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We control the relative coupling strength of carrier and first order motional sideband interactions
of a trapped ion by placing it in a resonant optical standing wave. Our configuration uses the
surface of a microfabricated chip trap as a mirror, avoiding technical challenges of in-vacuum optical
cavities. Displacing the ion along the standing wave, we show a periodic suppression of the carrier
and sideband transitions with the cycles for the two cases 180◦ out of phase with each other. This
technique allows for suppression of off-resonant carrier excitations when addressing the motional
sidebands, and has applications in quantum simulation and quantum control. Using the standing
wave fringes, we measure the relative ion height as a function of applied electric field, allowing for
a precise measurement of ion displacement and, combined with measured micromotion amplitudes,
a validation of trap numerical models.
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The excitation spectrum of a trapped ion in a radio fre-
quency (RF) trap acquires sidebands due to the harmonic
motion of the ion (Fig. 1(a)) [1]. The interaction between
an optical field and the the trapped ion leads to an almost
ideal Jaynes-Cummings interaction [2, 3] which couples
the internal degrees of freedom to the ion motion and is
the basis for two-qubit gates in ion trap quantum compu-
tation [4–6]. Sideband interactions are used in trapped
ion experiments for a variety of additional functions such
as cooling to the motional ground state [7], measurements
of the ion heating rate [8, 9], and identifying and cool-
ing molecular ions [10–12]. Off-resonant coupling to the
carrier transition, either evident as motion independent
population transfer or an AC Stark shift, places a limit on
the speed of the sideband interactions. Suppressing the
carrier can remove this limit and, in particular, would
allow for improved two-qubit gate fidelities as the gate
time becomes comparable or shorter than a cycle of the
harmonic motion [5, 13].

Suppression of the carrier also has applications in
quantum simulation. Trapped ions have been proposed
as a system for modeling the expansion of the universe
[14]. The simulation requires off-resonant excitation of
both the red and blue sidebands by a red-detuned excit-
ing field, with no coupling to the carrier. Because the
blue sideband is both weaker and further from resonance
than the carrier transition, suppression of the carrier is
important for such an experiment.

Replacing running wave optical beams with standing
wave beams provides a method to selectively suppress the
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carrier and reduce off-resonant excitations when address-
ing the motional sidebands [15, 16]. In such a configura-
tion, the coupling strengths of the carrier and sidebands
acquire a periodic dependence on the atom’s spatial po-
sition within the standing wave fringes [15, 17], with the
cycles for the two cases 180◦ out of phase with each other.
Standing wave beams have also been proposed for use in
measuring parity nonconservation effects in trapped ions
for this reason [18, 19]. This periodic dependence of the
coupling strengths has been demonstrated in cavity ex-
periments with trapped ions [1, 20–22]. However, the use
of cavities involves technical challenges such as the align-
ment of optics in vacuum and the tendency for optics
and dielectric mirrors to become charged, complicating
the integration of cavities with microfabricated ion traps
[23, 24].

In this paper, we demonstrate the same position de-
pendence in a standing wave field produced by a single
mirror which, in this case, is simply the surface of the ion
trap itself (Fig. 1(b)). This configuration has the advan-
tage of being simpler to implement than an optical cavity.
To handle the case of imperfect beam alignment, reflec-
tion losses, and similar system limitations, we extend the
calculations of Refs. [15, 17] to the case of non-normal in-
cidence laser beams and unequal couplings of the incident
and reflected laser beams with the ion. We find a crite-
rion for the out of phase carrier and sideband coupling
strengths that is set by the incident angle of the laser
beam and the orientation of the ion’s harmonic motion.
Using the position dependence of the coupling strengths
within the standing wave fringes, we measure the ion’s
relative position as a function of applied electric field in
order to map the trapping potentials. We compare these
results with those given by numerical models of the trap
system.

A trapped ion interacting with an ideal standing wave
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FIG. 1. (a) Energy diagram of an ion in a harmonic poten-
tial of frequency ν, with arbitrary electronic states |g〉 and
|e〉 and motional states |n〉. Carrier (∆n = 0) and first order
(∆n = ±1) sideband transitions are shown. In a running wave
configuration, the coupling strengths of the red and blue side-
bands relative to the carrier are (to first order) proportional
to η
√
n and η

√
n+ 1, respectively, where η is the Lamb-Dicke

parameter. (b) Schematic of our experimental configuration.
40Ca+ ions are confined ∼60 µm above the trap surface by
RF and DC electric fields. 729 nm light is used to excite the
|S1/2,mF = − 1

2
〉 → |D5/2,mF = − 5

2
〉 quadrupole transition.

The incident 729 nm laser (with incidence angle α) is retrore-
flected from the aluminum trap surface to produce a standing
wave. The ion is displaced through the standing wave fringes
by changing the trap fields. In this configuration, the result-
ing carrier and sideband coupling strengths are represented
by equations (1) and (2).

laser field is treated in Refs. [15, 17]. We extend this
treatment to include an angle of incidence α relative to
the mirror normal (see Fig. 1(b)) and differing couplings
of the incident and reflecting beams to the atomic tran-
sition. The latter can arise due to imperfect reflectivity
of the mirror, differing polarization of the two beams,
and, for quadrupole transitions such as used here, the
laser beam k vector dependence of the coupling. For
a harmonically trapped two level atom in the rotating
wave approximation, the interaction Hamiltonian (up to

a global phase) is

ĤI =
h̄

2
σ̂+ e

−i(∆t−φ)

×
{

Ω1 exp
[
− iγ + iη1(âeiνt + â†e−iνt)

]
+ Ω2 exp

[
iγ + iη2(âeiνt + â†e−iνt)

]}
+ h.c.

Here, Ω1 and Ω2 are the Rabi frequencies of the inci-
dent and reflected beams, respectively, σ̂+ (σ̂−) is the
raising (lowering) operator of the two level atom, â† (â)
is the raising (lowering) operator of the secular motion,
∆ = ωlaser − ω0 is the laser’s detuning from the carrier
resonance, and ν is the secular frequency. The phase
γ = ky cosα represents the optical phase of the standing
wave at the atom’s equilbrium position y. The Lamb-
Dicke parameters η1 and η2 are defined as

ηj = k

√
h̄

2mν

[
sin θ sinα− (−1)j cos θ cosα

]
where θ is the angle of the motional mode axis relative to
surface normal, m is the ion mass, and k is the wavenum-
ber of the gate beam. In the Lamb-Dicke approximation,
the interaction Hamiltonian can be decomposed into a
carrier term

Ĥcar =
h̄

2
σ̂+ e

−i∆t eiφ

×
{

Ω1

[
1− η2

1

2
(1 + 2 â†â)

]
e−iγ

+ Ω2

[
1− η2

2

2
(1 + 2 â†â)

]
eiγ
}

+ h.c.,

a red sideband term

Ĥrsb =
ih̄

2
σ̂+â e

−i(∆+ν)t eiφ
(
Ω1 η1 e

−iγ + Ω2 η2 e
iγ
)

+ h.c.,

and a corresponding blue sideband term. Following the
treatment in Ref. [25], these Hamiltonians lead to re-
spective coupling strengths

Ωcar = Ω1 e
−iγ

[
1− η2

1

2
(1 + 2n)

]
+ Ω2 e

iγ

[
1− η2

2

2
(1 + 2n)

] (1)

and

Ωrsb = i
√
n
(
Ω1 e

−iγ η1 + Ω2 e
iγ η2

)
Ωbsb = i

√
n+ 1

(
Ω1 e

−iγ η1 + Ω2 e
iγ η2

) (2)

where n is the occupation number of the quantized har-
monic oscillator. Interference between the e±iγ terms
produce fringes in the coupling strengths as the ion po-
sition changes. When cos θ cosα > sin θ sinα, η1 and η2
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have opposite sign, and the carrier and sideband fringes
are 180◦ out of phase. When the atom lies on a node of
the standing wave, γ = lπ (with l an integer) and the
carrier coupling strength is maximized while the side-
band coupling strengths are minimized. On an anti-
node, γ = (l + 1/2)π and the converse is true. These
fringes correspond to a physical displacement of the ion
by y = λ/(2 cosα), where λ is the wavelength of the ex-
citing laser.

Our experimental configuration is depicted schemati-
cally in Fig. 1(b). We use a surface electrode linear ion
trap to confine and cool 40Ca+ ions, as described in Ref.
[26]. The ion is confined ∼60 µm above the trap surface
by a combination of RF and DC potentials. We use the
|S1/2,mF = − 1

2 〉 → |D5/2,mF = − 5
2 〉 quadrupole tran-

sition at λ = 729 nm for our measurements. The 729
nm beam reflects off of the aluminum trap surface with
a reflectivity of 86%, producing a standing wave field in
the y direction. The angle |α| ≈ 20◦ due to restrictions
in the beam path, which limits the fringe contrast. We
tune the laser to address either the carrier transition or
the first order red sideband transition of a motional mode
with ν = 2π × 4.75 MHz (on the RF null) and θ = 13◦

(see Fig. 1(b)).
To displace the ion’s equilibrium position along the

standing wave, we apply an electric field Ey by adjusting
the trap’s DC potentials. The case Ey = 0 corresponds
to the ion being on the RF null. For Ey > 0 and Ey < 0,
the ion is displaced along +y and −y, respectively. The
range of Ey values used in this experiment displaces the
ion over a 10 µm range. The fringes in the carrier and
sideband transitions resulting from this displacement are
evident in Fig. 2.

Displacing the ion from its equilibrium position on the
RF null affects the dynamics in several ways beyond the
fringing. First, the displacement introduces micromotion
[27] that modulates the coupling strengths of both the
carrier and sideband [28]. To account for this modula-
tion, we multiply equations (1) and (2) by the Bessel
function J0(κ), where κ is the modulation parameter
given by

κ = cosβ
2

λ νRF

√
qΦpp(x, y)

m
. (3)

Here λ is the wavelength of the gate beam, νRF is the
trap RF frequency, m and q are the mass and charge
of the ion, Φpp(x, y) is the RF pseudopotential, and β is
the angle between the micromotion direction and the gate
beam. Our trap has an RF quadrupole that is rotated in
the xy plane relative to the surface normal [26]; during
ion displacement, we apply a small Ex proportional to
Ey such that β = 0 at all points. Second, the ion’s mo-
tional frequencies change after displacement. We track
the changing frequency by measuring the sideband’s res-
onance for different displacements.

Figs. 2(a) and (b) show D5/2 state populations mea-
sured after driving carrier or sideband transitions as a

function of applied Ey field. The D5/2 population is de-
termined by the electron shelving technique that corre-
lates observation fluorescence with the state of the ion:
S1/2 is bright and D5/2 is dark. We observe fringes due to
the standing wave field superimposed with the J0(κ) en-
velope due to the micromotion modulation. The maxima
(minima) of the carrier fringes correspond to the ion posi-
tioned on nodes (anti-nodes) of the standing wave. For a
dipole coupling, instead of the quadrupole used here, the
node/anti-node dependence is reversed. The carrier and
sideband fringes are overlaid in Fig. 2(c). The standing
wave fringes of the carrier and sideband oscillate 180◦

out of phase with one another, as predicted by equations
(1) and (2).

Fig. 3(a) shows that by adjusting the ion’s position in
the standing wave laser field, we can achieve an effective
suppression of the carrier that is equivalent to an 8.4 dB
reduction in the gate beam power. For the sideband in
Fig. 3(b), an equivalent 11 dB reduction can be achieved.

To produce the fits seen in Figs. 2 and 3, we use the
excited state population equation for a thermal ion given
by

P (D5/2) =

∞∑
n=0

n̄n

(n̄+ 1)n+1
sin2

[
1

4
Ω(γ, n) J0(κ) t

]
,

where n̄ is the ion’s mean number of motional quanta
and Ω(γ, n) is Ωcar or Ωrsb depending on whether we are
fitting carrier or sideband data, respectively [27]. The
fringes and overall envelope in Fig. 2 arise from the de-
pendence of γ and κ on the ion’s displacement y. We
parameterize γ = ky cosα with y =

∑4
j=0 ajE

j
y and pa-

rameterize κ2 =
∑4
j=2mjE

j
y , for coefficients aj and mj .

These coefficients, along with Ω1, Ω2, α, and n̄, form the
full set of parameters that define the simultaneous fits
of the data in Figs. 2 and 3. In particular, the set has
|α| = 18◦, Ω2 /Ω1 = 0.52, and n̄ = 18 (consistent with
the Doppler cooled ion in our configuration).

Using equation (3), we can determine the pseudopoten-
tial Φpp from κ2. Fig. 4 plots the resulting Φpp and the
ion displacement y as a function of Ey. We compare these
with the results from a numerical model of the trapping
potentials. The model includes a 700 V/m uniform stray
field that was adjusted to match the observed RF null
in Fig. 2. The magnitude of the RF trapping potential
used in the model was adjusted to match the observed
mode frequencies at Ey = 0. There are no other free
parameters used in the model. The agreement seen pro-
vides a measure of confidence in the model and future
predictions.

The degree of carrier and sideband suppression achiev-
able ultimately depends on the quality of the standing
wave field at the ion’s position, which is related to the ra-
tio Ω2 /Ω1. The trap’s surface reflectivity limits us here

to Ω2 /Ω1 =
√

0.86 = 0.93. We can approach this limit
with improved beam alignment, which would allow for
a carrier suppression equivalent to a 29 dB reduction in
driving beam power when n̄ ≈ 0 and |α| < 10◦. Further
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FIG. 2. D5/2 populations vs. applied Ey field measured after (a) carrier and (b) red sideband transitions. The sideband’s gate
beam power is 9.5 dB greater than the carrier’s, and the interaction time is fixed for both cases (13 µs). The overall envelope
is generated by the micromotion modulation J0(κ) (see text). (c) The carrier and sideband populations oscillate 180o out of
phase as the ion is transported through the standing wave fringes. The solid lines represent a fit to the data using the model
described in the text. The deviation between the data and fit at Ey ≈ 0.05 kV/m may be due to scattering of the reflected
light from the trap surface.

carrier suppression would require the use of a more re-
flective surface. For instance, we measure the reflectivity
from a gold coated trap like the one described Ref. [29]
to be > 98%, which could provide an equivalent carrier
suppression of > 40 dB. Similar quality standing waves
could be generated by incorporating a metallic mirror ad-
jacent to an ion trap if the trap surface is not amenable
to this purpose.

Suppression of the carrier implies that the driving
laser’s power may be freely increased by an amount
equivalent to the effective suppression, allowing for faster
sideband interactions with no increased chance of an
off-resonant carrier excitation. For the 8.4 dB effective
carrier suppression reported here, sideband interactions
could be performed 2.5 times faster; at the 29 dB sup-
pression limit of our aluminum trap, 28 times faster; at
the > 40 dB suppression limit of a gold coated trap, > 100
times faster.

In our current configuration, a 29 dB carrier suppres-
sion factor would reach the regime in which simulating
the expansion of the universe with trapped ions becomes
experimentally feasible, such that the excitation of detec-
tors occurs when cosmic photons are created [14]. When
the beam has more running wave character, the simula-
tion is dominated by excitation of detectors with pho-
ton creation or destruction. Quantum simulations of the
expanding universe have also been proposed using Bose-
Einstein condensates [30] and can be performed in a dig-
ital manner with a number of quantum systems [31, 32].

In summary, we have demonstrated how the carrier
and motional sideband transition coupling strengths of
a trapped ion may be controlled by displacing the ion
within a resonant standing wave field. In our configu-
ration, the standing wave is produced by retroreflecting

an incident beam off of a surface electrode trap rather
than with the use of optical cavities. Our results are in
good agreement with both theoretical models of the cou-
pling strengths’ behaviors and numerical models of the
trapping potentials. With the use of existing gold coated
ion traps and improved beam alignment, we expect to
achieve a > 40 dB effective suppression of the carrier cou-
pling strength. We believe that this novel configuration
provides a simpler alternative to the use of optical cav-
ities in trapped ion experiments which involve standing
wave fields.
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