (83)

Here Πµ = (mcγeff ,P − qAbg/c), k
µ = (ω/c,k), ∂µ =

(c−1∂t,∇), and

Λµ(t,X,P) = Πµ − kµm
2c2a2

0

2(Π · k)
. (84)

Notably, Λµ → Πµ at a0 → 0 and Λµ → Πµ −
kµmc2a0/(2ω) at a0 → +∞. Also, if the spin-orbital in-
teraction is neglected, the present model yields the spin-
less ponderomotive model that was developed in Ref. [40]
for a particle interacting with a laser pulse and a slow
background fields simultaneously.

Treating X(t), P(t), Z(t), and Z†(t) as independent
variables leads to the following ELEs:

δP : Ẋ = mc2∂Pγeff − S · ∂PΩeff , (85)

δX : Ṗ = −∂X(mc2γeff + qVbg) + S · ∂XΩeff , (86)

δZ† : Ż =
i

2
Ωeff · σZ, (87)

δZ : Ż† = − i
2
Z†Ωeff · σ, (88)

where S(t) is the particle spin vector,

S(t)
.
=

~
2
Z†(t)σZ(t), (89)

and S = ~/2. Equations (77)-(89) form a complete set
of equations. The first terms on the right hand side of
Eqs. (85) and (86) describe the dynamics of a relativistic
spinless particle in agreement with earlier theories [37–
40]. The second terms describe the ponderomotive spin-
orbit coupling. Equations (87) and (88) also yield the
following ponderomotive equation for spin precession,

Ṡ = S×Ωeff , (90)

which can be checked by direct substitution. Equations
(75)-(90) are the main result of this work.

B. Extended BMT model

Let us compare our ponderomotive point-particle
Lagrangian (75) with the complete point-particle La-

grangian of a Dirac electron [31]

LXBMT[X,P, Z, Z†] = P · Ẋ +
i~
2

(
Z†Ż − Ż†Z

)
−HXBMT(t,X,P, Z, Z†), (91)

where the Hamiltonian is given by

HXBMT(t,X,P, Z, Z†)
.
= γmc2 + qV − ~

2
Z†σ ·ΩBMTZ

(92)
and the BMT precession frequency [26] is

ΩBMT(t,X,P) =
q

mc

[
B

γ
− (v0/c)×E

1 + γ

]
, (93)

Here v0
.
= Π/(γm), and

γ(t,X,P)
.
=

√
1 +

(
P

mc
− qA

mc2

)2

. (94)

Obviously, LXMBT → Leff when a0 → 0.
The corresponding ELEs are

δP : Ẋ =
P

γm
− S · ∂PΩBMT, (95)

δX : Ṗ = qE +
P× qB
γm

+ S · ∂XΩBMT, (96)

δZ† : Ż =
i

2
ΩBMT · σZ, (97)

δZ : Ż† = − i
2
Z†ΩBMT · σ. (98)

These equations also yield the BMT spin precession equa-
tion, similar to Eq. (90), with Ωeff replaced by ΩBMT.
However, as opposed to the original BMT model [26, 29],
Eqs. (95)-(98) also capture the spin-orbital coupling. Be-
cause of that, they represent a generalization of the BMT
model, which we call “extended BMT” (XBMT).

The XBMT model applies, in principle, to arbitrary
fields, provided that (i) the spin-orbital coupling is weak
and (ii) the particle de Broglie wavelength λ remains
much shorter than the smallest spatial scale of the EM
fields. In application to the particle motion in a laser
field, it can describe details that the ponderomotive
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FIG. 1: Motion of a single Dirac electron under the action of a relativistically intense laser pulse (numerical simulation):
black dashed – ponderomotive model described by the Lagrangian (75); colored – XBMT model described by the Lagrangian
(91). (a) Schematic of the interaction; yellow and red is the laser field, blue is the particle; arrows denote the direction of
the laser wave vector k, the oscillating vector potential Aosc, the particle canonical momentum P, and the particle spin S.
The unit vectors along the reference axes are denoted by ei. Figures (b)-(f) show the components of the particle canonical
momentum P, Lorentz factor γ, velocity V, and spin S. The red, green, and blue lines correspond to projections on the
x, y, and z axes, respectively. We consider an electron initially traveling along the z-axis and colliding with a counter-
propagating laser pulse. The initial position of the particle is X0 = (`/2)ex, the initial momentum is P0/(mc) = 20ez, and
the normalized initial spin vector is S0/~ = 0.14ex + 0.33ey + 0.35ez. The envelope of the vector potential of the laser pulse is
qAosc/(mc

2) = 30 sech [(z − 5`+ ct)/`] exp
[
−(x2 + y2)/`2

]
ex, where ` = 20|k|−1. These parameters correspond to a maximum

intensity Imax ' 1.23× 1021 W/cm2 for a 1µm laser.

model misses due to phase averaging. In this sense,
the XBMT model is more precise than the ponderomo-
tive model above. However, the XBMT (and, similarly,
BMT) model is also more complicated for the same rea-
son and, in application to laser fields, requires λ/λL � 1,
where λL is the laser wavelength. No such assumption
was made to derive the ponderomotive model above. In-
stead, Eq. (13) was assumed, which implies

λ/λL � c/v0, (99)

where v0 is the particle speed. For nonrelativistic parti-
cles (v0 � c), this can be satisfied even at λL . λ. In that
sense, the ponderomotive model is, perhaps surprisingly,
more general than XBMT.

VIII. NUMERICAL SIMULATIONS

To test our ponderomotive model, we applied it to sim-
ulate the single-particle motion and compare the results
with the XBMT model in two test cases. In the first test
case, we consider the dynamics of a Dirac electron col-
liding with a counter-propagating relativistically strong
(a0 � 1) laser pulse. The simulation parameters are
given in the caption of Fig. 1, and a schematic of the
interaction is presented in Fig. 1(a). From Figs. 1(b)-
1(e), it is seen that the ponderomotive model accurately

describes the mean evolution of the particle momentum,
kinetic energy, and velocity. The main contribution to
the variations in Vx and Vz is the ponderomotive force
caused by spatial gradient of the effective mass. How-
ever, the acceleration on the xz-plane is caused by the
Stern-Gerlach force, as shown in Fig. 1(e). Also notice
that the ponderomotive model is extremely accurate in
describing the particle spin precession, as can be seen in
Fig. 1(f).

In the second test case, we consider a Dirac electron
immersed in a background magnetic field along the z-
axis and interacting with a laser plane wave traveling
along the z-axis. The simulation parameters are given in
Fig. 2. As can be seen in Figs. 2(a)-2(f), the ponderomo-
tive model accurately describes the particle position, mo-
mentum, velocity, and spin. Notably, these simulations
also support the spinless model developed in Ref. [40] for
a particle interacting with a relativistic laser field and a
large-scale background field simultaneously.

IX. CONCLUSIONS

In this paper, we report a point-particle ponderomotive
model of a Dirac electron oscillating in a high-frequency
field. Starting from the first-principle Dirac Lagrangian
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FIG. 2: Motion of a Dirac electron under the action of an external background field and a relativistically intense laser pulse
(numerical simulation): black dashed – ponderomotive model described by the Lagrangian (75); colored – XBMT model
described by the Lagrangian (91). Figures (a)-(c) show the components of the particle canonical momentum P, velocity V, and
spin S. The red, green, and blue lines correspond to projections on the x, y, and z axes, respectively. We consider an electron
initially traveling along the z-axis and colliding with a counter-propagating laser pulse. Figures (d)-(f) show the components of
the particle position X. The initial position of the particle is X0 = 0, the initial momentum is P0/(mc) = (−2ey +3ez), and the
normalized initial spin vector is S0/~ = 0.14ex+0.33ey+0.35ez. A background magnetic field is added such that qAbg/(mc

2) =
0.1(−yex + xey)/2, which corresponds to a static homogeneous magnetic field Bbg ' 10.7 MG aligned towards the z-axis. The
envelope of the vector potential of the laser pulse is assumed to have the form qAosc/(mc

2) = 10 sech [(z − 8`+ ct)/`] ex, where
` = 20|k|−1. These parameters correspond to a maximum laser intensity Imax ' 1.37× 1020 W/cm2 for a 1µm laser.

density, we derived a reduced phase-space Lagrangian
that describes the relativistic time-averaged dynamics of
such particle in a geometrical-optics laser pulse in vac-
uum. The pulse is allowed to have an arbitrarily large
amplitude (as long as radiation damping and pair pro-
duction are negligible) and, in case of nonrelativistic in-
teractions, a wavelength comparable to the electron de
Broglie wavelength. The model captures the BMT spin
dynamics, the Stern-Gerlach spin-orbital coupling, the
conventional ponderomotive forces, and the interaction
with large-scale background fields (if any). Agreement
with the BMT spin precession equation is shown numeri-
cally. Also, the well known theory, in which ponderomo-
tive effects are incorporated in the particle effective mass,
is reproduced as a special case when the spin-orbital cou-
pling is negligible.

As a final note, the underlying essence of this paper
is to illustrate the convenience of using the Lagrangian
wave formalism for deriving reduced point-particle mod-
els. To derive the ponderomotive model above by using
the point-particle equations of motion and spin would
have been a torturous task. However, the bilinear struc-
ture of the wave Lagrangian enabled a straightforward
deduction of the reduced model. Following this reason-
ing, we believe that the ability to treat particles and
waves on the same footing as fields may have far-reaching
implications, e.g., for plasma theory. This will be dis-
cussed in future publications.

The authors thank E. A. Startsev for valuable discus-
sions. This work was supported by the NNSA SSAA Pro-
gram through DOE Research Grant No. DE274-FG52-
08NA28553, by the U.S. DOE through Contract No. DE-
AC02-09CH11466, by the U.S. DTRA through Research
Grant No. HDTRA1-11-1-0037, and by the U.S. DOD
NDSEG Fellowship through Contract No. 32-CFR-168a.

Appendix A: Semiclassical Volkov state

Volkov states are eigenstates of the Dirac equation
with an homogeneous EM vacuum field [45–47]. Here we
present a derivation of these states. Consider the second
order Dirac equation,(

DµD
µ +m2 +

1

2
qσµνF

µν

)
ψ = 0, (A1)

where iDµ
.
= i∂µ−qAµ is the covariant derivative, σµν

.
=

i[γµ, γν ]/2 is twice the (relativistic) spin operator, and
Fµν = ∂µAν − ∂νAµ is the EM tensor. We start with
the case, where Abg is constant and Aosc(Θ) is strictly
periodic. Since Eq. (A1) is linear, we search for ψ in the
Floquet-Bloch form. Specifically, we consider ψ = ueiθ,
where u is a periodic four-component function of Θ and
pµ

.
= −∂µθ is constant. It is also convenient to rewrite u

in the form u = eiθ̃Ξφ, where Ξ(Θ) is a matrix operator,
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θ̃(Θ) is a real scalar function, and ϕ is a constant four-
component spinor. This leads to[

π2 −m2 + 2(π · k)∂Θθ̃ − 2q(π · Aosc) + q2A2
osc

]
Ξϕ

− 2i(π · k)(∂ΘΞ)ϕ− 1

2
qσµνF

µνΞϕ = 0, (A2)

where πµ
.
= pµ − qAµbg.

Equation (A2) can be satisfied identically if we require

that θ̃ and Ξ satisfy the following equations:

π2 −m2 + 2(π · k)∂Θθ̃ − 2q(π · Aosc) + q2A2
osc = 0,

(A3)

−2i(π · k)(∂ΘΞ)− 1

2
qσµνF

µνΞ = 0. (A4)

The integration constants can be chosen arbitrarily since
they merely redefine ϕ. We hence require Ξ → I4 at
vanishing Aosc and 〈θ̃〉 = 0 (so that θ̃ represents a phase
shift due to the oscillating EM field). For Ξ, this gives

Ξ(εx,Θ) =T exp

[
iq

4(π · k)

∫ Θ

σµνF
µν(Θ′) dΘ′

]
=I4 +

q

2(π · k)
/k /Aosc(Θ), (A5)

where we used

σµνF
µν =σµν(∂µAν − ∂νAµ)

=− σµν(kµ∂ΘA
ν
osc − kν∂ΘA

µ
osc)

=− i(/k∂Θ /Aosc − ∂Θ /Aosc/k)

=− 2i/k∂Θ /Aosc. (A6)

Here /k /Aosc+ /Aosc/k = 0 since k·Aosc = 0 [see Eq. (12)]. We
note that the ordered exponential [denoted by T exp(...)]

becomes an ordinary exponential due to

σµνF
µν(Θ1)σαξF

αξ(Θ2)

= −4/k[∂Θ /Aosc(Θ1)]/k[∂Θ /Aosc(Θ2)]

= 4/k/k∂Θ /Aosc(Θ1) /Aosc(Θ2)

= 0, (A7)

where we substituted Eq. (11). To obtain θ̃, we aver-
age Eq. (A3). This leads to Eq. (47), which serves as
a dispersion relation for πµ. Subtracting Eq. (47) from

Eq. (A3) and solving for θ̃ leads to Eq. (21). Finally, if

one substitutes ψ = Ξeiθ+θ̃ϕ into the first-order Dirac
equation, one finds that constant ϕ indeed satisfies that
equation.

The above solution can be extended also to a wave
with a slowly inhomogeneous amplitude; i.e., when the
vector potential has the form A(εx,Θ). This can be done

by substituting the ansatz, ψ = Ξeiθ+θ̃ϕ, into the Dirac
equation with the same Ξ and θ̃, as before, and requiring
that pµ is slow. This will lead to an equation for ϕ with a
perturbation linear in ε. Hence, one can construct a solu-
tion for ϕ as an asymptotic power series in ε. The general
form of such series in given by Eq. (20), and finding the
coefficients ϕn explicitly is not needed here.

Appendix B: Auxiliary Formulas

1. Kinetic Term K

Let us re-express Eq. (57) as

K =
i

2

[
η†Ψ†γ0Γ0Ψ(∂tη) + η†Ψ†γ0Γ ·Ψ(∇η)− c. c.

]
.

(B1)
Substituting Eqs. (41), (45), (46), and (54) into Ψ†γ0Γ0Ψ
leads to

Ψ†γ0Γ0Ψ =
m+ λ0

2εeff

(
I2 σ·λ

m+λ0

)(
γ0γ0 − k0α

π · k
γ0/k

)(
I2
σ·λ
m+λ0

)
=
m+ λ0

2εeff

(
I2 σ·λ

m+λ0

) [
I4 −

k0α

π · k

(
k0 −σ · k
−σ · k k0

)](
I2
σ·λ
m+λ0

)
=
m+ λ0

2εeff

(
I2 σ·λ

m+λ0

) [( I2
σ·λ
m+λ0

)
− k0α

π · k

(
k0I2 − (σ·k)(σ·λ)

m+λ0

−σ · k + k0 σ·λ
m+λ0

)]

=
m+ λ0

2εeff

{
1 +

λ2

(m+ λ0)2
− k0α

π · k

[
k0 − 2k · λ

m+ λ0
+ k0 λ2

(m+ λ0)2

]}
I2

=
m+ λ0

2εeff

{
1 +

(λ0)2 −m2

(m+ λ0)2
− k0α

π · k

[
k0 − 2k · λ

m+ λ0
+ k0 (λ0)2 −m2

(m+ λ0)2

]}
I2

=I2, (B2)
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where λ · λ = m2 from Eq. (48). Also notice that λ · k = π · k from Eqs. (10) and (45). Similarly,

Ψ†γ0ΓΨ =
m+ λ0

2εeff

(
I2 σ·λ

m+λ0

) (
γ0γ − k

α

π · k
γ0/k
)( I2

σ·λ
m+λ0

)
=
m+ λ0

2εeff

(
I2 σ·λ

m+λ0

) [(0 σ
σ 0

)
− k

α

π · k

(
k0 −σ · k
−σ · k k0

)](
I2
σ·λ
m+λ0

)
=
m+ λ0

2εeff

(
I2 σ·λ

m+λ0

) [(σ(σ·λ)
m+λ0

σ

)
− k

α

π · k

(
k0I2 − (σ·k)(σ·λ)

m+λ0

−σ · k + k0 σ·λ
m+λ0

)]

=
m+ λ0

2εeff

{
σ(σ · λ) + (σ · λ)σ

m+ λ0
− k

α

π · k

[
k0 − 2k · λ

m+ λ0
+ k0 λ2

(m+ λ0)2

]}
I2

=
λ− kα

εeff
I2

=
π

εeff
I2. (B3)

Hence, notice the following corollary of Eqs. (B2) and
(B3) that we will use below:

(Ψ†γ0ΓµΨ)∂µ = I2
(
∂t +

π

εeff
·∇
)

= I2dt, (B4)

where dt is the same as defined in Sec. V B. Substituting
Eq. (B4) into Eq. (57) leads to Eq. (60).

2. Expression for U

An alternative representation of U in Eq. (59) is

U = −Im
[
Ψ†γ0Γµ(∂µΨ)

]
, (B5)

where “Im” is short for the “anti-Hermitian part of.” To
calculate ∂µΨ, let us consider Ψ as a function

Ψ(t,x) = Ψ(εeff(t,x), λ0(t,x),λ(t,x)). (B6)

Notice that the contribution to Eq. (B5) from the partial
derivative with respect to εeff is zero. This is shown by

using Eqs. (54) and (B4):

Im
[
Ψ†γ0Γµ(∂εeff Ψ)∂µεeff

]
= −1

2
Im
[
(Ψ†γ0ΓµΨ)∂µ ln εeff

]
= −1

2
Im (dt ln εeff)

= 0 (B7)

since εeff is real. Then, U = −Pt −Px −Qt −Qx, where

Pt
.
=Im

[
Ψ†γ0Γ0(∂λi

Ψ)(∂tλi)
]
, (B8)

Px
.
=Im

[
Ψ†γ0Γ(∂λi

Ψ) · (∇λi)
]
, (B9)

Qt
.
=Im

[
Ψ†γ0Γ0(∂λ0Ψ)(∂tλ

0)
]
, (B10)

Qx
.
=Im

[
Ψ†γ0Γ(∂λ0Ψ) · (∇λ0)

]
. (B11)

When substituting Eqs. (41), (45), (46), and (54) into
Pt, we obtain

Pt =Im
[
Ψ†γ0Γ0(∂λiΨ)(∂tλ

i)
]

=
m+ λ0

2εeff
Im

[(
I2 σ·λ

m+λ0

)
γ0Γ0

(
0

σ·∂tλ
m+λ0

)]
=
m+ λ0

2εeff
Im

{(
I2 σ·λ

m+λ0

) [
I4 −

k0α

π · k

(
k0 −σ · k
−σ · k k0

)](
0

σ·∂tλ
m+λ0

)}
=

1

2εeff
Im

{(
I2 σ·λ

m+λ0

) [( 0
σ · ∂tλ

)
− k0α

π · k

(
−(σ · k)(σ · ∂tλ)

σ · k0∂tλ

)]}
=

1

2εeff
Im

[
(σ · λ)(σ · ∂tλ)

m+ λ0
+
k0α

π · k
(σ · k)(σ · ∂tλ)− k0α

π · k
(σ · λ)(σ · k0∂tλ)

m+ λ0

]
=

1

2εeff
σ ·
[
λ× ∂tλ
m+ λ0

− k0α

π · k
λ× k0∂tλ

m+ λ0
+

α

π · k
k× k0∂tλ

]
. (B12)
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The next term, Px, is calculated similarly:

Px =Im
[
Ψ†γ0Γ(∂λi

Ψ) · (∇λi)
]

=
m+ λ0

2εeff
Im

{(
I2 σ·λ

m+λ0

) [(0 σ
σ 0

)
− k

α

π · k

(
k0 −σ · k
−σ · k k0

)]
·
(

0
∇(σ·λ)
m+λ0

)}
=

1

2εeff
Im

{(
I2 σ·λ

m+λ0

) [((σ ·∇)(σ · λ)
0

)
− α

π · k

(
−(σ · k)(k ·∇)(σ · λ)

k0(k ·∇)(σ · λ)

)]}
=

1

2εeff
Im

[
(σ ·∇)(σ · λ) +

α

π · k
(σ · k)(k ·∇)(σ · λ)− k0α

π · k
(σ · λ)(k ·∇)(σ · λ)

m+ λ0

]
=

1

2εeff
σ ·
[
∇× λ +

α

π · k
k× (k ·∇)λ− k0α

π · k
λ× (k ·∇)λ

m+ λ0

]
. (B13)

Furthermore, the expressions for Qt and Qx are given by

Qt =Im
[
Ψ†γ0Γ0(∂λ0Ψ)(∂tλ

0)
]

=
m+ λ0

2εeff
Im

{(
I2 σ·λ

m+λ0

) [
I4 −

k0α

π · k

(
k0 −σ · k
−σ · k k0

)](
0

− σ·λ
(m+λ0)2 ∂tλ

0

)}
=

∂tλ
0

2εeff(m+ λ0)
Im

{(
I2 σ·λ

m+λ0

) [( 0
−σ · λ

)
− k0α

π · k

(
(σ · k)(σ · λ)
−k0σ · λ

)]}
=

∂tλ
0

2εeff(m+ λ0)
Im

[
− (σ · λ)(σ · λ)

m+ λ0
− k0α

π · k
(σ · k)(σ · λ) +

(k0)2α

π · k
(σ · λ)(σ · λ)

m+ λ0

]
=− k0∂tλ

0

2εeff(m+ λ0)

α

π · k
σ · (k× λ), (B14)

Qx =Im
[
Ψ†γ0Γ(∂λ0Ψ) · (∇λ0)

]
=
m+ λ0

2εeff
Im

{(
I2 σ·λ

m+λ0

) [(0 σ
σ 0

)
− k

α

π · k

(
k0 −σ · k
−σ · k k0

)]
·
(

0
− σ·λ

(m+λ0)2∇λ0

)}
=

1

2εeff(m+ λ0)
Im

{(
I2 σ·λ

m+λ0

) [(−(σ ·∇λ0)(σ · λ)
0

)
− (k ·∇λ0)

α

π · k

(
(σ · k)(σ · λ)
−k0(σ · λ)

)]}
=

1

2εeff(m+ λ0)
Im

{
−(σ ·∇λ0)(σ · λ)− (k ·∇λ0)

α

π · k

[
(σ · k)(σ · λ)− k0 (σ · λ)(σ · λ)

m+ λ0

]}
=

1

2εeff(m+ λ0)
σ ·
[
λ×∇λ0 − α

π · k
(k× λ)(k ·∇λ0)

]
. (B15)

Substituting Eqs. (B12)-(B15) leads to

U = − 1

2εeff
σ ·
[
∇× λ +

λ× (∇λ0 + ∂tλ)

m+ λ0
+

α

π · k
k× (kµ∂µ)λ− α

π · k
k0λ× (kµ∂µ)λ + (k× λ)(kµ∂µ)λ0

m+ λ0

]
. (B16)

Equation (B16) can be simplified as follows. The first
term can be rewritten as

∇× λ =∇× (π + kα)

=∇× (∇θ − qAbg + kα)

=− qBbg − k×∇α (B17)

since ∇ × k = ∇ ×∇Θ = 0. Moreover, we note that

∂2
µνθ = ∂2

νµθ. Hence,

∇λ0 =∇π0 + α∇k0 + k0∇α

'−∇(∂tθ + qVbg)− α∂tk + k0∇α

=− ∂t(∇θ − qAbg)− q(∇Vbg + ∂tAbg)

− α∂tk + k0∇α

=− ∂tλ + qEbg + k0∇α+ k∂tα. (B18)

Similarly, the numerator of the last term simplifies to
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k0λ× (kµ∂µ)λ + (k× λ)(kµ∂µ)λ0

= λ×
[
k0(kµ∂µ)π − k(kµ∂µ)π0

]
, (B19)

where

(kµ∂µ)k =k0∂tk + (k ·∇)k

=k0∇∂tΘ + ki∇∂iΘ

=− k0∇k0 + ki∇ki

=−∇[(k0)2 − k2]/2

=0 (B20)

and (kµ∂µ)k0 = 0. Here we used Eq. (10). By substitut-
ing Eqs. (B17)-(B19) and explicitly showing the deriva-
tives of α, we obtain

U =
q

2εeff
σ ·
(

Bbg −
λ×Ebg

m+ λ0

)
+

q2

4εeff(π · k)
σ ·

[
k×∇

〈
A2

osc

〉
−

(λ× k)∂t
〈
A2

osc

〉
m+ λ0

−
k0λ×∇

〈
A2

osc

〉
m+ λ0

]

+
α

2εeff(π · k)
σ ·
(

k0λ

m+ λ0
− k

)
× [∇(π · k) + (kµ∂µ)π]− α

2εeff(π · k)

σ · (λ× k)

m+ λ0

[
(kµ∂µ)π0 − ∂t(π · k)

]
. (B21)

We can simplify the last two lines of Eq. (B21) with

∇(π · k) + (kµ∂µ)π

=∇(π0k0 − k · π) + k0∂tπ + (k ·∇)π

'k0qEbg + π0∇k0 + (k ·∇)π −∇(k · π)

=k0qEbg − π0∇∂tΘ + (k ·∇)π

− πi∇∂iΘ− ki∇πi

=k0qEbg − π0∂tk− (π ·∇)k + (k ·∇)π − ki∇πi

=k0qEbg − (πµ∂µ)k− k× (∇× π)

=k0qEbg − (πµ∂µ)k− k× [∇× (∇θ − qAbg)]

=k0qEbg + k× qBbg − (πµ∂µ)k, (B22)

(kµ∂µ)π0 − ∂t(π · k)

=k0∂tπ
0 + k ·∇π0 − ∂t(π0k0 − π · k)

=k ·∇π0 + ∂t(π · k)− π0∂tk
0

'k · (−∂tπ + qEbg) + ∂t(π · k)− π0∂tk
0

=qk ·Ebg − π0∂tk
0 + π · ∂tk

=qk ·Ebg − π0∂tk
0 + π · ∂t∇Θ

=qk ·Ebg − π0∂tk
0 − (π ·∇)k0

=qk ·Ebg − (πµ∂µ)k0. (B23)

Hence, we obtain Eqs. (62) and (63).
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